
An Embedded Scalable Linear Model Predictive

Hardware-based Controller using ADMM

Pei Zhang, Joseph Zambreno and Phillip H. Jones

Electrical and Computer Engineering

Iowa State University, Ames, Iowa, USA

{peizhang, zambreno and phjones@iastate.edu}

Abstract—Model predictive control (MPC) is a popular ad-
vanced model-based control algorithm for controlling systems
that must respect a set of system constraints (e.g. actuator
force limitations). However, the computing requirements of MPC
limits the suitability of deploying its software implementation
into embedded controllers requiring high update rates. This
paper presents a scalable embedded MPC controller implemented
on a field-programmable gate array (FPGA) coupled with an
on-chip ARM processor. Our architecture implements an Al-
ternating Direction Method of Multipliers (ADMM) approach
for computing MPC controller commands. All computations
are performed using floating-point arithmetic. We introduce a
software/hardware (SW/HW) co-design methodology, for which
the ARM software can configure on-chip Block RAM to allow
users to 1) configure the MPC controller for a wide range of
plants, and 2) update at runtime the desired trajectory to track.
Our hardware architecture has the flexibility to compromise
between the amount of hardware resources used (regarding
Block RAMs and DSPs) and the controller computing speed. For
example, this flexibility gives the ability to control plants modeled
by a large number of decision variables (i.e. a plant model
using many Block RAMs) with a small number of computing
resources (i.e. DSPs) at the cost of increased computing time.
The hardware controller is verified using a Plant-on-Chip (PoC),
which is configured to emulate a mass-spring system in real-
time. A major driving goal of this work is to architect an SW/HW
platform that brings FPGAs a step closer to being widely adopted
by advanced control algorithm designers for deploying their
algorithms into embedded systems.

Index Terms—MPC, FPGA, ADMM, SW/HW co-design, co-
processor, control

I. INTRODUCTION

Model predictive control (MPC) is a popular advanced

control algorithm for controlling systems that must respect

a set of system constraints (e.g. actuator force limitations).

MPC has found its way into a wide range of applications,

such as industrial chemical plants [1], power converters [2],

traffic networks [3], and unmanned aerial vehicles(UAVs) [4].

However, for two decades after its introduction in the late

1970’s by J. Richalet [5], this advanced control technique

gained little traction outside of systems requiring update rates

on the order of seconds to minutes [6]. A primary reason for its

lack of adoption as compared to other control strategies such

as proportional-integral-derivative (PID) and optimal linear

quadratic control was due to its intense computing demands.

Methods for using limited computing resources to increase

MPC update rates has become a central problem for deploy-

ing MPC controllers into embedded systems for controlling

increasingly complex systems at KHz and closing in on MHz

update rates. In this paper we use the parallelizable operator

splitting method, also referred to as alternating directions

method of multipliers (ADMM), to solve the linear-quadratic

MPC problem. Apart from its parallelizability, the algorithm

is division-free [7]. We build the design for a Zynq-7020

Field Programmable Gate Array (FPGA) device to exploit its

potential computation parallelism. Our proposed design targets

control algorithm and embedded software system developers

that wish to make use of the computing capabilities of FPGAs

to accelerate MPC, but may have little knowledge of FPGA

hardware design.

Contributions. The primary contribution of this work is a

software/hardware (SW/HW) co-design that allows: 1) config-

uring an MPC controller for a wide range of plants, 2) updating

at run-time the desired trajectory to track, 3) the flexibility

to trade off hardware resources for computing speed, and

4) easing controller deployment by introducing an SW/HW

co-design to decouple hardware details from control and

embedded software engineers.

Organization. The remainder of this paper is organized as

follows. Section II reviews works related to MPC computation.

Section III then presents a brief summary of MPC basics using

state space modeling and the concept of ADMM. Section IV

gives the hardware architecture and analyzes its bottlenecks.

Section V evaluates the hardware resource usage, maximum

clock frequency, and provides experimental controller results.

Section VI concludes the paper.

II. RELATED WORK

In this section techniques for computing MPC as a

Quadratic Programming problem are discussed. A summary

is then given of state-of-the-art FPGA-based hardware accel-

eration implementations for these techniques. We then position

our approach within those works.

Quadratic Programming (QP) solutions. MPC can be

posed as a Quadratic Programming problem in which a

quadratic cost function is optimized subject to a set of linear

equality and inequality constraints. As compared to computing

Linear Quadratic Regulator (LQR) commands, which can be

posed as a QP problem that is subject to only linear equalities,

computing MPC commands require vastly more computing

resources. There are two key reasons for this. First, when

only equality constraints are considered there is an analytical

978-1-5090-4825-0/17/$31.00 c©2017 IEEE



solution, while iterative methods are required once inequality

constraints are introduced. Second, LQR only uses the current

system state and sensor inputs to compute its next actuator

command, while MPC additionally uses predictions of system

state and sensor inputs over a specified number of time steps

into the future (i.e. prediction horizon) [8].

QP problems can be solved reliably via various iterative

methods. Three common methods are the: 1) Interior-Point

Method (IPM) [9, Chapter 4.3.2], 2) the Active Set Method

(ASM) [9, Chapter 4.3.3], and 3) Alternating Directions

Method of Multipliers (ADMM) [7], [10]. For IPM, each

inequality constraint is transformed into a sequence of equality

constrained problems, and solved using Newton’s method.

ASM selects a subset of all specified inequalities based on

which inequalities are currently ”active”, meaning they will

affect the optimization result at the current stage of the com-

putation. ADMM (also called operator splitting) allows large

QP problems to be broken into a set of smaller pieces, thus

allowing for more opportunities for parallelism. A detailed

description of IPM and ASM can be found in [11], [10]

gives a comprehensive introduction to ADMM, and a good

reference for solutions to the more general problem of convex

optimization is [12].

In most cases, IPM requires fewer iterations than ASM to

converge. However, each iteration of IPM is more computa-

tionally expensive because it solves a linear system involving

all the variables of the problem, whereas ASM solves linear

systems involving a subset of all the variables (i.e. variables as-

sociated with a subset of active constraints). ADMM converges

slower than IPM and ASM to achieve the same accuracy, while

each iteration is easier to compute.

FPGA-based QP solutions. Several works have investigated

accelerating QP solutions for the purpose of MPC [13]–[19].

Hardware acceleration of MPC using IPM was performed

by [13]–[16]. For these works accelerating the linear equation

solver required for IPM was the focus. In [13], the MINRES

algorithm was used to exploit potential parallelism within

the linear equation solver. In [14] and [16], acceleration of

a Conjugate Gradient Method based linear solver was con-

ducted. In [15], the linear equation solver used a Cholesky de-

composition approach that enabled implementing a predictor-

corrector that reduced the number of solver iterations. An

accelerator using the ASM approach was implemented in [17].

Additionally, [17] examined the trade-offs between using an

ASM verses an IPM approach. They concluded that ASM

gives lower computing complexity and converges faster when

the number of decision variables and constraints are small.

Otherwise, IPM is a better choice when considering scalability.

ADMM’s inherent parallelizability makes it a natural fit

for hardware acceleration. Two works that have developed

ADMM acceleration engines are [18] and [19]. In [18], a

highly parallel architecture was presented, and the tradeoff

between accuracy and computing resources when using custom

fixed-point number representation within the engine’s core

was a major focus. The high-level architecture of this work’s

computing core is the most similar to our work. In [19], the

use of a sparse QP formulation under polytopic constraints

was the primary contribution.

For our ADMM-based MPC acceleration engine, we have

focused on a SW/HW co-design that is flexible and eases its

use and deployment into a system. In terms of flexibility, our

architecture allows scaling in such a way that computing speed

can be traded off for hardware resources, enabling relatively

large controllers to be deployed when only a small number of

on-chip resources can be allocated to the engine. Regarding

ease of use and deployment, we have tightly integrated our

MPC engine with an on-chip ARM processor and we imple-

ment standard 32-bit floating point computations. Software

running on the ARM processor makes updating the MPC

engine with a new controller convenient, and our hardware

architecture has implemented software settable ADMM tuning

features as well.

III. BACKGROUND

This section gives a brief overview of three topics important

for understanding the problem being addressed: state space

models, model predictive optimal control, and the splitting

method.

A. State Space Model

In our paper, MPC is based on a state space model of a

physical system. A discrete state-space model defines what

state a system will be in one-time step into the future, based on

the current state of the system and current input acting upon it.

A generic linearized discrete state-space system model consists

of matrices A, B, C, and D1 and is formulated as follows:

xk+1 = Axk +Buk (1)

yk = Cxk +Duk (2)

Where:

• xk represents the state of the system at time k
• uk represents the input acting on the system at time k
• yk represents outputs of the system at time k
• A is a matrix that defines the internal dynamics of the

system

• B is a matrix that defines how the input acting upon the

system impact its state

• C is a matrix that transforms states of the system into

outputs (yk)

Equation (1) is referred to as the state update equation. With

respect to a closed loop control system, matrix A represents the

dynamics of the plant being controlled, matrix B represents

how actuator commands (i.e. uk) impact the plant, and the

matrix C could be viewed as a mapping of the current state

to the output obtained from sensors (i.e. yk).

Also the width (i.e. number of columns) of each matrix or

length of each vector found in Equation (1) and (2) can be

viewed as follows:

1it is common to omit the matrix D, as inputs typically do not directly
impact output

2



• M : the number of system/plant inputs/actuators.

• N : the number of system/plant states.

• P : the number of system outputs (i.e. sensors).

• A ∈ R
N×N ; B ∈ R

N×M ; C ∈ R
P×N .

• xk ∈ R
N ; yk ∈ R

P ; uk ∈ R
M .

B. Model Predictive Optimal Control

MPC uses Equation (1) and (2) to predict the behavior of

the system from current time over a future prediction horizon,

thus the input (uk), input-change rate/step (∆uk) and state (xk)

are augmented to cover future predictions, as in Formula (3).

Uk =











uk

uk+1

...

uk+Hu











, ∆Uk =











∆uk

∆uk+1

...

∆uk+Hu−1











, Xk =











xk

xk+1

...

xk+Hp











(3)

Where:

• Hu: changeable future input horizon. We assume input

uk will be constant after Hu time steps.

• Hp: prediction horizon. Normally, Hp ≥ Hu.

• Uk ∈ R
M(Hu+1), ∆Uk ∈ R

MHu , Xk ∈ R
N(Hp+1).

1) MPC Cost Function: An MPC controller specifies a

vector combination of all controlled variables(Xk) and con-

straint variables(∆Uk, Uk), which minimizes the quadratic

objective cost function given by Equation (4), subject to linear

constraints on the variables xi, ui and ∆ui. qi, pi and si are

positive cost constant applied to xi, ui and ∆ui.

C(k) =
1

2

(

k+Hp
∑

i=k

(xT
i qixi − 2rTi qixi) +

k+Hu
∑

i=k

uT
i piui

+

k+Hu−1
∑

i=k

∆uT
i si∆ui

)

+ Const

(4)

Where rk is a proposed trajectory at time k. Since the optimal

solution is independent of Const, we omit this constant term

and rewrite the cost function into more condense format:

C(k) =
1

2





Xk

Uk

∆Uk





T 



Q
P

S









Xk

Uk

∆Uk



−RT
k QXk (5)

Where Rk is the vector augmented form of rk, and has the

same format and size as Xk. The Q matrix is shown in (14)

and the same format applies to the P and S matrix.

2) Constraints: The equality constraints are associated with

the system time-step update, which is written as Equation (11).

It contains the augmented form of Equation (1) and (2) and the

equality relationship between Uk and ∆Uk. The inequalities

are the restrictions on Uk, ∆Uk and Xk. Normally, the

constraints to the state and input are called the box constraint,

which sets a low boundary and a high boundary like an

enclosed box that circumscribes the scope of these variables.

C. Splitting Method

One technique for partitioning variables in ADMM is writ-

ing the convex QP problem into consensus form [7]:

minimize : ✶D(χ) + φ(χ) + ✶C(ζ)

subject to : χ = ζ (6)

Where ✶D(χ) is the indicator function: ✶D : χ → {0,+∞}.

D is the affine set associated with system update in Equation

(11). When χ fails to meet the equality condition, ✶D(χ) goes

infinity. So does ✶C(ζ), where C is the variable constraints that

the system must comply.

We use function f + g to replace the objective function in

QP problem (6). f and g are shown in in Equation (7). Starting

from arbitrary points ζ0 and υ0, the operator splitting method

solves the QP problem by carrying out three steps: (8) to (10)

repeatedly. Each can be solved separately without division.

g(χ) = ✶D(χ) + φ(χ)

f(ζ) = ✶C(ζ) (7)

χi+1 := proxg,ρ(ζ
i + υi) (8)

ζi+1 := proxf,ρ(χ
i+1 + υi) (9)

υi+1 := υi + ρ(χi+1 − ζi+1) (10)

Here, i is the iteration counter, proxf,ρ(χ) is the proximal

mapping (or proximal operator) of a convex function f :

proxf,ρ(χ) = arg min
u

(f(u) +
ρ

2
‖χ− u‖22)

ρ > 0 is the dual update step length.

Computing χi+1 in (8) is equivalent to solving χi+1 in (11),

which is the standard QP problem with equality constraints.

minimize :
1

2
(χi+1)TEχi+1 + lTχi+1

subject to : Gχi+1 = h (11)

The associated matrices/vectors are shown in Equation (12)

to (14):

G =





































I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A −I . . . . . . . . . . . . B . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . A −I . . . . . . . . . . . . B . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B . . . . . . . . . . . .
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

. . . . . . . . . . . . A −I . . . . . . . . . . . . . . . B . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . I −I . . . . . . . . . . . . I . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . I −I . . . . . . . . . . . . I . . . . . .
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I −I . . . . . . . . . I





































(12)

χi+1 =



















































xk

xk+1

xk+2

...

xk+Hp

uk

uk+1

...

uk+Hu

∆uk

∆uk+1

...

∆uk+Hu−1



















































, h =











xk

0
...

0











and l =

[

Q ∗Rk

0(2Hu+1)M

]

− ρ











ζi0 + υi
0

ζi1 + υi
1

...

ζiS2−1 + υi
S2−1











(13)

3





Reg

0

Reg

M

U

X

+
Reg

0

Reg

M

U

X

+

Fig. 2: Reduce Circuit Architecture with Two Cascaded Adders

2) Data Storage: Block RAMs (BRAMs) are used as the

primary on-chip memory of the MPC engine. We configure the

BRAMs as true dual port, which provides two read and two

write ports. Every multiplier in the MVM tree has a dedicated

dual port BRAM attached, with one port feeding matrix data

and one port feeding vector data.

According to the BRAM configuration datasheet, the

BRAM has to be at least 36Kb. Since the matrix size is the

square of the vector size, we reserve a small fraction of space

for vector storage. Another solution is to use Look Up Tables

(LUTs) to store the vector. In either case, the vector should

be duplicated to avoid write back conflicts.

We use NBRAM to represent the number of available 36Kb

BRAMs. NDSP is the number of DSP slices on-chip. If the

hardware resources meet inequality condition (17), the BRAM

will hinder the scalability of the system without the support of

the reduce circuit. This conclusion is based on the assumptions

that 1) each multiplier and adder consume one DSP slice;

2) each MVM multiplier requires at least one 36kb BRAM.

According to the Zynq datasheet, only the Z-7100 device

from the Zynq-7000 family is unconformable to the inequality

condition (17), which indicates that the on-chip memory is the

resource bottleneck for most of the Zynq-7000 family.

2 ∗NBRAM ≥ NDSP ≥ 63.25
√

NBRAM (17)

3) Reduce Circuit: The purpose of the reduce circuit is

to let us balance between resource usage and the number of

MVM pipeline stages. Fig. 2 shows a reduce circuit structure,

which is cascading two smaller reduce circuits.

The reduce circuit allows a single row of the matrix and

vector to be separated into segments, and each segment is fed

into the MVM pipeline in consecutive clock cycles. The reduce

circuit accumulates the sum of each segment and generates

a final result out of the last reduce stage. By employing

more cascading levels, we can divide each row of the matrix

into smaller segments at the cost of increasing latency due

to increased pipeline stages at the reduce circuit. Suppose

the depth of the MVM tree is Dp, and the number of M11

rows is NROW and columns is NCOL. Then the number

of adders in the reduce circuit that our system requires is

NR = ⌈NCOL/2
Dp⌉−1. The number of clock cycles to merge

all the matrix and vector data into the MVM pipeline is:

Lread M11
= NROW ∗ (NR + 1) (18)

4) Saturation Function: Fig. 1 contains the hardware for

saturation function. We assume each variable has same ab-

solute upper and lower boundary value so that we just store

the positive boundary values in the box constraint BRAM. The

-r
T
q

FIFO: A

MUX
Data

Control

AXI

FIFO: B

T

Fig. 3: Runtime Trajectory Planning

result of χi+1−υi is compared with the box constraints. If the

absolute value of χi+1−υi is smaller than the box constraint,

we output the value directly. Else, if the value is larger, we

output the box constraint using the sign of χi+1 − υi.

B. Trajectory Setting During Runtime

MPC can optimize a system’s following of a trajectory

multiple time steps ahead so that system can react accordingly

in advance. Our controller can set the desired trajectory during

runtime. For example, we may want to update a UAV’s flight

path while it is in the air.

We use two FIFOs to realize the functionality. The archi-

tecture is shown in Fig. 3, which is located in the dashed

square marked by ’T’ in Fig. 1. First, we configure FIFO:A

and FIFO:B. FIFO:B stores the trajectory data for the current

computation, and FIFO:A stores the future trajectory data.

When computing the l vector, we read FIFO:B, use the data

and write its output back to itself, which will be used for next

converge iteration. In the last iteration, we discard the front

N numbers after reading, and write the remaining back to

FIFO:B. Next, we load N new trajectory data from FIFO:A

into FIFO:B. In this way, each trajectory data shifts forward

one sample step, and we fill the last trajectory point with a

new one. Since writing to FIFO:A is independent of operations

on FIFO:B, we can write new state trajectory data to FIFO:A

at any time before FIFO:B goes empty.

C. Latency Analysis

Table I gives computation latency. The floating point mul-

tiplier latency is LM=8; the floating point adder latency is

LA=11, the comparator latency is LC=2. We call Lbt + Lbl

pure processing stages, namely the number of pipeline stages

from an element entering the MVM pipeline to finishing.

TABLE I: Computation Latency

Binary Tree (Lbt) LM +DpLA +NR(LA + 2)
Bottom Level (Lbl) 6LA + 3LM + LC

The total latency LADMM is shown in Equation. (19),

which is the sum of pure processing stages and the clock

cycles to finish fetching all the matrix and vector data into

MVM tree (Lread M11
).

LADMM = Lbt + Lbl + Lread M11
(19)

The architecture by default fetches one row per clock cycle

or we can break each row into several pieces and accumulate

each piece through the reduce circuit. However, under most

cases, NCOL/2
Dp is not an integer, thus some BRAMs store

’0’s to pad the final piece of the matrix row. These padding

’0’s occupy BRAM space and decrease the scalability of the

5







TABLE III: Hardware Computation Time per Iteration between Related Work.3

Method Data Format Chip Series fclk #Multipliers Iteration #Opt Var Running Time

This Paper ADMM floating-point
Zynq-7020 130MHz

72 (Dp=6, K=1)

40

204 314.2 µs

350* 717.2 µs

80 (Dp=5, K=2)
204

291.4 µs

ZU9EG
340MHz

264 (Dp=8, K=1) 46.1 µs

(Zynq UltraScale+) 792 (Dp=8, K=3) 30.1 µs

HW [18] ADMM fixed-point
Virtex-6 (LX75)

400MHz
216 (K=1)

40 216
23.4µs

Virtex-6 (SX475) 1512 (K=7) 4.90µs

HW [15] IPM floating-point Virtex-7 (XC7VX485T) 200MHz 448 10 240 2,650 µs

SW [7] ADMM floating-point Quad-core Intel Xeon 3.4GHz n/a 35.1 525 3,400 µs

Table III, while [18] does not have such a mechanism for

scaling the number of decision variables above the number

of multipliers in the system. This gives our MPC engine

the flexibility to be deployed into System-on-Chip FPGA

applications that may not have many multipliers to allocate to

an MPC computation engine. Two ADMM tuning features im-

plemented in our ADMM architecture that is not implemented

by [18] is a relaxation parameter (α) and a dual update step

length (ρ), which can be used to tune the convergence rate of

ADMM for a given system.

A final point of comparison is that this work tightly in-

tegrates an on-chip ARM processor with the MPC compute

engine. This provides Controls or Software engineers a con-

venient software mechanism for configuring the controller for

arbitrary systems, updating the desired trajectory of the system

at runtime, and tuning the ADMM α and ρ parameters.

VI. CONCLUSION

We have presented an MPC acceleration engine that is

tightly coupled to an ARM processor embedded on the same

chip. Our acceleration engine has been designed to allow

trading off between performance and hardware resource usage.

Our tight interface with an on-chip ARM processor allows

software to easily update the configuration of the acceleration

engine to control a wide range of systems, and to adjust the

desired system trajectory at run-time. An avenue of future

work is examining the architectural details required for inter-

facing and managing external sensors to extend our evaluation

from controlling a real-time Plant on Chip to actual physical

systems, such as quadcopters.

REFERENCES

[1] A. S. Kumar and Z. Ahmad, “Model predictive control (MPC) and its
current issues in chemical engineering,” Chemical Engineering Commu-

nications, vol. 199, no. 4, 2012.
[2] S. Kouro, P. Cortes, R. Vargas, U. Ammann, and J. Rodriguez, “Model

predictive control–a simple and powerful method to control power
converters,” IEEE Transactions on Industrial Electronics, vol. 56, no. 6,
June 2009.

[3] T. Tettamanti, I. Varga, B. Kulcsar, and J. Bokor, “Model predictive con-
trol in urban traffic network management,” in 2008 16th Mediterranean

Conference on Control and Automation, June 2008.
[4] A. Richards and J. How, “Decentralized model predictive control of

cooperating UAVs,” in 43rd IEEE Conference on Decision and Control,
vol. 4, Dec 2004.

3K indicates the number of times the core MPC engine with Dp MVM
tree is duplicated to process Matrix rows in parallel

[5] “Model predictive heuristic control: Applications to industrial pro-
cesses,” Automatica, vol. 14, no. 5, 1978.

[6] J. M. Maciejowski, Predictive control with constraints. Essex, England:
Prentice Hall, 2002.

[7] B. O’Donoghue, G. Stathopoulos, and S. Boyd, “A splitting method for
optimal control,” IEEE Transactions on Control Systems Technology,
vol. 21, no. 6, Nov 2013.

[8] H. Kwakernaak, Linear Optimal Control Systems, R. Sivan, Ed. New
York, NY, USA: John Wiley & Sons, Inc., 1972.

[9] F. Borrelli, A. Bemporad, and M. Morari, “Predictive control for linear
and hybrid systems, 2015,” preparation, available online at http://www.

mpc. berkeley. edu/mpc-course-material, 2015.
[10] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed

optimization and statistical learning via the alternating direction method
of multipliers,” Foundations and Trends in Machine Learning, vol. 3,
no. 1, 2011.

[11] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed. New
York: Springer, 2006.

[12] S. Boyd and L. Vandenberghe, Convex Optimization. New York, NY,
USA: Cambridge University Press, 2004.

[13] J. L. Jerez, G. A. Constantinides, and E. C. Kerrigan, “FPGA imple-
mentation of an interior point solver for linear model predictive control,”
in Field-Programmable Technology, International Conference on, Dec
2010.

[14] G. Li, J. Gu, Q. Song, Y. Lu, and B. Zhou, “The hardware design
and implementation of a signal reconstruction algorithm based on
compressed sensing,” in Intelligent Networks and Intelligent Systems,

Fifth International Conference on, Nov 2012.
[15] J. Liu, H. Peyrl, A. Burg, and G. A. Constantinides, “FPGA imple-

mentation of an interior point method for high-speed model predictive
control,” in 24th International Conference on Field Programmable Logic

and Applications, Sept 2014.
[16] A. Wills, A. Mills, and B. Ninness, “FPGA implementation of an

interior-point solution for linear model predictive control,” IFAC Pro-

ceedings Volumes, vol. 44, no. 1, 2011.
[17] M. S. K. Lau, S. P. Yue, K. V. Ling, and J. M. Maciejowski, “A compari-

son of interior point and active set methods for FPGA implementation of
model predictive control,” in Control Conference, European, Aug 2009.

[18] J. L. Jerez, P. J. Goulart, S. Richter, G. A. Constantinides, E. C. Kerrigan,
and M. Morari, “Embedded online optimization for model predictive
control at megahertz rates,” IEEE Transactions on Automatic Control,
vol. 59, no. 12, 2014.

[19] T. V. Dang, K. V. Ling, and J. M. Maciejowski, “Embedded ADMM-
based QP solver for MPC with polytopic constraints,” in Control

Conference, European, July 2015.
[20] L. Zhuo and V. K. Prasanna, “Sparse matrix-vector multiplication on

FPGAs,” in Proceedings of the 2005 ACM/SIGDA 13th International

Symposium on Field-programmable Gate Arrays.
[21] S. Vyas, C. Kumar, J. Zambreno, C. Gill, R. Cytron, and P. Jones,

“An FPGA-based Plant-on-Chip platform for cyber-physical system
analysis,” IEEE Embedded Systems Letters, vol. 6, no. 1, 2014.

[22] J. L. Jerez, G. A. Constantinides, and E. C. Kerrigan, “An FPGA
implementation of a sparse quadratic programming solver for con-
strained predictive control,” in Proceedings of the 19th ACM/SIGDA

International Symposium on Field Programmable Gate Arrays, 2011.

8


