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Abstract—Model predictive control (MPC) is a popular ad-
vanced model-based control algorithm for controlling systems
that must respect a set of system constraints (e.g. actuator
force limitations). However, the computing requirements of MPC
limits the suitability of deploying its software implementation
into embedded controllers requiring high update rates. This
paper presents a scalable embedded MPC controller implemented
on a field-programmable gate array (FPGA) coupled with an
on-chip ARM processor. Our architecture implements an Al-
ternating Direction Method of Multipliers (ADMM) approach
for computing MPC controller commands. All computations
are performed using floating-point arithmetic. We introduce a
software/hardware (SW/HW) co-design methodology, for which
the ARM software can configure on-chip Block RAM to allow
users to 1) configure the MPC controller for a wide range of
plants, and 2) update at runtime the desired trajectory to track.
Our hardware architecture has the flexibility to compromise
between the amount of hardware resources used (regarding
Block RAMs and DSPs) and the controller computing speed. For
example, this flexibility gives the ability to control plants modeled
by a large number of decision variables (i.e. a plant model
using many Block RAMs) with a small number of computing
resources (i.e. DSPs) at the cost of increased computing time.
The hardware controller is verified using a Plant-on-Chip (PoC),
which is configured to emulate a mass-spring system in real-
time. A major driving goal of this work is to architect an SW/HW
platform that brings FPGAs a step closer to being widely adopted
by advanced control algorithm designers for deploying their
algorithms into embedded systems.

Index Terms—MPC, FPGA, ADMM, SW/HW co-design, co-
processor, control

I. INTRODUCTION

Model predictive control (MPC) is a popular advanced
control algorithm for controlling systems that must respect
a set of system constraints (e.g. actuator force limitations).
MPC has found its way into a wide range of applications,
such as industrial chemical plants [1], power converters [2],
traffic networks [3], and unmanned aerial vehicles(UAVs) [4].
However, for two decades after its introduction in the late
1970’s by J. Richalet [5], this advanced control technique
gained little traction outside of systems requiring update rates
on the order of seconds to minutes [6]. A primary reason for its
lack of adoption as compared to other control strategies such
as proportional-integral-derivative (PID) and optimal linear
quadratic control was due to its intense computing demands.

Methods for using limited computing resources to increase
MPC update rates has become a central problem for deploy-
ing MPC controllers into embedded systems for controlling
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increasingly complex systems at KHz and closing in on MHz
update rates. In this paper we use the parallelizable operator
splitting method, also referred to as alternating directions
method of multipliers (ADMM), to solve the linear-quadratic
MPC problem. Apart from its parallelizability, the algorithm
is division-free [7]. We build the design for a Zyng-7020
Field Programmable Gate Array (FPGA) device to exploit its
potential computation parallelism. Our proposed design targets
control algorithm and embedded software system developers
that wish to make use of the computing capabilities of FPGAs
to accelerate MPC, but may have little knowledge of FPGA
hardware design.

Contributions. The primary contribution of this work is a
software/hardware (SW/HW) co-design that allows: 1) config-
uring an MPC controller for a wide range of plants, 2) updating
at run-time the desired trajectory to track, 3) the flexibility
to trade off hardware resources for computing speed, and
4) easing controller deployment by introducing an SW/HW
co-design to decouple hardware details from control and
embedded software engineers.

Organization. The remainder of this paper is organized as
follows. Section II reviews works related to MPC computation.
Section III then presents a brief summary of MPC basics using
state space modeling and the concept of ADMM. Section IV
gives the hardware architecture and analyzes its bottlenecks.
Section V evaluates the hardware resource usage, maximum
clock frequency, and provides experimental controller results.
Section VI concludes the paper.

II. RELATED WORK

In this section techniques for computing MPC as a
Quadratic Programming problem are discussed. A summary
is then given of state-of-the-art FPGA-based hardware accel-
eration implementations for these techniques. We then position
our approach within those works.

Quadratic Programming (QP) solutions. MPC can be
posed as a Quadratic Programming problem in which a
quadratic cost function is optimized subject to a set of linear
equality and inequality constraints. As compared to computing
Linear Quadratic Regulator (LQR) commands, which can be
posed as a QP problem that is subject to only linear equalities,
computing MPC commands require vastly more computing
resources. There are two key reasons for this. First, when
only equality constraints are considered there is an analytical



solution, while iterative methods are required once inequality
constraints are introduced. Second, LQR only uses the current
system state and sensor inputs to compute its next actuator
command, while MPC additionally uses predictions of system
state and sensor inputs over a specified number of time steps
into the future (i.e. prediction horizon) [8].

QP problems can be solved reliably via various iterative
methods. Three common methods are the: 1) Interior-Point
Method (IPM) [9, Chapter 4.3.2], 2) the Active Set Method
(ASM) [9, Chapter 4.3.3], and 3) Alternating Directions
Method of Multipliers (ADMM) [7], [10]. For IPM, each
inequality constraint is transformed into a sequence of equality
constrained problems, and solved using Newton’s method.
ASM selects a subset of all specified inequalities based on
which inequalities are currently “active”, meaning they will
affect the optimization result at the current stage of the com-
putation. ADMM (also called operator splitting) allows large
QP problems to be broken into a set of smaller pieces, thus
allowing for more opportunities for parallelism. A detailed
description of IPM and ASM can be found in [11], [10]
gives a comprehensive introduction to ADMM, and a good
reference for solutions to the more general problem of convex
optimization is [12].

In most cases, IPM requires fewer iterations than ASM to
converge. However, each iteration of IPM is more computa-
tionally expensive because it solves a linear system involving
all the variables of the problem, whereas ASM solves linear
systems involving a subset of all the variables (i.e. variables as-
sociated with a subset of active constraints). ADMM converges
slower than IPM and ASM to achieve the same accuracy, while
each iteration is easier to compute.

FPGA-based QP solutions. Several works have investigated
accelerating QP solutions for the purpose of MPC [13]-[19].
Hardware acceleration of MPC using IPM was performed
by [13]-[16]. For these works accelerating the linear equation
solver required for IPM was the focus. In [13], the MINRES
algorithm was used to exploit potential parallelism within
the linear equation solver. In [14] and [16], acceleration of
a Conjugate Gradient Method based linear solver was con-
ducted. In [15], the linear equation solver used a Cholesky de-
composition approach that enabled implementing a predictor-
corrector that reduced the number of solver iterations. An
accelerator using the ASM approach was implemented in [17].
Additionally, [17] examined the trade-offs between using an
ASM verses an IPM approach. They concluded that ASM
gives lower computing complexity and converges faster when
the number of decision variables and constraints are small.
Otherwise, IPM is a better choice when considering scalability.

ADMM’s inherent parallelizability makes it a natural fit
for hardware acceleration. Two works that have developed
ADMM acceleration engines are [18] and [19]. In [18], a
highly parallel architecture was presented, and the tradeoff
between accuracy and computing resources when using custom
fixed-point number representation within the engine’s core
was a major focus. The high-level architecture of this work’s
computing core is the most similar to our work. In [19], the

use of a sparse QP formulation under polytopic constraints
was the primary contribution.

For our ADMM-based MPC acceleration engine, we have
focused on a SW/HW co-design that is flexible and eases its
use and deployment into a system. In terms of flexibility, our
architecture allows scaling in such a way that computing speed
can be traded off for hardware resources, enabling relatively
large controllers to be deployed when only a small number of
on-chip resources can be allocated to the engine. Regarding
ease of use and deployment, we have tightly integrated our
MPC engine with an on-chip ARM processor and we imple-
ment standard 32-bit floating point computations. Software
running on the ARM processor makes updating the MPC
engine with a new controller convenient, and our hardware
architecture has implemented software settable ADMM tuning
features as well.

III. BACKGROUND

This section gives a brief overview of three topics important
for understanding the problem being addressed: state space
models, model predictive optimal control, and the splitting
method.

A. State Space Model

In our paper, MPC is based on a state space model of a
physical system. A discrete state-space model defines what
state a system will be in one-time step into the future, based on
the current state of the system and current input acting upon it.
A generic linearized discrete state-space system model consists
of matrices A, B, C, and D! and is formulated as follows:

Tpy1 = Axy + Buy (1
yr = Cxy, + Duy, 2
Where:

o x} represents the state of the system at time &

e ug represents the input acting on the system at time &

e Y represents outputs of the system at time k

o A is a matrix that defines the internal dynamics of the

system

e B is a matrix that defines how the input acting upon the

system impact its state

o (' is a matrix that transforms states of the system into

outputs (yx)

Equation (1) is referred to as the state update equation. With
respect to a closed loop control system, matrix A represents the
dynamics of the plant being controlled, matrix B represents
how actuator commands (i.e. u;) impact the plant, and the
matrix C could be viewed as a mapping of the current state
to the output obtained from sensors (i.e. y).

Also the width (i.e. number of columns) of each matrix or
length of each vector found in Equation (1) and (2) can be
viewed as follows:

lit is common to omit the matrix D, as inputs typically do not directly
impact output



e M: the number of system/plant inputs/actuators.
o N: the number of system/plant states.

o P: the number of system outputs (i.e. sensors).
o A€RNXN; B e RNXM; ¢ ¢ RPXN,

o z €RY; 4y, € R uy, € RM,

B. Model Predictive Optimal Control

MPC uses Equation (1) and (2) to predict the behavior of
the system from current time over a future prediction horizon,
thus the input (uy,), input-change rate/step (Auy) and state (z)
are augmented to cover future predictions, as in Formula (3).

U Aug Tk
ve= | A= | S a2 [T )
'UrkJ;Hu AU/kJ;Hu,l fI/'IH.»Hp
Where:

e H,: changeable future input horizon. We assume input
ug will be constant after H,, time steps.

e M, prediction horizon. Normally, H,, > H,,.

o Up € RMUIAD AU, € RMH | X € RN,

1) MPC Cost Function: An MPC controller specifies a
vector combination of all controlled variables(X) and con-
straint variables(AUy, Uy), which minimizes the quadratic
objective cost function given by Equation (4), subject to linear
constraints on the variables x;, u; and Aw;. ¢;, p; and s; are
positive cost constant applied to x;, u; and Aw;.

1 k+Hp k+H,,
f— T . PR— T . . T . .
C(k) = 5( Zk (.’)31 qiw; — 2r; szz) + Zk Ui Pilq
k+Hy—1 “)
+ Z AuiTsiAuZ) + Const
i=k

Where 1, is a proposed trajectory at time k. Since the optimal
solution is independent of Const, we omit this constant term
and rewrite the cost function into more condense format:

1 Xk T Q Xk
C(k) =5 | Uk P Up | — REQXy (5)
AU}C S AUk;

Where Ry is the vector augmented form of rj, and has the
same format and size as Xj. The ) matrix is shown in (14)
and the same format applies to the P and S matrix.

2) Constraints: The equality constraints are associated with
the system time-step update, which is written as Equation (11).
It contains the augmented form of Equation (1) and (2) and the
equality relationship between Uy and AUj. The inequalities
are the restrictions on Uy, AUy and Xj. Normally, the
constraints to the state and input are called the box constraint,
which sets a low boundary and a high boundary like an
enclosed box that circumscribes the scope of these variables.

C. Splitting Method

One technique for partitioning variables in ADMM is writ-
ing the convex QP problem into consensus form [7]:

minimize : Ip(x) + é(x) + 1c(€)
subject to: x =( (6)

Where 1p(x) is the indicator function: 1p : x — {0, +oo}.
D is the affine set associated with system update in Equation
(11). When y fails to meet the equality condition, 1p(x) goes
infinity. So does 1¢(¢), where C is the variable constraints that
the system must comply.

We use function f + g to replace the objective function in
QP problem (6). f and g are shown in in Equation (7). Starting
from arbitrary points ¢ and v, the operator splitting method
solves the QP problem by carrying out three steps: (8) to (10)
repeatedly. Each can be solved separately without division.

g(x) = Ip(x) + &(x)

f(¢) =1c(C) (7)
X' i=proag, (¢ + 07) (8)
¢ = prowy, (X' +0') ©)

V=t (T = (10)
Here, 7 is the iteration counter, prox pr(x) is the proximal
mapping (or proximal operator) of a convex function f:

. P
prox,(x) = arg min(f(u) + Zx —ull3)

p > 0 is the dual update step length. 4

Computing x**! in (8) is equivalent to solving x**! in (11),
which is the standard QP problem with equality constraints.
1 . ‘ ,
Z(vOYT gyt 4 T it
5 (>§ )TEXT + 1 x
subject to: Gx**1 =h 1D

The associated matrices/vectors are shown in Equation (12)
to (14):

MINIMIize .

(12)
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i i
Ty + v
up k G+ v

Q * Ry ] G +vi
: O¢m, +1)M :
0 (a1 + V21

i+l U1 L b= and z:[

Uk+H,
Auk
Augqr

Aty g, 1]

13)



qo
Q+pl q1

E = P+ pl and Q=

(14)
S+ pI
qH,

Let S; = (H, + 1)N + H,M, and the number of opti-
mization variables So = (H, + 1)N + (2H,, + 1)M, then
G c RS[XSQ E c SiQXSQ.

The common method to solve Equation (11) is to establish
the KKT condition. The KKT condition is shown below:

o S0

Where A is called the dual variable vector. E' is the diagonal
combination of cost constant matrix ¢, P and S as is shown
in Equation (14). The KKT matrix is proved to be invertible
[7].

We solve Equation (15) to obtain x**!, which gives:

XH'l E GT -t -1

Sl S

The KKT matrix is nonsingular. We use the following
matrix M to represent the inverse of the KKT matrix:

e -1 <]

15)

(16)

ML My| ~ |G 0

Where M;; € RS2%(52+N) We do not care about matrix Mo
and Mys because Mo will multiply with a 0 vector (h vector
is constituted by z and zero elements) and Moo produces the
result of the dual variable A, which is only required when
constructing the KKT condition. In this way, only Mj; is
useful in our computation. This formulation of constructing
the MPC formula reduces to the orignal storage requirement
by ‘lef‘?\f, which is by 42.82% in the mass-spring system
example in section V.

The solution to (9) is the result of a saturation function. The
detailed processing steps are shown in Algorithm 1, which is
pipelined in hardware. A common stopping criteria is to check
if ||¢FY — ¢ or ||[vt! — v?| is smaller than a certain value.
We instead use a fixed number of iterations as the stopping
criteria since for many control applications a relatively small
number of iterations provides sufficient controller accuracy [7],
and this reduces hardware complexity.

Algorithm 1: ADMM algorithm

1 Start from ¢ = § with arbitrary ¢° and o°.
2 do

3 0

X = My o« [ xk}T // Solve KKT

¢l = sat(xy*! — v, dom C) // saturation
vt = vt + p(¢H — x*t1) // Update Dual
t:=14+1

until stopping criterion is satisfied;

| = {Q*Rk:| —p(Ci—‘rUi) // Update Vector 1
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Fig. 1: Hardware Architecture for ADMM with Relaxation Parameter .

As a final note on Algorithm 1, the y’*! appearing in line
5 and 6 is substituted with ax**! + (1 — )¢’ a € (0,2)
is the relaxation parameter derived from Douglas-Rachford
splitting. The convergence rate can be improved if « is
properly selected.

IV. ADMM HARDWARE ARCHITECTURE

This section introduces the detailed hardware architecture
to support Algorithm 1. Major focuses of the design were
system parametrization, system scaling, and runtime reference
trajectory setting. Finally, we analyze the computation latency
and BRAM usage. The design is written in VHDL using
Vivado 2015.4 IDE.

A. ADMM Architecture Overview

As shown in Fig. 1, the high-level hardware architecture
is divided into Top and Bottom level for a modularized
illustration. Top level is the Quadratic Programming Solver.
It has a matrix-vector multiplier tree structure. Bottom level
is composed of three parts: 1) Saturation Function (marked in
green diagonal line), 2) Update Vector v® (marked in purple
cross line), 3) Update Vector [ (marked in red). Some FIFOs
which are used to store intermediate values are not shown in
the figure. We use Block RAM(BRAM) to store the (!, v®
vector and the boundary value box constraints x, u, and Auwu.

We next describe the components of Fig. 1 in greater detail:

1) Matrix-vector Multiplier (MVM): The QP solver is simi-
lar to the architecture presented in [20] for parallelizing MVM
of large sparse matrices. The MVM computation uses a tree
structure. D), indicates the depth of the MVM tree. The total
number of multipliers in the MVM tree is 2”7 and the number
of adders is 20» — 1.



Fig. 2: Reduce Circuit Architecture with Two Cascaded Adders

2) Data Storage: Block RAMs (BRAMs) are used as the
primary on-chip memory of the MPC engine. We configure the
BRAMs as true dual port, which provides two read and two
write ports. Every multiplier in the MVM tree has a dedicated
dual port BRAM attached, with one port feeding matrix data
and one port feeding vector data.

According to the BRAM configuration datasheet, the
BRAM has to be at least 36Kb. Since the matrix size is the
square of the vector size, we reserve a small fraction of space
for vector storage. Another solution is to use Look Up Tables
(LUTS) to store the vector. In either case, the vector should
be duplicated to avoid write back conflicts.

We use Nprans to represent the number of available 36Kb
BRAMs. Npgp is the number of DSP slices on-chip. If the
hardware resources meet inequality condition (17), the BRAM
will hinder the scalability of the system without the support of
the reduce circuit. This conclusion is based on the assumptions
that 1) each multiplier and adder consume one DSP slice;
2) each MVM multiplier requires at least one 36kb BRAM.
According to the Zynq datasheet, only the Z-7100 device
from the Zyng-7000 family is unconformable to the inequality
condition (17), which indicates that the on-chip memory is the
resource bottleneck for most of the Zyng-7000 family.

2% Npram > Npsp > 63.25v/ Npram

3) Reduce Circuit: The purpose of the reduce circuit is
to let us balance between resource usage and the number of
MVM pipeline stages. Fig. 2 shows a reduce circuit structure,
which is cascading two smaller reduce circuits.

The reduce circuit allows a single row of the matrix and
vector to be separated into segments, and each segment is fed
into the MVM pipeline in consecutive clock cycles. The reduce
circuit accumulates the sum of each segment and generates
a final result out of the last reduce stage. By employing
more cascading levels, we can divide each row of the matrix
into smaller segments at the cost of increasing latency due
to increased pipeline stages at the reduce circuit. Suppose
the depth of the MVM tree is D), and the number of Mi;
rows is Ngow and columns is Ngoyr. Then the number
of adders in the reduce circuit that our system requires is
Ng = [Ncor/2P»]—1. The number of clock cycles to merge
all the matrix and vector data into the MVM pipeline is:

a7

Lycad_nn, = Nrow * (Ng +1) (18)

4) Saturation Function: Fig. 1 contains the hardware for
saturation function. We assume each variable has same ab-
solute upper and lower boundary value so that we just store
the positive boundary values in the box constraint BRAM. The

Control

FIFO: B

Fig. 3: Runtime Trajectory Planning

result of ! —? is compared with the box constraints. If the
absolute value of x‘*! —v? is smaller than the box constraint,
we output the value directly. Else, if the value is larger, we
output the box constraint using the sign of x*! — v,

B. Trajectory Setting During Runtime

MPC can optimize a system’s following of a trajectory
multiple time steps ahead so that system can react accordingly
in advance. Our controller can set the desired trajectory during
runtime. For example, we may want to update a UAV’s flight
path while it is in the air.

We use two FIFOs to realize the functionality. The archi-
tecture is shown in Fig. 3, which is located in the dashed
square marked by *T’ in Fig. 1. First, we configure FIFO:A
and FIFO:B. FIFO:B stores the trajectory data for the current
computation, and FIFO:A stores the future trajectory data.
When computing the [ vector, we read FIFO:B, use the data
and write its output back to itself, which will be used for next
converge iteration. In the last iteration, we discard the front
N numbers after reading, and write the remaining back to
FIFO:B. Next, we load N new trajectory data from FIFO:A
into FIFO:B. In this way, each trajectory data shifts forward
one sample step, and we fill the last trajectory point with a
new one. Since writing to FIFO:A is independent of operations
on FIFO:B, we can write new state trajectory data to FIFO:A
at any time before FIFO:B goes empty.

C. Latency Analysis

Table I gives computation latency. The floating point mul-
tiplier latency is Lj;=8; the floating point adder latency is
L =11, the comparator latency is Lc=2. We call Ly + Ly,
pure processing stages, namely the number of pipeline stages
from an element entering the MVM pipeline to finishing.

TABLE I: Computation Latency
Binary Tree (Ly:) | Lar + DpLa+ Nr(La +2)
Bottom Level (Ly;) 6Las+ 3Ly + Lo

The total latency Laparas is shown in Equation. (19),
which is the sum of pure processing stages and the clock
cycles to finish fetching all the matrix and vector data into
MVM tree (Lread_JWu)-

Lapymr = Lt + Loy + Lycad_nr, (19)

The architecture by default fetches one row per clock cycle
or we can break each row into several pieces and accumulate
each piece through the reduce circuit. However, under most
cases, Ncor/ 2Dr is not an integer, thus some BRAMs store
’0’s to pad the final piece of the matrix row. These padding
’0’s occupy BRAM space and decrease the scalability of the
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design. The problem can be solved via introducing a simple
state machine that tells the hardware which DSP should be
fed ’0’ instead of reading data from BRAM.

V. EVALUATION

This section describes our SW/HW co-design evaluation
methodology. We evaluate our design using a Plant-on-Chip
(PoC), which emulates the physical behavior of a linear
system [21]. We provide post place&route results including
resource usage and maximum clock frequency. We then com-
pare our work with other related works.

A. Mass-spring System

The system we use to test our controller is a mass-spring
model, which is considered as a benchmark in [15], [22] and
many recent works use it to validate their hardware controller.
The physical system is illustrated in Fig. 4. The objective
is moving masses to desired positions by applying a force
to each mass. The state vector consists of the position (P)
and speed (P) of each mass?. The state space model size
increases quadratically as the number of masses increases.
We constrain the position of each mass within 0.5m to avoid
collision between adjacent masses. Each mass is 1Kg, and the
spring constant is 1N/m. The input force (U) is limited to
+0.5N and the change of input force between each sample
period (i.e. rate of change, AU) is 0.1N, as in [18]. The sample
period is 0.1s. The prediction horizon () and input horizon
(H,) are both 12. The cost constant for position P, input force
U and input-rate AU are 80, 1 and O (we are not trying to
minimize AU during the control process) respectively.

B. Plant on Chip Emulation

We conducted our experiments on a Zyng-7020 device. A
Plant-on-Chip (PoC) was deployed onto the FPGA’s Program-
able Logic (PL) fabric to emulate the mass-spring system
shown in Fig. 4. The PoC executes state space Equations 1
and 2 with input uj received from a hardware or software-
based controller. The state of the PoC and control commands
are logged out of band, using a UART interface, which is
convenient for plotting the controller behavior at runtime.

The MPC controller requires the CPU to configure the co-
processor BRAM content with the matrix M;1. When running
the MPC hardware controller at 100 MHz, it computes g
in 347.8us using a D=3 MVM tree and executes 20 fixed
converge iterations.

The hardware control graph is shown in Fig. 5. The red
dashed line is the software configured trajectory, and the
blue line is the actual mass position. The first 100 points
of the trajectory are stored in the trajectory FIFO during

2P is the position relative to the initial position

o
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o
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Mass 2 Position(m

Fig. 5: Mass Position Change with respect to Planned Trajectory. Red dashed
line is the planned trajectory, and the blue line is the actual trajectory.
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Fig. 6: Control Signal U and AU. Blue line is the input force and the force
rate of change for M7, red dashed line is for Ms.

configuration, which reflects Os—10s of red trajectory line. The
remainder of the trajectory is configured during runtime. The
input force and the input force rate of change are shown in
Fig. 6. From the graph, we can see that the control signal and
control signal rate of change respect their bounding constraints
of +0.5N and £0.1N per time step respectively.

C. SW/HW Co-design

The on-chip ARM processor transfers a pre-generated M)
matrix into the reconfigurable fabric’s BRAMs through the
AXI bus. Additionally, the on-chip ARM processor can access
memory-mapped registers resident in the reconfigurable fabric
to indicate when the MPC hardware engine should start and
stop, and for updating the desired trajectory at runtime. The
system block design is shown in Fig. 7. The design steps are:

1) According to system requirements, generate the bit-

stream in Vivado, and M;; matrix in Matlab.

2) Store M;; to BRAM via AXI bus using ARM software.

3) ARM software configures trajectory and box constraints.

4) Send start signal to the PoC, and collect data through

UART to external computer and plot graph.
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150
—-%—-- 2 Mass Time E
— ¥— - 3 Mass Time
—¥— 4 Mass Time
—--H--- 2 Mass DSP
— - - 3 Mass DSP
—+8— 4 Mass DSP

2000

time (i s)
Number of DSP

50

Fig. 8: Computation time of 40 converge iteration loops and DSP usage for
different system configurations from simulation. Computation time is
marked by *, number of DSPs is marked by [J. Hardware speed is 100MHz.

As we can see from the design steps, a control engineer
can easily handle each step. In addition, when we apply the
hardware control to another system with different parameters
and size, the design can be easily adjusted.

D. Computation Speed Versus Hardware Resources

The relationship between DSP usage, D, and system size
is shown in Fig. 8. As D, increases, the size of the reduce
circuit will decrease thus reducing computation time. The DSP
resources used is modifiable. The more DSPs we use, the faster
computation speed we achieve. Consider a situation where
an FPGA has few DSP resources available, our proposed
architecture can still execute the controller by decreasing the
MVM depth, at the cost of increased computing time.

E. Resource Utilization and Timing Summary

Table II shows the resource utilization of the ADMM
architecture. Each floating-point multiplier and adder use
one DSP48E. We used the maximum number of pipeline
stages supported by the Xilinx floating point adder(11) and
multiplier(8) IP cores. Each memory attached to the MVM
multiplier tree is composed of 2 36Kb BRAMs. BRAMs are
also used for FIFOs in the MVM tree and Bottom level. The
Zynq-7020 can hold an MVM tree having a depth up to 6.
Generally, the clock frequency can easily reach 100MHz.

We also tested the resource scaling on a Zynq Ultrascale.
It can reach 340MHz when deploying a D, = 8 MVM tree.

TABLE II: Zynq-7020 Hardware Resource Usage

MVM | Flip-Flops | LUTs | 18KB | DSP48E | Maximum
Size | (106400 | (53200 B(l;‘;(l)vl @20 | peney
D, total) total) total) total)

3 TRT47 12746 35 33 T5T.149MHz
7 31058 15703 g7 7 T44.835MHz
3 32425 33301 751 76 T43.609MHiz
6 57167 3273 379 738 133.298MHz

FE. Comparision with other Works

Table III provides a comparative summary of our work
with two other FPGA accelerated MPC works and a software
implementation. For the hardware work, one is IPM based
[15], and another is ADMM based [18], like ours. Starting with
the IPM based work, it can be seen when compared against
the ADMM-based approaches using about half the number
of multipliers ("200) for about the same number of decision
variables ("200) our approach is about 50x faster (2,650us vs.
46.1us) than the IPM implementation and the other ADMM
work [18] is about 100x faster (2,650us vs. 23.4us). As
explained in Section II, this is due to the ADMM algorithm
requiring less computation per convergence iteration. The
software implementation, [7], is ADMM based, and is run on
a 3.4GHz Xeon processor. We estimate for 262 variables that
this SW solution would take 850 us if the average number of
iteration maintains in 35.1.

When comparing our approach with the ADMM based
approach of [18], for about 200 multipliers and 200 decision
variables, it can be seen that our approach is about two times
slower (i.e. 46.1 us vs. 23.4 us). The primary reason for
this is that in [18] fixed point arithmetic is used, while our
implementation uses 32-bit floating point arithmetic. The main
way in which this impacts performance is that the floating
point adders required 11 pipelining stages to maximize clock
frequency, while fixed point addition can be done at a high
clock rate in one clock cycle. For the size of matrices being
operated on (limited by on-chip memory), the number of adder
pipeline cycles to fill the processing pipeline ("88 for an MVM
tree of depth 8) is nearly half the number of matrix rows (7200)
read into the MVM tree. This accounts for a vast majority of
the two times difference in performance. However, for this cost
in performance, we gain the convince of software and control
algorithm developers not having to deal with the complexities
of working with custom fixed-point number formats, easing
the process of deploying a designed controller into our MPC
accelerator. For physical systems requiring sub-millisecond
controller updates rates, this is a good tradeoff, however for
controllers requiring 10s of microsecond updates rates using
a fixed-point approach is more appropriate with todays FPGA
capabilities. The important question to answer is for your
application is the convenience of using floating point worth
the performance tradeoff.

The Reduce circuitry implemented in our architecture nat-
urally allows our design to scale to large numbers of decision
variables using a nearly arbitrarily small number of multipliers
at the cost of speed, as is illustrated in the 350* entry of



TABLE IIT: Hardware Computation Time per Iteration between Related Work.3

[ | Method [ Data Format | Chip Series [ far | #Multipliers  [Iteration|#Opt Var| Running Time |
_ _ 204 314.2 pus
Zyng-7020 130MHz | 2 (Dp=6, K=1) 350%* 717.2 us
This Paper | ADMM | floating-point 80 (Dp=5, K=2) 40 291.4 us
ZU9EG 264 (Dp=8, K=1) 204 46.1 us
(Zynq UltraScale+) 340MHz 792 (Dp=8, K=3) 30.1 ps
— Virtex-6 (LX75) 216 (K=1) 23415
HW [18] ADMM fixed-point Virtex-6 (SX475) 400MHz 1512 (K=7) 40 216 49015
[ HW [15] | IPM [ floatingpoint | Virtex-7 (XC7VX485T) | 200MHZ | 443 [ 10 | 240 [ 2650 us |
[ SWI[7] [ ADMM [ floating-point | Quad-core Intel Xeon | 3.4GHz | n/a [ 351 [ 525 | 3400 pus |

Table III, while [18] does not have such a mechanism for
scaling the number of decision variables above the number
of multipliers in the system. This gives our MPC engine
the flexibility to be deployed into System-on-Chip FPGA
applications that may not have many multipliers to allocate to
an MPC computation engine. Two ADMM tuning features im-
plemented in our ADMM architecture that is not implemented
by [18] is a relaxation parameter (o) and a dual update step
length (p), which can be used to tune the convergence rate of
ADMM for a given system.

A final point of comparison is that this work tightly in-
tegrates an on-chip ARM processor with the MPC compute
engine. This provides Controls or Software engineers a con-
venient software mechanism for configuring the controller for
arbitrary systems, updating the desired trajectory of the system
at runtime, and tuning the ADMM « and p parameters.

VI. CONCLUSION

We have presented an MPC acceleration engine that is
tightly coupled to an ARM processor embedded on the same
chip. Our acceleration engine has been designed to allow
trading off between performance and hardware resource usage.
Our tight interface with an on-chip ARM processor allows
software to easily update the configuration of the acceleration
engine to control a wide range of systems, and to adjust the
desired system trajectory at run-time. An avenue of future
work is examining the architectural details required for inter-
facing and managing external sensors to extend our evaluation
from controlling a real-time Plant on Chip to actual physical
systems, such as quadcopters.
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