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Abstract—We present a software configurable and parallelized
coprocessor architecture for Linear Quadratic Regulator (LQR)
control that can control physical processes representable by a
linear state-space model. Our proposed architecture has distinct
advantages over purely software or purely hardware approaches.
It differs from other hardware controllers in that it is not
hardwired to control one or a small range of plant types (e.g. only
electric motors). Via software, an embedded systems engineer can
easily reconfigure the controller to suit a wide range of control
applications that can be represented as a state-space model.
One goal of our approach is to support a design methodology
to help bridge the gap between control and embedded system
software engineering. Control of the well-understood inverted
pendulum on a cart is used as an illustrative example of
how the proposed hardware accelerator architecture supports
our envisioned design methodology for helping bridge this gap.
Additionally, we explore the design space of our co-processor’s
parallel architecture in terms of computing speed and resource
utilization. Our performance results show a 3.4 to 100 factor
speedup over a 666 MHz embedded ARM processor, for plants
that can be represented by 4 to 128 states respectively.

Index Terms—FPGA, state space control, LQR, co-processor,
parallel processing.

I. INTRODUCTION

Cyber Physical Systems (CPS) can be thought of as systems
that have or require a tight coupling between their comput-
ing and physical aspects. We assert that advancing science,
technology, and engineering to manage and exploit this tight
coupling will require improved interaction between researchers
from computing domains (e.g. software and hardware engi-
neering), and physical domains (e.g. control engineering), and
that field-programmable gate arrays (FPGAs) can act as a
medium to help bridge gaps between these research fields.

FPGAs are of growing interest in the area of applied control
theory [1]. In addition to the massive parallelism available
on FPGAs that can potentially be utilized to obtain high
controller update rates, software-hardware co-design using
FPGAs can help separate embedded software concerns (e.g.
real-time scheduling feasibility), from control concerns (e.g.
accounting for update-rate jitter).

Efficient implementation of a control algorithm on an FPGA
can be challenging for engineers unfamiliar with hardware
architecture design. One solution is software programmable
hardware. In our work, we describe a software-configurable
FPGA co-processor architecture that can implement a wide
range of linear state-space controllers, up to the complex-
ity of a Linear Quadratic Regulator (LQR) coupled with a

Luenberger Observer [2]. For the purpose of evaluation, the
controller can be interfaced to a hardware-based emulation of
a physical plant using what we will refer to as a Plant-on-
Chip (PoC). This arrangement is depicted in Fig. 1. The PoC
allows for rapid and consistent testing of control algorithms
and system platform configurations [3]. Once stability of
the emulated plant is achieved, it can be replaced with an
interface to the actual plant’s sensors and actuators. All control
computations are done in hardware, while software running on
the CPU is used to initialize the co-processor. The software
is also free to perform other actives: task scheduling, path
planning, video processing, or interactive communications.

The big picture usage model for our software configurable
co-processor based controller is that control engineers would
focus on the mathematics of their controller, without the
concern of computing artifacts breaking assumptions, such
as deterministic sample rates or the representable range of
numbers. Meanwhile, embedded system engineers would focus
on making efficient utilization of CPU resources, without the
concern of stringent timing constraints often associated with
controlling physical plants. Control engineers would interact
with embedded systems engineers by providing the appropriate
state-space matrices require to program the co-processor.

Contributions. The three primary contributions of this paper
are: 1) the implementation of a software-configurable LQR co-
processor using single-precision floating point arithmetic that
helps bridge the gap between control and embedded system
engineering, 2) the design space exploration of the parallel
architecture proposed, and 3) a transformation of the standard
LQR control algorithm to make it better suited for hardware
implementation.

Organization. The remainder of this paper is organized as
follows. In Section II, we discuss and compare related works
in this problem space. Section III gives a brief introduction
to the concept of state-space modeling and the LQR control
algorithm. This section also describes a transformation for
converting the standard representation of the LQR controller
into a form the is better suited for hardware implementation.
In Section IV, we describe the detailed design of our software
configurable parallelized co-processor architecture. Section V
presents an illustrative example of using our co-processor to
evaluate the use of hardware verses software for an embedded
control application, and explores the performance and scaling
of our coprocessor-based controller. Section VI concludes this
paper and provides avenues of future work.
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Fig. 1: System Overview. An example system-level organization where the
controller and Plant-on-Chip (PoC) are fully software configurable.

II. RELATED WORK

Kozak, in [4], surveys trends in the field of applied control,
in which we see control has evolved from manually-tuned
single-input single-output (SISO) controllers (e.g. Proportion
Integral Derivative (PID) control) to multiple-input multiple
output (MIMO) controllers (e.g. H∞ control and model-
predictive controller (MPC)). The latter types of algorithms are
computationally intense and can introduce significant latencies
when implemented with off-the-shelf processing platforms.
Kozak additionally suggests that a software-hardware co-
design approach for implementing advanced controllers (e.g.
H∞) in FPGAs would enable designers to make better use of
these complex controllers in high-speed systems. Monmasson,
in [5], makes a similar suggestion, pointing out how different
parts of a control algorithm are better suited for different types
of hardware. However, locating the optimal software-hardware
partition is still a challenge.

There are numerous examples of application-specific FPGA-
based controllers in the literature. An example of a system
requiring very fast control update rates appears in [6], in
which a high-speed pan/tilt camera is designed to track objects.
In order to reach the 3.5ms update rate, a dedicated PC is
used to perform image processing and produce motor control
signals. It is noted that the PC introduced considerable delay
in the feedback loop. Another application requiring very high
update rates appears in [7], which presents an application-
specific design that used machine vision to control an inverted
pendulum. In [8], the authors developed a self-tuning state-
space controller using a multiply-accumulate unit which is
interfaced with a digital signal processor (DSP). The use of
FPGAs to control a plant with non-constant plant parame-
ters was demonstrated. In [9], the design of a high-speed,
hardware-only, fixed-point MPC is discussed. Finally, in [10],
an MPC is implemented on an FPGA and is shown to allow
for significantly faster sample rates than a PC running at a
higher clock frequency.

Compared to software, implementing high-performance
control algorithms in hardware is relatively time consuming
and often leads to application-specific solutions. A proposed

solution to this issue appears in [11] and [12], which use a
co-processor to perform low-level repetitive matrix operations
for MPC. This allows control designers to use software for
the high-level logic; however, to do so they had to work with
a custom floating-point format and instruction set.

A general summary of approaches used to implement con-
trollers on FPGAs appears in [13]. In addition, a call is
made for designs that make efficient use of the massive paral-
lelism available on FPGAs, while retaining the generality and
flexibility available to software solutions. Our work pursues
this goal. A number of works exist describing controllers
that achieve reduced computational delay. However, these
controllers are designed to solve specific problems, unlike
our fully software configurable solution. Garbergs, in [14],
[15], presents the closest work to our approach. The main
differences are: 1) their design is highly sequential and does
not explore parallelization of a state-space based controller,
2) their design does not consider scaling to different sized
controllers (e.g. if controller coefficients change the design
must be re-implemented), 3) their design is intended to be
standalone, as compared to being a memory-mapped co-
processor, and 4) their vision focuses more on developing a
fast hardware controller as opposed to supporting a design
methodology that bridges the gap between embedded systems
and control engineers.

III. LQR CONTROL ALGORITHM

This section first gives a brief overview of state-space
modeling. Next, the “standard” form of the LQR control
algorithm is provided. A transformation of this standard form
is then presented, and a discussion is given that illustrates the
computing advantages associated with using the transformed
formulation of the LQR algorithm.

A. State Space Modeling

A discrete state-space model defines what state a system
will be in one time step into the future, in terms of the
current state of the system and current input acting upon it. A
generic linearized discrete state-space system model consists
of matrices A, B, C, and D1 and is formulated as follows:

xk+1 = Axk +Buk (1)

yk = Cxk (2)

Where:
• xk represents the state of the system at time k
• uk represents the input acting on the system at time k
• yk represents outputs of the system at time k
• A is an N ×N matrix that defines the internal dynamics

of the system
• B is an N×M matrix that defines how the input impacts

system state
• C is a P ×N matrix that transforms states of the system

into outputs (yk)

1it is common to omit the matrix D, as inputs typically do not directly
impact output
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Equation 1 is referred to as the state update equation. With
respect to a closed loop control system, matrix A represents the
dynamics of the plant being controlled, matrix B represents
how actuator commands (i.e. uk) impact the plant, and the
matrix C could be viewed as a mapping of the current state
to the output obtained from sensors (i.e. yk).

Also the width (i.e. number of columns) of each matrix or
length of each vector found in Equation 1 and 2 can be viewed
as follows:
• M : the number of system/plant inputs/actuators.
• N : the number of system/plant states.
• P : the number of system outputs (i.e. sensors).

B. Linear-quadratic Regulator (LQR)

An LQR controller makes use of a gain matrix K, which
specifies a linear combination of plant states that are used
as feedback when computing plant control values (uk). A
particular K is sought such that the feedback law, Equation 5,
minimizes the cost function given by Equation 3 [16].

J(u) =
∞∑
1

xT
kQxk + uT

kRuk (3)

Generating K requires a control engineer to tune a state-cost
matrix (Q) and a performance index matrix (R) in a manner
that causes system behavior to fulfill specific application re-
quirements (e.g. actuator energy expended, rise-time, settling-
time). Since K is derived systematically to minimize the cost
function J(u), once Q and R have been tuned, it is referred
to as an optimal controller. Derivation of the gain matrix K is
beyond the scope of this paper, but it is a fairly straightforward
process.

Given a gain matrix K, Equations 4 - 6 specify what we
will call the “standard” form of the LQR control algorithm.

x̂k+ = G
(
yk − Cx̂k

)
+ x̂k (4)

uk = −Kx̂k+ (5)

x̂k+1 = Ax̂k+ +Buk (6)

Where:
• x̂k is an N × 1 estimated state vector
• x̂k+ is an N × 1 estimated state vector after correction
• G is an N × P observer matrix
• K is an M ×N feedback gain matrix
These equations can be viewed as performing the following

tasks: 1) predicting the state of the plant in the next time step,
shown in Equation 6, 2) correcting this prediction based on
sensor information, shown in Equation 4, and 3) computing the
control values (uk) to send to the plant, shown in Equation 5.
The prediction and correction steps are generally referred to
as the observer portion of the controller. Specifically in our
case, Equations 6 and 4 define a Luenberger type Observer.

C. LQR Algorithm Transformation for Hardware Design

The “standard” form of the LQR algorithm (Equations 4 -
6) is convenient for gaining intuition for how the algorithm
works. However, it is not convenient from a computation and
hardware architecture perspective. The primary issue with di-
rectly implementing the standard from is the data dependence
that occurs between Equation 4 and 5 (i.e. x̂k+ is required
for computing uk). This data dependency can be removed by
manipulating the standard form to obtain Equation 7. Note, this
alternative eliminates x̂k+ . Next, Equations 7 and 8, can be
simplified to Equation 9, where T is a constant matrix defined
by Equation 10. This allows the observer prediction/correction
and control computation to be represented by a single matrix-
vector multiplication.

uk = −KGyk + (KGC −K)x̂k (7)

x̂k+1 = (A−BK)Gyk+
(
(A−BK)−(A−BK)GC

)
x̂k (8)

[
uk

x̂k+1

]
= T

[
yk

x̂k

]
(9)

where:

T =
[
−KG KGC −K

(A−BK)G (A−BK)− (A−BK)GC

]
(10)

is an M +N by N + P matrix.
In addition to removing the x̂k+ data dependence, the trans-

formed version of the algorithm has other advantages from
a computation and hardware architecture design perspective.
First, if the standard form was directly implemented, then
additional storage would be required for the intermediate
x̂k+ values and additional on-chip communication bandwidth
would be required to move these intermediate values between
computing and storage units. Second, direct implementation
would either a) require separate resources for each of the
equations implemented, or b) would require relatively complex
control logic to allow computing resources to be shared, while
the alternative form allows leveraging existing research in the
area of parallelizing matrix-vector multiplication.
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Fig. 2: Operating Schedule for Current Observer Based LQR. The top one
shows timing for the original algorithm and the bottom one shows the
reorganized timing. Subscripted k denotes discrete time points between
algorithm steps k and k + 1.
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Figure 2 qualitatively illustrates the difference in relative
computation time using the “standard” form verses the trans-
formed version of the LQR algorithm. As can be seen for
the standard form, x̂k+ must be computed before computing
uk. Also note, while in both cases the control command (uk)
can be sent to the plant before computing the next prediction,
the control command and prediction computations complete
earlier for the alternative form than for the standard form.

Figure 3 quantitatively shows the difference in clock cycles
to compute the LQR algorithm using the standard form verses
the alternative form. It is assumed in both cases a hard-
ware architecture is used that can compute one matrix-vector
product per clock cycle (assuming no data dependencies);
this is described in Section IV. It is also assumed that the
dimensions of the matrices and vectors are N=M=P (where
N , M , and P were defined earlier). Intuitively, the two
primary issues with efficiency when computing using the
standard form as compared to the transformed version are:
1) the x̂k+ data dependency causes pipeline stalls, and 2)
the time required to compute x̂k+ . The number of clock
cycles to compute the control vector (uk), and to compute
an iteration of the algorithm (i.e. time to compute uk and
xk+1) is given by: N + M − 2 + Tp(G) + Tp(K) and
2N +M − 3 + Tp(G) + Tp(K) + Tp(AB) respectively. The
time for these same values for the transformed version is given
by M − 1 + Tp(T ) and M +N − 1 + Tp(T ) respectively.

The function Tp(number of columns in matrix) used
above represents the time for the pipeline of an architecture
to be filled while processing a matrix. It is a function of the
number of floating point adders and multipliers used as well
as the latency of these components, and is proportional to the
number of columns contained by the matrix being processed.
Tp is derived in greater detail in Section IV.
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Fig. 3: Clock cycles saved in computing uk (blue) and one whole state
update (red) when comparing the reorganized formula with the original. The
reduction in clock cycles increases as the number of states increase.

Two important implications of this analysis are that the
transformed algorithm will: 1) have a shorter “Control Delay”
(i.e. time between receiving new sensor values and sending a
control command) than the standard form, and 2) support faster
sensor update rates, since the time to compute the algorithm
using this form is less than when using the standard form.

IV. ARCHITECTURE

This section presents the architecture of our software con-
figurable LQR coprocessor. A high-level overview of the
coprocessor is given, followed by a description of each of
its main components.

A. Overview

Figure 4 depicts the architecture of our co-processor. It is
composed of three major parts: 1) a multiply- accumulate
parallel processing architecture, 2) matrix/vector storage, and
3) configuration registers for parameters. Software sets the
configuration registers with the number of states (N ) used
to model the plant being controlled, the number control
commands (M ) to compute, the number of sensor values (P )
to receive from the plant, the depth of the multiply-accumulate
engine, and the adder/multiplier latency. Next, matrix/vector
storage is configured with the T matrix provided by the control
engineer. The multiply-accumulate engine (“Parallel Process-
ing Architecture”) then runs the LQR control algorithm.
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Fig. 4: Architecture of the controller’s main compute unit.

B. Parallel Processing Architecture

The parallel processing architecture implemented is based
closely on the architecture presented in [17] for parallelizing
sparse-matrix vector multiplication for large matrices. Since
our T matrix will not typically be sparse, we have been able to
simplify our control logic for scheduling multiply accumulate
operations onto our binary tree structure. Just as the architec-
ture presented in [17], our architecture is composed of three
aspects: 1) a binary tree structure for parallel computation
of multiply-accumulation operations, 2) taps for allowing the
tree structure to process multiple rows of a matrix in parallel
(referred to as merging), and 3) a reduction mechanism to
allow computation of matrix rows that have more columns
than the tree has multipliers.
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Binary Tree Structure. Figure 5 illustrates the binary tree
structure that allows processing multiply-accumulate opera-
tions in parallel. Assuming the number of columns in the
T matrix is equal to the number of multiplier leaf nodes
of the tree, then a new matrix row- vector dot product
can enter the tree’s pipeline each clock cycle. We call the
number of adder levels of the tree its depth. If we denote the
latency of a multiplier as LM and the latency of an adder
as LA, then the total latency of the binary tree structure is
Ltotal = LM + depth× LA.
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Fig. 5: Tree-based multiply-accumulate architecture (depth=2)

Merge. When the number of multipliers in the multiply-
accumulate tree is at lease twice the number of columns in
the T matrix, then the tree can be split in half and outputs can
be tapped from the nodes at level one (as shown in Figure 5).
This allows two rows of the T matrix to start processing each
clock cycle. After a latency of Ltotal = LM+(depth−1)×LA,
corresponding results are output from Adder(1) and Adder(0)
at level 1, thus doubling the output rate of the coprocessor.
We refer to this as the merge feature of this architecture.

In fact, we can merge more than two rows of matrix T into
the tree each clock cycle. Suppose the T matrix has c columns
and the binary tree architecture has depth equal to Dp. In the
simplified case, if Nf = 2Dp−dlog2(c)e, then Nf rows of matrix
T can be feed into the tree structure each clock cycle.
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Fig. 6: Reduction circuit structure

Reduce. When the number of columns in the T matrix
is larger than the number of multipliers in the multiply-
accumulate tree, then each row has to be feed into the tree
structure over multiple clock cycles. We will let Ng represent
the number of clocks needed to read in a row. Given that the
number of columns in T is equal to N+P , Ng = d(N+P )/je,
where j is the number of multipliers. The circuit shown in

Figure 6 is called a reduction circuit and was introduced
by [18]. Its purpose is to sum the results of the Ng iterations
needed to process a row of T .

The number of such reduction components required is
Ng − 1. The reduction circuit allows correct operation when
the number of rows in T is larger than the number of
multipliers in the tree, at the cost of latency. The latency of
the reduction circuit for processing a row of T is given by
(LA +2)× (Ng−1). A matrix T consisting of c columns and
l rows would require the processing time given in Equation 11.

TBR = LM +LADp + (LA + 1)(Ng − 1) + (l− 1)Ng (11)

Resource Analysis. Table I lists the configurable parameters
of the coprocessor. It defines how to compute the number of
adders required for both the reduction circuit and the binary
tree circuit, as a function of these parameters. The “Latency-
Clocks per Row” entry in the table indicates the clock cycles
required from entering the multiplier to reaching the output of
the multiply-accumulate tree.

TABLE I: Summary of Architecture Parameters
Merge Mechanism (Same as normal mode when dlog2(c)e = Dp)

Configurable Paramater Column:c Depth:Dp

Number of Rows per Fetch,
Nf

2Dp−dlog2(c)e

Multipliers in Binary Tree 2Dp

Adders in Binary Tree 2Dp − 1
Latency–Clocks per Fetch LM + dlog2(c)eLA

Reduce Mechanism (Same as normal mode when dc/2Dpe = 1)
Configurable Paramater Column:c Depth:Dp

Number of Groups per Row,
Ng

dc/2Dpe
Multipliers in Binary Tree 2Dp

Adders in Binary Tree 2Dp − 1
Adders in Reduction Circuit dc/2Dpe − 1

Latency–Clocks per Row LM +DpLA +(dc/2Dpe−1)(LA +2)

C. Matrix/Vector Storage
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Fig. 7: Communication between BRAM and Multiplier

In our design, matrix T is stored in block RAMs (BRAMs)
as shown in Figure 7. Algorithm 1 defines how software must
store T into each BRAM. Each multiplier in our designed is
associated with an individual BRAM; Figure 7 illustrates how
each BRAM connects to its associated multiplier.
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Algorithm 1 Memory Map algorithm for T Matrix
. T is an l by c matrix and binary tree structure depth is Dp

procedure MERGE MECHANISM MEMORY MANAGEMENT
Nf = 2Dp−dlog2(c)e . Number of rows merged
for m = 0 to dl/Nf e − 1 do

for k = 0 to Nf − 1 do
for n = 0 to 2Dp/Nf − 1 do

if n ≤ c− 1 then
BRAM(n+ k2Dp/Nf ) ⇐ Tk+mNf ,n

else
BRAM(n+ k2Dp/Nf ) ⇐ 0

end if
end for

end for
end for

end procedure

procedure REDUCE MECHANISM MEMORY MANAGEMENT
for m = 0 to l − 1 do

for k = 0 to dc/2Dpe − 1 do
for n = 0 to 2Dp − 1 do

if n+ k2Dp ≤ c− 1 then
BRAM(n) ⇐ T

m,n+k2Dp

else
BRAM(n) ⇐ 0

end if
end for

end for
end for

end procedure

V. HARDWARE IMPLEMENTATION AND ANALYSIS

A. Evaluation Setup

Our software configurable LQR coprocessor was proto-
typed using a Zedboard, which hosts a Xilinx Zynq FPGA
(XC7Z020). The Zynq FPGA is composed of a processing
system (PS), which has a dual-core ARM Cortex-A9 processor
that can run at up to 666 MHz, and a programmable logic
(PL) fabric for deploying custom hardware designs. The LQR
coprocessor was instantiated in the PL, and used a 100 MHz
clock frequency for all tested configurations of the controller.

Three sets of evaluation experiments were performed. First,
the LQR controller was used to control a PoC emulating a
pendulum on a cart, and compared against results obtained
from Matlab to verify the correctness of our implementation.
Second, performance experiments were performed to evalu-
ate the computing time of systems with T matrices having
N + P = 8 columns upto N + P = 256 columns, and
for coprocessors having 4 to 64 multipliers in their multiply-
accumulate tree structure. It should be noted Table IV gives
entries for 128 and 256 multipliers (i.e. depths 7 and 8);
however, these are analytically computed. They are provided
to give a sense for the largest coprocessor that could be
implemented if we had the largest available Zynq FPGA
(XC7Z100). The third experiment measured the computing
time of the LQR algorithm running in software on the ARM
processor, for system matrix sizes (T ) having N + P = 8 to
N + P = 64 columns.

Figure 8 depicts the top-level system structure and the direct
connection between the controller and the PoC, which enables
parallel loading of sensor values. It can be contrasted with
Figure 1, which requires sequential loading of sensor values
over the AXI bus.

CPU PoC

Axi_interconnect (AXI4-Lite)

BRAMBRAMBRAM

Slave Port

Physical Plant

LQR Controller

PS PL

Master Port

Zynq System on Chip

UART

Fig. 8: Top level view of the experimental platform, highlighting the direct
connection between controller and PoC.

B. Controller Evaluation using a Plant-on-Chip

A Plant-on-Chip (PoC) was deployed onto the FPGA’s
PL fabric to emulate the pendulum-on-a-cart plant shown in
Figure 9, using the model parameters given in Table II. The
PoC executes the state space Equations 1 and 2, with input
uk received from the hardware or software-based controller.
The state of the PoC and control commands are logged out of
band using an UART interface, which allowed unobtrusively
plotting controller behavior. This model requires the CPU to
configure the co-processor parameters as N = 4, M = 1,
and P = 2. The state vector consists of four states: x, ẋ, φ,
and φ̇ (see Figure 9). The pendulum was initially configured
with a starting position of −5◦ from vertical. When running
the hardware controller at 100 MHz, it could compute uk in
530ns, and complete a full iteration of the algorithm in 600ns.
The hardware control graph is shown in Figure 10, and was
found to match the results obtained from Matlab.

l
m, I

M

x

F
θ

Fig. 9: Inverted Pendulumn Model

TABLE II: Inverted Pendulum Model Parameters
Symbol Meaning Initialization

M cart mass 2.725kg
m pendulum mass 1.09kg
b coefficient of friction 0.1 N/m/sec
l length to pendulum center of mass 0.2 m
I pendulum moment of inertia 0.006kg ·m2

F applied force 0
x position displacement 0
θ angle from vertical −5◦
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C. Hardware verses Software

Table III and IV summarizes the results obtained when
comparing the computing time of the software controller
running on the ARM processor (at 100 MHz, 333 MHz, and
666 MHz), against the hardware controller running at 100
MHz. The expression k − kd represents the time from when
the controller receives new sensor data to the time it completes
computation of uk, and k − ke represents the time from
when the controller receives new sensor data to completing an
iteration of the control algorithm (See Figure 2). The results
show that the hardware controller achieves about a 3.4 to
100 factor speedup over the embedded ARM processor, for
plants that can be represented by N = 4 to N = 128 states
respectively. The high end of our speedup (100x) is reasonable,
given that the highest performing configuration we can fit on
our FPGA utilizes 64 multipliers in parallel, with a deeply
pipelined 6-level multiply-accumulate tree. Note that data in
Table IV with a shaded background is when the number of
rows in the T matrix equals the number multipliers used by
the coprocessor. Data points above these cells make use of the
reduction mechanism, and data points below these cells make
use of the merge mechanism.

TABLE III: Software Computation Time (µs). Assume N=M=P for each
system size.

`````````Clock
System Size N=4 8 16 32

100MHz k − kd 11.08 36.93 136.12 528.06
k − ke 22.56 73.84 272.91 1056.93

333MHz k − kd 3.327 11.09 40.877 158.577
k − ke 6.775 22.174 81.955 317.396

666MHz k − kd 1.664 5.545 20.438 79.288
k − ke 3.387 11.087 40.977 158.698

D. Resource Utilization

Table V summarizes the hardware resource utilization and
maximum obtainable clock frequency as the parallelism of
the coprocessor is increased from having 8 to 64 parallel
multipliers in its multiply-accumulate tree. Given that we are
explicitly pairing a BRAM with each multiplier, the BRAMs

TABLE IV: Hardware Computation Time (µs) at 100MHz. Assume N=M=P
for each system size.

`````````Depth
System Size N=4 8 16 32 64 128

2 k − kd 0.62 1.10 2.54 7.03 24.62 89.9
k − ke 0.73 1.45 3.85 12.18 45.13 171.85

3 k − kd 0.58 0.82 1.54 3.94 12.58 45.22
k − ke 0.65 1.01 2.21 6.53 22.85 86.21

4 k − kd 0.56 0.74 1.10 2.30 6.62 22.94
k − ke 0.63 0.85 1.45 3.61 11.77 43.45

5 k − kd 0.55 0.70 0.94 1.54 3.70 11.86
k − ke 0.62 0.81 1.13 2.21 6.29 22.13

6 k − kd 0.55 0.68 0.86 1.22 2.30 6.38
k − ke 0.62 0.79 1.05 1.57 3.61 11.53

7 k − kd \ 0.67 0.82 1.06 1.66 3.70
k − ke \ 0.78 1.01 1.41 2.33 6.29

8 k − kd \ 0.67 0.80 0.98 1.34 2.42
k − ke \ 0.78 0.99 1.33 2.01 3.73

scale as expected. The DSP also scale as expected, given
that each floating point multiplication makes use of two DSP
blocks, and floating point addition units make use of LUT-
based cores. Also as expected, the obtainable clock frequency
decreases with increased coprocessor size. However, this is a
modest decrease, given the rate of increase in resources. The
resource usage appears to be fairly well balanced, though a
number of LUTs could be freed up if a number of floating
point adders were made to be DSP-based.

TABLE V: Hardware Resource Usage
System Size Flip-Flops LUTs Minimum DSP48E Maximum

(N=M=P) (106400
total)

(53200
total)

BRAM
(140
total)

(220
total) Frequency

4 5793 5137 10 16 153.657MHz
8 12065 10376 18 32 132.749MHz
16 24426 21077 34 64 127.356MHz
32 48143 42138 66 128 122.205MHz

VI. CONCLUSION

In support of improving the performance of future Cy-
ber Physical Systems (CPS), a software configurable and
parallelized LQR co-processor architecture was presented to
help bridge the gap between control and embedded system
engineers. A transformation was also given for converting
the “standard” form of an LQR algorithm into an alternative
form that was better suited for hardware parallelization. Our
performance results show a 3.4 to 100 factor speedup over
a 666 MHz embedded ARM processor, for plants that can be
represented by 4 to 128 states respectively. Two avenues of fu-
ture work include: 1) developing a more formalized procedure
for moving controller designs from theory to implementation,
and 2) exploring the support of higher complexity controllers,
such as, H∞ and Model Predictive Control (MPC).

REFERENCES

[1] E. Monmasson and M. Cirstea, “Guest editorial special section on
industrial control applications of fpgas,” Industrial Informatics, IEEE
Transactions on, vol. 9, no. 3, pp. 1250–1252, Aug 2013.

[2] D. Luenberger, “An introduction to observers,” IEEE Transactions on
Automatic Control, vol. 16, no. 6, pp. 596–602, Dec 1971.

7



[3] S. Vyas, N. Chetan Kumar, J. Zambreno, C. Gill, R. Cytron, and
P. Jones, “An fpga-based plant-on-chip platform for cyber-physical
system analysis,” Embedded Systems Letters, IEEE, vol. 6, no. 1, pp.
4–7, March 2014.

[4] S. Kozak, “Advanced control engineering methods in modern techno-
logical applications,” in Carpathian Control Conference (ICCC), May
2012, pp. 392–397.

[5] E. Monmasson, L. Idkhajine, and M. W. Naouar, “FPGA-based Con-
trollers,” Industrial Electronics Magazine, IEEE, vol. 5, no. 1, pp. 14–26,
March 2011.

[6] K. Okumura, H. Oku, and M. Ishikawa, “High-Speed Gaze Controller
for Millisecond-Order Pan/Tilt Camera,” in IEEE International Confer-
ence on Robotics and Automation, May 2011, pp. 6186–6191.

[7] Y. Tu and M. Ho, “Design and implementation of robust visual servoing
control of an inverted pendulum with an FPGA-based image co-
processor,” Mechatronics, vol. 21, no. 7, pp. 1170 – 1182, 2011.

[8] D. A. Gwaltney, K. D. King, K. J. Smith, and J. Montenegro, “Imple-
mentation of Adaptive Digital Controllers on Programmable Logic De-
vices,” Military and Aerospace Programmable Logic Devices (MAPLD),
Sept 2002.

[9] K. Basterretxea and K. Benkrid, “Embedded high-speed model pre-
dictive controller on a FPGA,” in NASA/ESA Conference on Adaptive
Hardware and Systems (AHS), 2011.

[10] J. Jerez, G. Constantinides, and E. Kerrigan, “An FPGA implementation
of a sparse quadratic programming solver for constrained predictive
control,” in In Proceedings of the 19th ACM/SIGDA international
symposium on Field programmable gate arrays, June 2011, pp. 209–
218.

[11] P. Vouzis, M. Kothare, L. Bleris, and M. Arnold, “A System-on-a-Chip
Implementation for Embedded Real-Time Model Predictive Control,”
IEEE Transactions on Control Systems Technology, vol. 17, no. 5, pp.
1006–1017, Sept 2009.

[12] L. Bleris, P. Vouzis, M. Arnold, and M. Kothare, “A co-processor FPGA
platform for the implementation of real-time model predictive control,”
in American Control Conference, June 2006.

[13] B. Mutlu and M. Dolen, “Implementations of state-space controllers
using Field Programmable Gate Arrays,” in International Sympo-
sium on Power Electronics Electrical Drives Automation and Motion
(SPEEDAM), June 2010, pp. 1436–1441.

[14] B. Garbergs and B. Sohlberg, “Specialised hardware for state space
control of a dynamic process,” in TENCON ’96. Proceedings., 1996
IEEE TENCON. Digital Signal Processing Applications, vol. 2, Nov
1996, pp. 895–899 vol.2.

[15] ——, “Implementation of a state space controller in a fpga,” in
Electrotechnical Conference, 1998. MELECON 98., 9th Mediterranean,
vol. 1, May 1998, pp. 566–569 vol.1.

[16] T. Chen, B. Francis, and T. Hagiwara, “Optimal sampled-data control
systems,” Proceedings of the IEEE, vol. 86, no. 4, pp. 741–741, 1998.

[17] L. Zhuo and V. K. Prasanna, “Sparse matrix-vector multiplication on
fpgas,” in Proceedings of the 2005 ACM/SIGDA 13th International
Symposium on Field-programmable Gate Arrays, ser. FPGA ’05. New
York, NY, USA: ACM, 2005, pp. 63–74.

[18] L. Zhuo, G. Morris, and V. Prasanna, “Designing scalable fpga-based
reduction circuits using pipelined floating-point cores,” in Parallel
and Distributed Processing Symposium, 2005. Proceedings. 19th IEEE
International, April 2005, pp. 147a–147a.

8


