
J. Parallel Distrib. Comput. 106 (2017) 121–131
Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

The design and integration of a software configurable and parallelized
coprocessor architecture for LQR control
Pei Zhang ∗, Aaron Mills, Joseph Zambreno, Phillip H. Jones
Electrical and Computer Engineering, Iowa State University, Ames, IA 50010, USA

h i g h l i g h t s

• A software-configurable FPGA-based LQR coprocessor is proposed for Cyber–Physical Systems.
• Improved hardware-level parallelism is achieved by refactoring standard LQR equations.
• Control of an inverted pendulum is used to compare software and hardware performance.
• A 3.4 to 100 factor speedup over a 666 MHz embedded ARM processor is demonstrated.
• Details are provided for interfacing the compute logic with a physical motor.

a r t i c l e i n f o

Article history:
Received 2 July 2016
Received in revised form
6 January 2017
Accepted 30 January 2017
Available online 9 February 2017

Keywords:
FPGA
State space control
LQR
Co-processor
Parallel processing
Inverted pendulum

a b s t r a c t

The increasing integration of computing into the physical systemswe rely on everydaymotivates the need
tomore easilymarry advanced control theory, which is used to control these systems, with the computing
platforms used to implement the controllers. This article explores one path of easing this integration using
reconfigurable hardware technology, and discusses practical system-level details that must be addressed
for integrating our idea into real-world systems. We present a software configurable and parallelized
coprocessor architecture for LQR control that can control physical processes representable by a linear
state-space model. Our proposed architecture has distinct advantages over purely software or purely
hardware approaches. It differs from other hardware controllers in that it is not hardwired to control one
or a small range of plant types (e.g. only electric motors). Via software, an embedded systems engineer
can easily reconfigure the controller to suit a wide range of control applications that can be represented
as a state-space model. One goal of our approach is to support a design methodology to help bridge
the gap between controls and embedded system software engineering. Control of the well-understood
inverted pendulum on a cart is used as an illustrative example of how the proposed hardware accelerator
architecture supports our envisioned design methodology for helping bridge this gap. Additionally, we
explore the design space of our co-processor’s parallel architecture in terms of computing speed and
resource utilization. Our performance results show a 3.4 to 100 factor speedup over a 666MHz embedded
ARM processor, for plants that can be represented by 4 to 128 states, respectively. This article concludes
with a discussion of the practical integration details required for interfacing the controller with a real
inverted pendulum–cart system.

© 2017 Elsevier Inc. All rights reserved.
1. Introduction

Cyber–Physical Systems (CPS) can be considered as systems
that have or require a tight coupling between their computing
and physical aspects, where correct behavior requires correct
timing [12]. We assert that advancing science, technology,

∗ Corresponding author.
E-mail addresses: peizhang@iastate.edu (P. Zhang), ajmills@iastate.edu

(A. Mills), zambreno@iastate.edu (J. Zambreno), phjones@iastate.edu (P.H. Jones).

http://dx.doi.org/10.1016/j.jpdc.2017.01.028
0743-7315/© 2017 Elsevier Inc. All rights reserved.
and engineering to manage and exploit this tight coupling
will require improved interaction between researchers from
computing domains (e.g. software and hardware engineering),
and physical domains (e.g. controls engineering), and that field-
programmable gate arrays (FPGAs) can act as a medium to help
bridge some of the gaps between these research fields.

FPGAs are of growing interest in the area of applied control
theory [18]. In addition to the massive parallelism available on
FPGAs that can potentially be utilized to obtain high controller
update rates, software–hardware co-design using FPGAs can help
separate embedded software concerns (e.g. real-time scheduling

http://dx.doi.org/10.1016/j.jpdc.2017.01.028
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2017.01.028&domain=pdf
mailto:peizhang@iastate.edu
mailto:ajmills@iastate.edu
mailto:zambreno@iastate.edu
mailto:phjones@iastate.edu
http://dx.doi.org/10.1016/j.jpdc.2017.01.028


122 P. Zhang et al. / J. Parallel Distrib. Comput. 106 (2017) 121–131
Fig. 1. System overview. An example system-level organization where the
controller and Plant-on-Chip (PoC) are fully software configurable.

feasibility), from controls concerns (e.g. accounting for update-rate
jitter).

Efficient implementation of a control algorithm on an FPGA can
be challenging for engineers unfamiliar with hardware architec-
ture design. One solution is software programmable hardware. In
our work, we describe a software-configurable FPGA co-processor
architecture that can implement a wide range of linear state-space
controllers, up to the complexity of a Linear–Quadratic Regu-
lator (LQR) coupled with a Luenberger Observer [14]. For the
purpose of evaluation, the controller can be interfaced to a
hardware-based emulation of a physical plant using what we will
refer to as a Plant-on-Chip (PoC) [28]. This arrangement is depicted
in Fig. 1. The PoC allows for rapid and consistent testing of control
algorithms and system platform configurations. Once stability of
the emulated plant is achieved, it can be replaced with an inter-
face to the actual plant’s sensors and actuators. All control compu-
tations are done in hardware, while software running on the CPU
is used to initialize the co-processor. The software is also free to
performother activities: task scheduling, path planning, video pro-
cessing, or interactive communications.

The big picture usage model for our software configurable co-
processor based controller is that control engineers would focus
on the mathematics of their controller, without the concern of
computing artifacts breaking assumptions, such a deterministic
sample rates or the representable range of numbers. Meanwhile,
embedded system engineers would focus on making efficient uti-
lization of CPU resources, without the concern of stringent timing
constraints often associated with controlling physical plants. Con-
trol engineers would interact with embedded systems engineers
by providing them with the appropriate state-space matrices re-
quire to program the co-processor.

Contributions. The five primary contributions of this paper
are as follows: (1) A discussion of a process for bridging the
Control Theory and Implementation gap, (2) the implementation
of a software-configurable LQR co-processor using single-precision
floating point arithmetic that helps bridge the gap between
controls and embedded system engineering [17], (3) the design
space exploration of the proposed parallel architecture [30] which
extends the sequential architecture implemented in [17], (4) a
transformation of the standard LQR control algorithm to make it
better suited for hardware implementation [30], (5) amethodology
of applying the system to a different state space control algorithm
and (6) a discussion of implementation details for interfacing of our
parallel computing architecture to a real-world plant.

Organization. The remainder of this paper is organized as fol-
lows. In Section 2, we illustrate the role of specialized compute
architectures and design processes in bridging the gap between
control theory and high-reliability implementation. In Section 3,
we discuss and compare related works in this problem space. Sec-
tion 4 gives a brief introduction to the concept of state-space mod-
eling and the LQR control algorithm. This section also describes a
transformation for converting the standard representation of the
LQR controller into a form that is better suited for hardware im-
plementation. In Section 5, we describe the detailed design of our
software configurable parallelized co-processor architecture. Sec-
tion 6 presents an illustrative example of using our co-processor
to evaluate the use of hardware verses software for an embedded
controls application, and explores the performance and scaling of
our coprocessor-based controller. Section 7 demonstrates the in-
tegration of our LQR controller with the input–output hardware
necessary to control an inverted pendulum. Finally, Section 8 con-
cludes this paper and provides avenues of future work.

2. Bridging control theory and implementation

In control theory, a discrete-time control process consists
of three tasks: input, computation, and output. The input task
typically involves an analog to digital conversion. For model-
driven controllers, the computation task typically consists of
state estimation followed by control value computation. Lastly,
the output task involves converting the control value into a
physical signal (i.e. digital to analog conversion). Froma theoretical
standpoint, the standard ideal assumption is that the input occurs
at a constant interval, and the computation andoutput process take
zero time.

In practice, the compute platformonwhich a control systemex-
ecutes can negatively influence the performance of a control sys-
tem which may be otherwise theoretically sound. Consequently,
the practical implementation of control systems is a rich area of
research, with a great deal of focus on establishing deterministic
timing in complex software systems. A large body of research is
concerned with carefully designed scheduling methods [13,24]
which seek to impose additional determinism on task runtime
characteristics. Unfortunately, these methods tend to impose ad-
ditional runtime overhead, and in the best case still result in a
stochastic sampling model. Online compensators are often pro-
posed as means to reduce the impact of control loop jitter; for
example, using timestamps [13] or a mixture of control theoretic
and scheduling compensations [15]. The work in [15] reported
a O(n4) runtime complexity overhead, and significant memory
requirements (relative to common microcontrollers) for a lookup
table oriented implementation. Software-based compensatory
measures may help reduce timing uncertainty, but the associated
implementation overhead tends to place limitations on the maxi-
mum sample rate which can be reached in such a system.

Lee, in his position paper [11], focuses explicitly on the
limitations of traditional compute architectures in CPS which
make them non-ideal for control systems. For instance, the
many advances in software processor architecture (deep pipelines,
speculation, etc.) makes software timing prediction difficult or in
some cases, impossible. In particular, high-confidence Worst-Case
Execution Time (WCET) analysis requires a detailed hardware-
timingmodel, which is very hard to obtain for processors designed
primarily for completing a high number of instructions per
clock [29]. In concluding, Lee makes a call for research on new
ways of approaching CPS compute architecture, including mixed
hardware–software design methods, which better support the
unique constraints of the field.

We pursue this goal by combining model-based control algo-
rithms, facilitated by a control (or application domain) expert, with
a purpose-built, model-agnostic FPGA compute platform which is
facilitated by a digital design expert. In this way, we greatly reduce
the dependency of the theoretical construction of the control sys-
tem on the characteristics of the implementation platform. In ad-
dition to providing timing guarantees, implementing the control



P. Zhang et al. / J. Parallel Distrib. Comput. 106 (2017) 121–131 123
Fig. 2. Model-driven design flow using proposed FPGA-based coprocessor.

loop in hardware helps to isolate it from lower-criticality software
taskswhile stillmaintaining a very high level of system integration.

In many engineering disciplines, the model-driven design
process is becoming increasingly attractive since it reduces risk and
uncertainty earlier in a project-that is, when changes are easier and
cheaper tomake. Developing systemmodelsmay appear to require
more effort up front, but allows better integration with automated
workflows, and enables stronger guarantees of reliability and
performance [22]. The coupling of model-based design with the
power and flexibility of an FPGA allows precisely timed, high speed
control systems to be developed with reduced effort using design
tools such as Matlab and Simulink [4].

Such a workflow is depicted in Fig. 2. In tune with modern
semiconductor design paradigms, our proposed FPGA-based
controller is parameterizable and application-agnostic, and can
therefore be packaged as a portable ‘‘Intellectual Property’’ (IP)
core (or block) and be reused across diverse control projects. The
base computational IP core can be quickly interfaced with off-the-
shelf IP cores providing connectivity with sensors and actuators, or
with custom project-specific interfaces, as described in Section 7.
Note that we therefore consider the FPGA to be not just a means of
prototyping, but also a critical component of the final production
hardware.

3. Related work

Kozak, in [10], surveys trends in the field of applied con-
trols, in which we see controls have evolved frommanually-tuned
single-input single-output (SISO) controllers (e.g. Proportion In-
tegral Derivative (PID) control) to multiple-input multiple output
(MIMO) controllers (e.g. H∞ control and model-predictive
controller (MPC)). The latter types of algorithms are compu-
tationally intense and can introduce significant latencies when
implemented with off-the-shelf processing platforms. Kozak
additionally suggests that a software–hardware co-design ap-
proach for implementing advanced controllers (e.g. H∞) in FPGAs
would enable designers to make better use of these complex
controllers in high-speed systems. Monmasson, in [19], makes a
similar suggestion, pointing out how different parts of a control
algorithm are better suited for different types of hardware. How-
ever, locating the optimal software–hardware partition is still a
challenge. Besides MPC, the Kalman Filter is another algorithm
which often appears in control systems, and is also quite compu-
tationally expensive, especially for embedded systems. We pro-
posed a mixed hardware–software FPGA-based Kalman Filter in
prior work [16] which was successful in providing a speedup over
software alone.

There are numerous examples of application-specific FPGA-
based controllers in the literature. An example of a system
requiring very fast control update rates appears in [21], in which
a high-speed pan/tilt camera is designed to track objects. In order
to reach the 3.5 ms update rate, a dedicated PC is used to perform
image processing and produce motor control signals. It is noted
that the PC introduced considerable delay in the feedback loop.
Another application requiring very high update rates appears
in [26], which presents an application-specific design that used
machine vision to control an inverted pendulum. In [7], the authors
developed a self-tuning state-space controller using a multiply-
accumulate unit which is interfaced with a digital signal processor
(DSP). The use of FPGAs to control a plant with non-constant plant
parameters was demonstrated. In [1], the design of a high-speed,
hardware-only, fixed-pointMPC is discussed. Finally, in [8], anMPC
is implemented on an FPGA and is shown to allow for significantly
faster sample rates than a PC running at a higher clock frequency.

Compared to software, implementing high-performance con-
trol algorithms in hardware is relatively time consuming and of-
ten leads to application-specific solutions. A proposed solution to
this issue appears in [27,2], which use a co-processor to perform
low-level repetitive matrix operations for MPC. This allows con-
trol designers to use software for the high-level logic; however, to
do so they had to work with a custom floating-point format and
instruction set.

A general summary of approaches used to implement con-
trollers on FPGAs appears in [20]. In addition, a call is made for
designs that make efficient use of the massive parallelism avail-
able on FPGAs, while retaining the generality and flexibility avail-
able to software solutions. Our work pursues this goal. A number
of works exist describing controllers that achieve reduced com-
putational delay. However, these controllers are designed to solve
specific problems, unlike our fully software configurable solution.
Garbergs, in [5,6], presents the closest work to our approach. The
main differences are as follows: (1) their design is highly sequen-
tial and does not explore parallelization of a state-space based
controller, (2) their design does not take into account scaling to
different sized controllers (e.g. if controller coefficients change, the
design must be re-implemented), (3) their design is intended to be
standalone, as compared to being amemory-mapped co-processor,
and (4) their vision focuses more on developing a fast hardware
controller as opposed to supporting an integrative designmethod-
ology that bridges the gap between embedded systems and con-
trols engineers.

4. LQR control algorithm

This section first gives a brief overview of state-spacemodeling.
Next, the ‘‘standard’’ form of the LQR control algorithm is provided.
A transformation of this standard form is then presented, and
a discussion is given that illustrates the computing advantages
associated with using the transformed formulation of the LQR
algorithm.

4.1. State space modeling

A discrete state-space model defines what state a system will
be in one time step into the future, in terms of the current state of
the system and current input acting upon it. A generic linearized
discrete state-space systemmodel consists of matrices A, B, C, and
D1 and is formulated as follows:

xk+1 = Axk + Buk (1)
yk = Cxk (2)

where

• xk represents the state of the system at time k
• uk represents the input acting on the system at time k

1 It is common to omit the matrix D, as inputs typically do not directly impact
output.



124 P. Zhang et al. / J. Parallel Distrib. Comput. 106 (2017) 121–131
• yk represents outputs of the system at time k
• A is an N × N matrix that defines the internal dynamics of the

system
• B is anN×M matrix that defines how the input acting upon the

system impact its state
• C is a P × N matrix that transforms states of the system into

outputs (yk).

Eq. (1) is referred to as the state update equation. With respect
to a closed loop control system, matrix A represents the dynamics
of the plant being controlled, matrix B represents how actuator
commands (i.e. uk) impact the plant, and the matrix C could be
viewed as amapping of the current state to the output obtain from
sensors (i.e. yk).

Also thewidth (i.e. number of columns) of eachmatrix or length
of each vector found in Eqs. (1) and (2) can be viewed as follows:

• M: the number of system/plant inputs/actuators.
• N: the number of system/plant states.
• P: the number of system outputs (i.e. sensors).

4.2. Linear–quadratic Regulator (LQR)

An LQR controller makes use of a gain matrix K , which specifies
a linear combination of plant states to use as feedback when
computing plant control values (uk). A particular K is sought such
that the feedback law, Eq. (5), minimizes the cost function given by
Eq. (3) [3].

J(u) =

∞
1

xTkQxk + uT
kRuk. (3)

Generating K requires a controls engineer to tune a state-cost
matrix (Q ) and a performance index matrix (R) in a manner that
causes system behavior to fulfill specific application requirements
(e.g. actuator energy expended, rise-time, settling-time). Since K
is derived systematically to minimize the cost function J(u), once
Q and R have been tuned, it is referred to as an optimal controller.
Derivation of the gain matrix K is beyond the scope of this paper,
but is a fairly straightforward process.

Given a gain matrix K , Eqs. (4)–(6) specify what we will call the
‘‘standard’’ form of the LQR control algorithm.

x̂k+ = G

yk − Cx̂k


+ x̂k (4)

uk = −Kx̂k+ (5)

x̂k+1 = Ax̂k+ + Buk (6)

where

• x̂k is an N × 1 estimated state vector
• x̂k+ is an N × 1 estimated state vector after correction
• G is an N × P observer matrix
• K is anM × N feedback gain matrix.

These equations can be viewed as performing the following
tasks: (1) predicting the state of the plant in the next time step,
shown in Eq. (6), (2) correcting this prediction based on sensor
information, shown in Eq. (4), and (3) computing the control values
(uk) to send to the plant, shown in Eq. (5). The prediction and
correction steps are more generally referred to as the observer
portion of the controller. Specifically, in our case, Eqs. (6) and (4)
define a Luenberger-type Observer.

4.3. LQR algorithm transformation for hardware design

The ‘‘standard’’ form of the LQR algorithm (Eqs. (4)–(6)) is
convenient for gaining intuition for how the algorithm works.
Fig. 3. Operating schedule for current observer based LQR. The top one shows
timing for the original algorithm and the bottom one shows the reorganized timing.
Subscripted k denotes discrete time points between algorithm steps k and k + 1.

However, it not convenient from a computation and hardware ar-
chitecture perspective. Theprimary issuewith directly implement-
ing the standard from is the data dependence that occurs between
Eqs. (4) and (5) (i.e. x̂k+ is required for computing uk). This data
dependency can be removed by manipulating the standard form
to obtain Eq. (7). Note, this alternative eliminates x̂k+ . Next, Eq. (7)
can be simplified to Eq. (9), where T is a constantmatrix defined by
Eq. (10). This allows the observer prediction/correction and control
computation to be represented by a single matrix–vector multipli-
cation.

uk = −KGyk + (KGC − K)x̂k (7)

x̂k+1 = (A − BK)Gyk +

(A − BK) − (A − BK)GC


x̂k (8)

uk
x̂k+1


= T


yk
x̂k


(9)

where

T =


−KG KGC − K

(A − BK)G (A − BK) − (A − BK)GC


(10)

is an M + N by N + P matrix.
In addition to removing the x̂k+ data dependence, the trans-

formed version of the algorithm has other advantages from a com-
putation and hardware architecture design perspective. First, if the
standard form was directly implemented, then additional storage
would be required for the intermediate x̂k+ values and additional
on-chip communication bandwidth would be required to move
these intermediate values between computing and storage units.
Second, direct implementation would either (a) require separate
resources for each of the equations implemented, or (b) would
require relatively complex control logic to allow computing re-
sources to be shared, while the alternative form allows leveraging
existing research in the area of parallelizing matrix–vector multi-
plication (MVM).

Fig. 3 qualitatively illustrates the difference in relative compu-
tation time using the ‘‘standard’’ form verses the transformed ver-
sion of the LQR algorithm. As can be seen for the standard form,
x̂k+ must be computed before uk can be computed. Also note that,
while in both cases the control command (uk) can be sent to the
plant before computing the next prediction, the control command
and prediction computations completes earlier for the alternative
form than for direct implementation of the standard form.

Fig. 4 quantitatively shows the difference in clock cycles
required to compute the LQR algorithm using the standard form
verses the alternative form. It is assumed in both cases a hardware
architecture is used that can start computing one matrix–vector
product per clock cycle (assuming no data dependencies); this will
be described in Section 5. It is also assumed that the dimensions of
the matrices and vectors are N = M = P (where N ,M , and P were



P. Zhang et al. / J. Parallel Distrib. Comput. 106 (2017) 121–131 125
Fig. 4. Clock cycles saved in computing uk (blue) and one whole state update (red)
when comparing the reorganized formula with the original formula. The reduction
in clock cycles increases as the number of states increase. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

defined earlier). Intuitively, the two primary issues with efficiency
when computing using the standard form as compared to the
transformed version are as follows: (1) the x̂k+ data dependency
causing pipeline stalls, and (2) the time required to compute
x̂k+ . It can be shown that the number of clock cycles required
to compute the control vector (uk), and the time to compute a
complete iteration of the algorithm (i.e. time to compute uk and
xk+1) is given byN+M−2+Tp(G)+Tp(K) and 2N+M−3+Tp(G)+
Tp(K)+Tp(AB), respectively. The time for these same values for the
transformed version of the algorithm is given byM−1+Tp(T ) and
M + N − 1 + Tp(T ), respectively.

The function Tp(number of columns in matrix) used above rep-
resents the time for the pipeline of an architecture to be filledwhile
processing a matrix. It is a function of the number of floating point
adders and multipliers used as well as the latency of these compo-
nents, and is proportional to the number of columns contained by
the matrix being processed. Tp is derived in greater detail in Sec-
tion 5.

Two important implications of this analysis are that the
transformed algorithm will (1) have a shorter ‘‘Control Delay’’
(i.e. time between receiving new sensor values and sending a
corresponding control command) than the standard form, and
(2) be able to support a faster sensor update rate, since the time
to compute the entire algorithm using this form is less than when
using the standard form.

5. Architecture

This section presents the architecture of our software config-
urable LQR coprocessor. A high-level overview of the coprocessor
is given, followed by a description of each of its main components.

5.1. Overview

Fig. 5 depicts the high-level architecture of our co-processor.
It is composed of three major parts: (1) a multiply-accumulate
parallel processing architecture, (2) matrix/vector storage, and
(3) configuration registers for parameters. Software sets the
configuration registers with the number of states (N) used to
model the plant being controlled, the number control commands
(M) to compute, the number of sensor values (P) to receive from
the plant, the depth of the multiply-accumulate engine, and the
adder/multiplier latency. Next, matrix/vector storage is configured
with the T matrix provided by the controls engineer. Themultiply-
accumulate engine (‘‘Parallel ProcessingArchitecture’’) thenbegins
to compute the LQR control algorithm.
Fig. 5. Architecture of the main compute unit.

Fig. 6. Tree-based multiply-accumulate architecture (depth = 2).

5.2. Parallel processing architecture

The parallel processing architecture we have implemented is
based closely on the architecture presented in [32] for parallelizing
sparse MVM for large matrices. Since our T matrix will not
typically be sparse, we have been able to simplify our control
logic for scheduling multiply accumulate operations onto our
binary tree structure. Just as the architecture presented in [32],
our architecture is composed of three aspects: (1) a binary
tree structure for parallel computation of multiply-accumulation
operations, (2) taps for allowing the tree structure to process
multiple rows of a matrix in parallel (referred to as merging), and
(3) a reductionmechanism to allow for computation of amatrix row
that has more columns than the tree structure has multipliers.

Binary tree structure. Fig. 6 illustrates the binary tree structure
that allows processing multiply-accumulate operations in parallel.
Assuming the number of columns in the T matrix is equal to the
number of multiplier leaf nodes of the tree, then a new matrix
row-vector dot product can enter the tree’s pipeline each clock
cycle. We call the number of adder levels of the tree its depth. If
we denote the latency of a multiplier as LM and the latency of an
adder as LA, then the total latency of the binary tree structure is
Ltotal = LM + depth × LA.

Merge. When the number of multipliers in the multiply-
accumulate tree is at least twice the number of columns in the
T matrix, then the tree can be split in half and outputs can be
tapped from the nodes at level one (as shown in Fig. 6 in the 2
node case). This allows two rows of the T matrix to start processing
each clock cycle. After a latency of Ltotal = LM + (depth − 1) × LA,



126 P. Zhang et al. / J. Parallel Distrib. Comput. 106 (2017) 121–131
Fig. 7. Reduction circuit structure.

Table 1
Summary of architecture parameters.

Configurable parameter Column: c Depth: Dp

Merge mechanism (same as normal mode when ⌈log2(c)⌉ = Dp)

Number of rows per fetch, Nf 2Dp−⌈log2(c)⌉

Multipliers in binary tree 2Dp

Adders in binary tree 2Dp − 1
Latency-clocks per fetch LM + ⌈log2(c)⌉LA

Reduce mechanism (same as normal mode when ⌈c/2Dp⌉ = 1)

Number of groups per row, Ng ⌈c/2Dp⌉

Multipliers in binary tree 2Dp

Adders in binary tree 2Dp − 1
Adders in reduction circuit ⌈c/2Dp⌉ − 1
Latency-clocks per row LM +DpLA + (⌈c/2Dp⌉−1)(LA +2)

corresponding results are output from Adder(1) and Adder(2) at
level 1, thus doubling the output rate of the coprocessor. We refer
to this as themerge feature of this architecture.

In fact, we can merge more than two rows of matrix T into the
tree each clock cycle. Suppose the T matrix has c columns and the
binary tree architecture has depth equal to Dp. In the simplified
case, if Nf = 2Dp−⌈log2(c)⌉, then Nf rows of matrix T can be feed into
the tree structure each clock cycle.

Reduce. When the number of columns in the T matrix is larger
than the number of multipliers in the multiply-accumulate tree,
then each row has to be fed into the tree structure over multiple
clock cycles. We will let Ng represent the number of clocks needed
to read in a row. Given that the number of columns in T is equal to
N + P , Ng = ⌈(N + P)/j⌉, where j is the number of multipliers.
The circuit shown in Fig. 7 is called a reduction circuit and was
introduced by [31]. Its purpose is to sum the results of the Ng
iterations needed to process a row of T .

The number of such reduction components required is Ng − 1.
The reduction circuit allows correct operationwhen the number of
rows in T is larger than the number of multipliers in the tree, at the
cost of latency. The latency of the reduction circuit for processing
a row of T is given by (LA + 2) × (Ng − 1). A matrix T consisting of
c columns and l rows would require the processing time given in
Eq. (11).

TBR = LM + LADp + (LA + 1)(Ng − 1) + (l − 1)Ng . (11)

Resource analysis. Table 1 lists the configurable parameters of
the coprocessor. It defines how to compute the number of adders
required for both the reduction circuit and the binary tree circuit,
as a function of these parameters. The ‘‘Latency-Clocks per Row’’
entry in the table indicates the clock cycles required from entering
the multiplier to reaching the output of the multiply-accumulate
tree.

5.3. Matrix/vector storage

In our design, matrix T is stored in block RAMs (BRAMs) as
shown in Fig. 8. Algorithm 1 defines how software must store T
into each BRAM. Each multiplier in our design is associated with
an individual BRAM; Fig. 8 illustrates how each BRAM connects to
its associated multiplier.
Fig. 8. Communication between BRAM and multiplier.

There are four pieces of data involved in this portion of the
circuit. The first is the T matrix elements for the specificmultiplier.
The second is the information that specifies which element of
vector yk (from the sensor) the multiplier needs. In order to send
the elements of yk to the processing structure as soon as they are
ready from the sensor, yk is not stored in BRAM. Instead, we store
ysel, which is a signal that shows which element in the yk vector
will be multiplied with the corresponding matrix element, thus
skipping the time needed to store the yk vector into BRAM. The
third is the x̂k state vector. We only store the x̂ elements that the
multiplier needs. The last piece of information consists of the base
address of x̂k in the BRAM and the x̂ Bitfield, which specifies the
elements of x̂ needed for a particular multiplier.

Based on Eq. (9), it is apparent that some BRAMs do not need
to store x̂k, and some do not store ysel. The exact mapping depends
on the matrix size, number of multipliers and the mechanism we
choose in the architecture. There is a two bit register recording
whether the BRAM contains ysel or x̂k, which helps control the
multiplier’s input multiplexer.

Whenwe finish computing Eq. (9), x̂k+1 will be stored in a small
FIFO (for the merge mechanism, the output results are stored in
registers). Then, we read the x̂k+1 elements from the FIFO one-by-
one, andwrite themback to the correct BRAMusing the x̂Bitfield to
determine which BRAMs should receive which elements. That is, if
we have just retrieved element i from the FIFO (that is, x̂k+1|i), and
bit i of the x̂ Bitfield for a particular BRAM is set to 1, the element
under consideration should be stored. The arrangement of matrix
T elements, x̂k base address, x̂ Bitfield and ysel can be determined
with the help of Algorithm 1. These values remain constant in the
BRAMs after being determined for a given controller configuration.

5.4. Sharing BRAM between software and hardware

BRAMs should be accessible by both the CPU and hardware
logic: the CPU initializes BRAM contents, and the LQR controller
uses the same BRAM to store intermediate data. In order to share
the BRAMs, we add a component named ‘‘AXI Bus Multiplexer’’ as
shown in Fig. 9. This component is an AXI-based IP core, which
can be accessed by the CPU directly. The CPU configures the AXI
Bus Multiplexer allowing BRAMs to receive signals from either the
CPU or controller. The ‘‘AXI BRAM Control’’ is the Xilinx-provided
IP core which provides a memory-mapped interface to the BRAMs
residing in the reconfigurable hardware.

5.5. Extension to other control algorithms

With some modifications, the system setup is not limited to
LQR control. Based on Table 5, we know that theMVM architecture
consumes the majority of the hardware resources, especially with



P. Zhang et al. / J. Parallel Distrib. Comput. 106 (2017) 121–131 127
Algorithm 1Memory Map algorithm for T Matrix
◃ T is an l by c matrix and binary tree structure depth is Dp

procedureMerge Mechanism Memory Management
Nf = 2Dp−⌈log2(c)⌉ ◃ Number of rows merged
form = 0 to ⌈l/Nf ⌉ − 1 do

for k = 0 to Nf − 1 do
for n = 0 to 2Dp/Nf − 1 do

if n ≤ c − 1 then
BRAM(n + k2Dp/Nf ) ⇐ Tk+mNf ,n

else
BRAM(n + k2Dp/Nf ) ⇐ 0

end if
end for

end for
end for

end procedure

procedure Reduce Mechanism Memory Management
for m = 0 to l − 1 do

for k = 0 to ⌈c/2Dp⌉ − 1 do
for n = 0 to 2Dp − 1 do

if n + k2Dp ≤ c − 1 then
BRAM(n) ⇐ Tm,n+k2Dp

else
BRAM(n) ⇐ 0

end if
end for

end for
end for

end procedure

increasing system size. If we keep the MVM architecture and the
hardware–software co-design setup in Fig. 10, but replace the
control logic, then the architecture can be applied to different state
space control algorithms. In particular, research interest is growing
in the application of FPGAs to Model Predictive Control (MPC). For
MPC hardware architecture details, refer to [9]. In [9], the author
uses the division-free Alternating Direction Method of Multipliers
(ADMM). Both LQR and MPC require the MVM operation. It is
proposed that a generalized controller can be built to combine
both LQR andMPC together, allowing the designer to easily switch
between these two control methods. To simplify, we remove the
BRAM read logic shown in Fig. 8 and no longer consider the merge
mechanism. The observer data and computed result will be stored
back into the BRAM sequentially, to be used as the algorithm input
vector in the next computational iteration. The designer needs only
to store the matrix data in the correct BRAM and configure the
status registers before running the controller. We leave further
investigation into MPC as future work.

6. Hardware implementation and analysis

6.1. Evaluation setup

Our software configurable LQR coprocessor was prototyped
using a Zedboard, which hosts a Xilinx Zynq FPGA (XC7Z020).
The Zynq FPGA is made up of a processing system (PS), which is
composed of a dual-core ARM Cortex-A9 processor that can run at
up to 666MHz, and a programmable logic (PL) fabric for deploying
custom hardware designs. The LQR coprocessor was instantiated
in the PL, and was run using a 100 MHz clock frequency for all
tested configurations of the controller. Three sets of evaluation
experiments were performed. First, the LQR controller was used
to control a PoC emulating a pendulum on a cart, and compared
against results obtained from Matlab to verify the correctness
of our implementation. Second, performance experiments were
performed to evaluate the computing time of systems with T
matrices having N + P = 8 columns up to N + P = 256
Fig. 9. Sharing BRAM between software and hardware.

Fig. 10. System overview.

columns, and for coprocessors having 4 to 64 multipliers in their
multiply-accumulate tree structure. It should be noted Table 4
gives entries for 128 and 256 multipliers (i.e. depths 7 and 8);
however, these are analytically computed. They are provided to
give a sense for the largest coprocessor that could be implemented
if we had the largest available Zynq FPGA (XC7Z100). The third
experiment measured the computing time of the LQR algorithm
running in software on the ARM processor, for systemmatrix sizes
(T ) having N + P = 8 to N + P = 64 columns. Finally, it
should be noted that Fig. 1 depicts the bus configuration usedwhen
evaluating software, and Fig. 10 depicts the bus configuration
when evaluating hardware (i.e. making use of custom logic to read
sensor values in parallel).

6.2. Controller evaluation using a Plant-on-Chip

A Plant-on-Chip (PoC) was deployed onto the FPGA’s PL fabric
to emulate the pendulum-on-a-cart plant shown in Fig. 11, using
the model parameters given in Table 2. The PoC executes the state
space Eqs. (1) and (2), with input uk received from the hardware
or software-based controller. The state of the PoC and control
commands are logged out of band, using an UART interface. This
is convenient for plotting the controller behavior, while running
on the FPGA. This model requires the CPU to configure the co-
processor parameters as N = 4, M = 1, and P = 2. The state
vector consists of four states: x, ẋ, φ, and φ̇ (see Fig. 11).



128 P. Zhang et al. / J. Parallel Distrib. Comput. 106 (2017) 121–131
Fig. 11. Inverted pendulum model.

Fig. 12. Pendulum control plot in the presence of noise.

Table 2
Inverted pendulum model parameters.

Symbol Meaning Initialization

M Cart mass 0.5 kg
m Pendulum mass 0.2 kg
b Coefficient of friction 0.1 N/m/s
l Length to pendulum center of mass 0.3 m
I Pendulum moment of inertia 0.006 kg m2

F Applied force 0
x Position displacement 0
θ Angle from vertical 5°

The pendulum was initially configured with a starting position
of −5◦ from vertical. The maximum force to the cart is 20 N. To
emulate the effect of sensor noise on system performance, we use
the technique employed in [28]. A zero-mean, normally distributed
noise signal is stored in PoC BRAM and added to the PoC output
(θ standard deviation set to 0.0005; x standard deviation set to
0.0015).

It was foundwhen running the hardware controller at 100MHz,
it could compute uk in 530 ns, and complete a full iteration of
the algorithm in 600 ns. The hardware control graph is shown in
Fig. 12, and was found to match the results obtained from Matlab,
with the noise having negligible impact on control performance.
Steady-state is reached after around 5 s.

6.3. Hardware versus software

Tables 3 and 4 summarizes the resultsobtained when compar-
ing the computing time of the software controller running on the
Table 3
Software computation time (µs). Assume N = M = P for each system size.

Clock Size
N = 4 8 16 32

100 MHz k − kd 11.08 36.93 136.12 528.06
k − ke 22.56 73.84 272.91 1056.93

333 MHz k − kd 3.327 11.09 40.877 158.577
k − ke 6.775 22.174 81.955 317.396

666 MHz k − kd 1.664 5.545 20.438 79.288
k − ke 3.387 11.087 40.977 158.698

Table 4
Hardware computation time (µs) at 100MHz. Assume N = M = P for each system
size.

Depth Size
N = 4 8 16 32 64 128

2 k − kd 0.62 1.10 2.54 7.03 24.62 89.9
k − ke 0.73 1.45 3.85 12.18 45.13 171.85

3 k − kd 0.58 0.82 1.54 3.94 12.58 45.22

k − ke 0.65 1.01 2.21 6.53 22.85 86.21

4 k − kd 0.56 0.74 1.10 2.30 6.62 22.94

k − ke 0.63 0.85 1.45 3.61 11.77 43.45

5 k − kd 0.55 0.70 0.94 1.54 3.70 11.86

k − ke 0.62 0.81 1.13 2.21 6.29 22.13

6 k − kd 0.55 0.68 0.86 1.22 2.30 6.38

k − ke 0.62 0.79 1.05 1.57 3.61 11.53

7 k − kd \ 0.67 0.82 1.06 1.66 3.70

k − ke \ 0.78 1.01 1.41 2.33 6.29

8 k − kd \ 0.67 0.80 0.98 1.34 2.42

k − ke \ 0.78 0.99 1.33 2.01 3.73

ARM processor (at 100 MHz, 333 MHz, and 666 MHz), against the
hardware controller running at 100 MHz. The expression k − kd
represents the time from when the controller receives new sen-
sor data to the time it completes computation of uk, and k − ke
represents the time from when the controller receives new sensor
data to completing an iteration of the control algorithm (see Fig. 3).
The results show that the hardware controller achieves about a
3.4 to 100 factor speedup over the embedded ARM processor, for
plants that can be represented by N = 4 to N = 128 states, re-
spectively. The high end of our speedup (100x) is reasonable, given
that the highest performing configuration, we can fit on our FPGA
utilizes 64 multipliers in parallel, with a deeply pipelined 6-level
multiply-accumulate tree. Note that data in Table 4 with a shaded
background is when the number of rows in the T matrix equals the
number of multipliers used by the coprocessor. Data points above
these cells make use of the reduction mechanism, and data points
below these cells make use of themergemechanism.

6.4. Resource utilization

Table 5 summarizes the hardware resource utilization and
maximum obtainable clock frequency as the parallelism of the
coprocessor is increased from having 8 to 64 parallel multipliers in
its multiply-accumulate tree. Given that we are explicitly pairing a
BRAMwith eachmultiplier, the BRAMs scale as expected. The DSPs
also scale as expected, given that each floating pointmultiplication
makes use of two DSP blocks, and floating point addition units
makeuse of LUT-based cores. Also as expected, the obtainable clock



P. Zhang et al. / J. Parallel Distrib. Comput. 106 (2017) 121–131 129
Table 5
Hardware controller resource usage.

System size Flip–flops (106400 total) LUTs (53200 total) Minimum BRAM (140 total) DSP48E (220 total) Maximum frequency (MHz)

4 5793 5137 10 16 153.657
8 12065 10376 18 32 132.749

16 24426 21077 34 64 127.356
32 48143 42138 66 128 122.205
Table 6
Hardware LQR controller comparison.

FPGA type Total
MULs

Clock
cycles

Max. sample
frequency (kHz)

This paper Zynq7020 6 60 1667
Fixed point [20] CYCLONE II 4 128 400
Floating point [20] CYCLONE II 7 640 80

frequency decreases with increased coprocessor size. However,
this is a modest decrease, given the rate of increase in resources.
The resource usage appears to be fairly well balanced, though a
number of LUTs could be freed up if a number of floating point
adders were made to be DSP-based.

6.5. Comparison to related work

We compare our work to [20], which implemented an LQR
controller with observer using an FPGA in both a fixed point and
floating point format. The author also used the 4-state inverted
pendulum model as the test case. In Section 6.2, a 600 ns iteration
time for the algorithm was described, which corresponds to 60
clock cycles at 100 MHz. This performance, as well as resource
usage, are compared in Table 6. A key point of differentiation is
that in [20], the author did not use the algorithm refactorization
method aswehaveproposed in this paper,which yielded increased
parallelism. As a result we see that each method use almost the
same number of multipliers, but our controller only requires 60
clock cycles to finish the computation, resulting in a substantial
increase in update rate to nearly 1.7 MHz.

7. Interface between physical plant and embedded controller

7.1. Input and output signals

Generally, the signal froma plant sensor can be divided into two
types: (1) an analog signal, which can be interpreted by Analog to
Digital Converter (ADC); or (2) a digital signal, which is available
either directly (e.g. encoder output) or through a communication
interface.

We use Quanser’s IP01 series inverted pendulum [23] as the
target plant, which integrates a incremental rotary encoder as a
digital sensor. The encoder has two output channels, A and B,
which are square waveforms with a 90 degree phase difference.
By judging which channel’s phase advances, we know the spin
direction of the encoder. These signals are decoded to produce
a count up pulse or a count down pulse. Depending on the type
of sensor signal from the plant, we may have alternatively used
Xilinx’s XADC, which is a integrated hardware block that contains
a dual 12-bit, 1 mega-sample per second ADC.

The output signal from the controller to the plant actuator is
produced using Pulse-Width Modulation (PWM). Since the drive
current from the Zynq chip is not sufficient to move a motor, we
use an H-bridge circuit along with an voltage amplifier to drive
the pendulum–cart motor. This plant is considered underactuated
since there are two degrees of freedom – the cart position and
the pendulum angle – but there is only a single actuator, which
controls the cart position.
Fig. 13. State machine of decoder.

In general, this combination of a motor-mounted rotary
encoder and an H-bridge driver is very common for motor
control applications and therefore this configuration demonstrates
a practical use case. For additional detail, a similar FPGA-driven
motor interface circuit appears in [25].

7.2. Decoder hardware design

The Zynq hardware samples the encoder output every clock
cycle and stores the fixed point data in registers. The statemachine
in Fig. 13 implements a quadrature decoder designed to count the
square waveform pulses and determine direction by comparing
both channels. We start the state machine when both channel
A and channel B are low, which is M00 in Fig. 13. The starting
point is regarded as origin and the position changes when the state
machine finishes a loop and returns toM00.

7.3. System integration

The hardware decoder and PWM unit are constructed as IP
cores, which facilitates multiple-instantiation. Fig. 14 shows the
whole physical system setup. Two decoder IP cores are included
to capture the cart position and the pendulum angle.

Since our parallelized LQR controller is based on floating point
computations, fixed point (e.g. integral) data from the sensor
interface should be converted before being processed by the
controller. To facilitate this, in the decoder a fixed point to floating
point block is inserted, and the output is multiplied with a
software-configurable floating point value, allowing a prescalar to
be applied to the sensor reading. This provides the sensor input
for the current time step, yk. Similarly, in the PWM generator IP
core, the floating point result from controller IP core (that is, uk)
is multiplied with a separate prescalar value and converted to
integral data to modulate the output pulse width. The resource
usage is shown in Table 7. The fixed-to-float and float-to-fixed IP
cores are comprised of only combinational logic gates while the
floating point multiplier contains two DSP48Es.



130 P. Zhang et al. / J. Parallel Distrib. Comput. 106 (2017) 121–131
Fig. 14. Complete control system setup.

Table 7
Decoder and PWM generator resource usage.

IP core Flip–flops LUTs DSP48E

Decoder 624 384 2
PWM 676 449 2

8. Conclusion

In support of improving the performance of future Cy-
ber–Physical Systems (CPS), a software configurable and paral-
lelized LQR co-processor architecturewas presented to help bridge
the gap between controls and embedded system engineers. A
transformation was given for converting the ‘‘standard’’ form of an
LQR algorithm into an alternative form that was better suited for
hardware parallelization. Our performance results show a 3.4 to
100 factor speedup over a 666 MHz embedded ARM processor, for
plants that can be represented by 4 to 128 states, respectively. Our
proposed approach therefore offers a very highupdate ratewhile at
the same time retaining enough flexibility to support a wide range
of plant models. Furthermore, it is easy to analytically determine
the runtime characteristics of the hardware, which can be used
to drive offline simulations whose fidelity is only limited to the
quality of the plant model itself. Finally, we demonstrated how the
computational core can be interfaced with an actual motor-driven
plant using an industry-typical approach. For future work, we in-
tend to explore support for higher complexity controllers, such as
H∞ and Model Predictive Control (MPC).

References

[1] K. Basterretxea, K. Benkrid, Embedded high-speedmodel predictive controller
on a FPGA, in: NASA/ESA Conference on Adaptive Hardware and Systems, AHS,
2011.

[2] L. Bleris, P. Vouzis,M. Arnold,M. Kothare, A co-processor FPGAplatform for the
implementation of real-time model predictive control, in: American Control
Conference, 2006.

[3] T. Chen, B. Francis, T. Hagiwara, Optimal sampled-data control systems, Proc.
IEEE 86 (4) (1998) 741–741.

[4] Andre Cozma, Eric Cigan, FPGA-Based Systems Increase Motor-Control
Performance, http://www.analog.com/library/analogdialogue/archives/49-
03/motor_control.pdf (March 2015).
[5] B. Garbergs, B. Sohlberg, Specialised hardware for state space control of a
dynamic process, in: TENCON ’96. Proceedings., 1996 IEEE TENCON. Digital
Signal Processing Applications, Vol. 2, 1996, pp. 895–899.

[6] B. Garbergs, B. Sohlberg, Implementation of a state space controller in a fpga,
in: Electrotechnical Conference, 1998. MELECON 98., 9th Mediterranean, Vol.
1, 1998, pp. 566–569.

[7] D.A. Gwaltney, K.D. King, K.J. Smith, J. Montenegro, Implementation of
adaptive digital controllers on programmable logic devices, Mil. Aerosp.
Programmable Logic Dev. (MAPLD) (2002).

[8] J. Jerez, G. Constantinides, E. Kerrigan, An FPGA implementation of a
sparse quadratic programming solver for constrained predictive control,
in: Proceedings of the 19th ACM/SIGDA International Symposium on Field
Programmable Gate Arrays, 2011, pp. 209–218.

[9] J.L. Jerez, P.J. Goulart, S. Richter, G.A. Constantinides, E.C. Kerrigan, M. Morari,
Embedded online optimization for model predictive control at megahertz
rates, IEEE Trans. Automat. Control 59 (12) (2014) 3238–3251.

[10] S. Kozak, Advanced control engineering methods in modern technological
applications, in: Carpathian Control Conference, ICCC, 2012, pp. 392–397.

[11] E. Lee, Cyber-Physical Systems - Are Computing Foundations Adequate?, in:
NSF Workshop on Cyber-Physical Systems, 2006.

[12] E.A. Lee, S.A. Seshia, Introduction to Embedded Systems - A Cyber-Physical
Systems Approach, second ed., 2011, http://www.LeeSeshia.org.

[13] B. Lincoln, Jitter compensation in digital control systems, in: American Control
Conference, 2002. Proceedings of the 2002, Vol. 4, 2002, pp. 2985–2990.

[14] D. Luenberger, An introduction to observers, IEEE Trans. Automat. Control 16
(6) (1971) 596–602. http://dx.doi.org/10.1109/TAC.1971.1099826.

[15] P. Marti, J.M. Fuertes, G. Fohler, K. Ramamritham, Jitter compensation for real-
time control systems, in: Real-Time Systems Symposium, 2001, RTSS 2001,
Proceedings. 22nd IEEE, 2001, pp. 39–48.

[16] A. Mills, P. Jones, J. Zambreno, Parameterizable FPGA-based Kalman filter co-
processor using piecewise affine modeling, in: Proceedings of the Reconfig-
urable Architectures Workshop, RAW, 2016.

[17] A. Mills, P. Zhang, S. Vyas, J. Zambreno, P.H. Jones, A software configurable
coprocessor-based state-space controller, in: Proceedings of the IEEE Interna-
tional Conference on Field Programmable Logic and Applications, FPL, 2015,
pp. 1–6. http://dx.doi.org/10.1109/FPL.2015.7293752.

[18] E. Monmasson, M. Cirstea, Guest editorial special section on industrial
control applications of FPGAs, IEEE Trans. Ind. Inf. 9 (3) (2013) 1250–1252.
http://dx.doi.org/10.1109/TII.2013.2270011.

[19] E. Monmasson, L. Idkhajine, M.W. Naouar, FPGA-based controllers, IEEE Ind.
Electron. Mag. 5 (1) (2011) 14–26.

[20] B. Mutlu, M. Dolen, Implementations of state-space controllers using field
programmable gate arrays, in: International Symposium on Power Electronics
Electrical Drives Automation and Motion, SPEEDAM, 2010, pp. 1436–1441.

[21] K. Okumura, H. Oku, M. Ishikawa, High-speed gaze controller for millisecond-
order Pan/Tilt camera, in: IEEE International Conference on Robotics and
Automation, 2011, pp. 6186–6191.

[22] D. O’Sullivan, J. Sorensen, A. Frederiksen, Model based design tools in closed
loop motor control, in: PCIM Europe 2014; International Exhibition and
Conference for Power Electronics, Intelligent Motion, Renewable Energy and
Energy Management; Proceedings of, 2014, pp. 1–9.

[23] Quanser, Linear Servo Control Lab, http://www.quanser.com/Products/Docs/
1806/Quanser_Linear_Servo_Control_Lab_Brochure.pdf (July 2016).

[24] K. Smeds, X. Lu, Effect of sampling jitter and control jitter on positioning error
in motion control systems, Precis. Eng. 36 (2) (2012) 175–192.

[25] A. Telba, DC motor speed control using FPGA, in: IAENG Transactions
On Engineering Science: Special Issue for the International Association of
Engineers Conferences 2014, 2015, pp. 456–470.

[26] Y. Tu, M. Ho, Design and implementation of robust visual servoing control of
an inverted pendulumwith an FPGA-based image co-processor, Mechatronics
21 (7) (2011) 1170–1182.

[27] P. Vouzis, M. Kothare, L. Bleris, M. Arnold, A system-on-a-chip implementation
for embedded real-time model predictive control, IEEE Trans. Control Syst.
Technol. 17 (5) (2009) 1006–1017.

[28] S. Vyas, N. Chetan Kumar, J. Zambreno, C. Gill, R. Cytron, P. Jones, An
FPGA-based plant-on-chip platform for cyber-physical system analysis, IEEE
Embedded Syst. Lett. 6 (1) (2014) 4–7.

[29] R.Wilhelm, J. Engblom,A. Ermedahl, N.Holsti, S. Thesing, D.Whalley, G. Bernat,
C. Ferdinand, R. Heckmann, T. Mitra, et al., The worst-case execution-time
problem–overview of methods and survey of tools, ACM Trans. Embedded
Comput. Syst. (TECS) 7 (3) (2008) 36.

[30] P. Zhang, A. Mills, J. Zambreno, P.H. Jones, A software configurable and
parallelized coprocessor architecture for LQR control, in: Proceedings of the
IEEE International Conference on ReConFigurable Computing and FPGAs,
ReConFig, 2015, pp. 1–8. http://dx.doi.org/10.1109/ReConFig.2015.7393360.

[31] L. Zhuo, G. Morris, V. Prasanna, Designing scalable FPGA-based reduction
circuits using pipelined floating-point cores, in: Parallel and Distributed
Processing Symposium, 2005. Proceedings. 19th IEEE International, 2005,
pp. 147a–147a. http://dx.doi.org/10.1109/IPDPS.2005.165.

[32] L. Zhuo, V.K. Prasanna, Sparse matrix–vector multiplication on FPGAs,
in: Proceedings of the 2005 ACM/SIGDA 13th International Symposium on
Field-programmable Gate Arrays, FPGA’05, ACM, New York, NY, USA, 2005,
pp. 63–74.

http://refhub.elsevier.com/S0743-7315(17)30047-3/sbref3
http://www.analog.com/library/analogdialogue/archives/49-03/motor_control.pdf
http://www.analog.com/library/analogdialogue/archives/49-03/motor_control.pdf
http://www.analog.com/library/analogdialogue/archives/49-03/motor_control.pdf
http://refhub.elsevier.com/S0743-7315(17)30047-3/sbref7
http://refhub.elsevier.com/S0743-7315(17)30047-3/sbref9
http://www.LeeSeshia.org
http://dx.doi.org/10.1109/TAC.1971.1099826
http://dx.doi.org/10.1109/FPL.2015.7293752
http://dx.doi.org/10.1109/TII.2013.2270011
http://refhub.elsevier.com/S0743-7315(17)30047-3/sbref19
http://www.quanser.com/Products/Docs/1806/Quanser_Linear_Servo_Control_Lab_Brochure.pdf
http://www.quanser.com/Products/Docs/1806/Quanser_Linear_Servo_Control_Lab_Brochure.pdf
http://www.quanser.com/Products/Docs/1806/Quanser_Linear_Servo_Control_Lab_Brochure.pdf
http://www.quanser.com/Products/Docs/1806/Quanser_Linear_Servo_Control_Lab_Brochure.pdf
http://www.quanser.com/Products/Docs/1806/Quanser_Linear_Servo_Control_Lab_Brochure.pdf
http://www.quanser.com/Products/Docs/1806/Quanser_Linear_Servo_Control_Lab_Brochure.pdf
http://www.quanser.com/Products/Docs/1806/Quanser_Linear_Servo_Control_Lab_Brochure.pdf
http://www.quanser.com/Products/Docs/1806/Quanser_Linear_Servo_Control_Lab_Brochure.pdf
http://www.quanser.com/Products/Docs/1806/Quanser_Linear_Servo_Control_Lab_Brochure.pdf
http://www.quanser.com/Products/Docs/1806/Quanser_Linear_Servo_Control_Lab_Brochure.pdf
http://www.quanser.com/Products/Docs/1806/Quanser_Linear_Servo_Control_Lab_Brochure.pdf
http://www.quanser.com/Products/Docs/1806/Quanser_Linear_Servo_Control_Lab_Brochure.pdf
http://www.quanser.com/Products/Docs/1806/Quanser_Linear_Servo_Control_Lab_Brochure.pdf
http://www.quanser.com/Products/Docs/1806/Quanser_Linear_Servo_Control_Lab_Brochure.pdf
http://refhub.elsevier.com/S0743-7315(17)30047-3/sbref24
http://refhub.elsevier.com/S0743-7315(17)30047-3/sbref26
http://refhub.elsevier.com/S0743-7315(17)30047-3/sbref27
http://refhub.elsevier.com/S0743-7315(17)30047-3/sbref28
http://refhub.elsevier.com/S0743-7315(17)30047-3/sbref29
http://dx.doi.org/10.1109/ReConFig.2015.7393360
http://dx.doi.org/10.1109/IPDPS.2005.165
http://refhub.elsevier.com/S0743-7315(17)30047-3/sbref32


P. Zhang et al. / J. Parallel Distrib. Comput. 106 (2017) 121–131 131
Pei Zhang is a Ph.D. student in theDepartment of Electrical
and Computer Engineering, where he is working with
Prof. Phillip Jones. He received his B.S. degree in electrical
engineering and automation from the Harbin Institute
of Technology, China in 2014. His research interests
include reconfigurable computing, embedded systems,
and acceleration of digital control algorithms.

Aaron Mills received his B.S. in computer engineering
and computer science from the University of Nebraska at
Omaha. He has recently completed his Ph.D. in computer
engineering at Iowa State University and will be joining
the research staff at MIT Lincoln Laboratory. His research
interests include FPGA applications, control systems,
robotics, and the embedded system design process.
Joseph Zambreno has been with the Department of Elec-
trical and Computer Engineering at Iowa State University
since 2006, where he is currently an associate professor.
Prior to joining ISU he was at Northwestern University in
Evanston, IL, where he graduated with his Ph.D. degree in
electrical and computer engineering in 2006, his M.S. de-
gree in electrical and computer engineering in 2002, and
his B.S. degree summa cum laude in computer engineer-
ing in 2001. His research interests include computer ar-
chitecture, compilers, embedded systems, reconfigurable
computing, and hardware/software co-design, with a fo-

cus on run-time reconfigurable architectures and compiler techniques for software
protection.

Phillip H. Jones received his B.S. degree in 1999 and
M.S. degree in 2002 in electrical engineering from the
University of Illinois at Urbana–Champaign, and his Ph.D.
degree in 2008 in computer engineering fromWashington
University in St. Louis. Currently, he is an assistant
professor in the Department of Electrical and Computer
Engineering at Iowa State University, Ames, where he has
been since 2008. His research interests are in adaptive
computing systems, reconfigurable hardware, embedded
systems, and hardware architectures for application-
specific acceleration.


	The design and integration of a software configurable and parallelized coprocessor architecture for LQR control
	Introduction
	Bridging control theory and implementation
	Related work
	LQR control algorithm
	State space modeling
	Linear--quadratic Regulator (LQR)
	LQR algorithm transformation for hardware design

	Architecture
	Overview
	Parallel processing architecture
	Matrix/vector storage
	Sharing BRAM between software and hardware
	Extension to other control algorithms

	Hardware implementation and analysis
	Evaluation setup
	Controller evaluation using a Plant-on-Chip
	Hardware versus software
	Resource utilization
	Comparison to related work

	Interface between physical plant and embedded controller
	Input and output signals
	Decoder hardware design
	System integration

	Conclusion
	References


