Title | Reduce, Reuse, Recycle (R^3): a Design Methodology for Sparse Matrix Vector Multiplication on Reconfigurable Platforms |
Publication Type | Conference Papers |
2013 | |
Authors | Townsend, K., and J. Zambreno |
Conference Name | Proceedings of the International Conference on Application-specific Systems, Architectures and Processors (ASAP) |
Date Published | June |
Sparse Matrix Vector Multiplication (SpMV) is an important computational kernel in many scientific computing applications. Pipelining multiply-accumulate operations shifts SpMV from a computationally bounded kernel to an I/O bounded kernel. In this paper, we propose a design methodology and hardware architecture for SpMV that seeks to utilize system memory bandwidth as efficiently as possible, by Reducing the matrix element storage with on-chip decompression hardware, Reusing the vector data by mixing row and column matrix traversal, and Recycling data with matrix-dependent on-chip storage. Our experimental results with a Convey HC-1/HC-2 reconfigurable computing system indicate that for certain sparse matrices, our R^3 methodology performs twice as fast as previous reconfigurable implementations, and effectively competes against other platforms. |