An FPGA Implementation of SipHash

Benjamin Welte
Electrical and Computer Engineering
lowa State University
Ames, IA, USA
bwelte99 @iastate.edu

Abstract—Cryptographic hash functions play a critical role
in ensuring the security and veracity of network transactions;
for example, they constitute the backbone of hash-based mes-
sage authentication codes (HMACs), distributed hash tables
(DHTs), and blockchain. However, cryptographic hashing can
incur significant CPU overhead, especially for applications that
commonly process large inputs exceeding 1 MB. This can make
it infeasible to implement HMACs, DHTs, etc. in resource-
constrained embedded systems or servers with strict response
time requirements. As a solution, we present an FPGA archi-
tecture to accelerate SipHash, a promising cryptographic hash
function. Our design constitutes the first SipHash implementation
that targets maximum performance on an FPGA. The proposed
architecture’s throughput and acceleration vs. software were
measured on Xilinx’s Zynq-7000 and Ultrascale+ SoCs for a
wide range of input sizes. These results show one core can
provide single-threaded throughput of up to 13.7 Gbps on a
modern FPGA fabric, and multiple parallel cores can exceed
100 Gbps, allowing applications like blockchain and peer-to-peer
file sharing to scale with emerging high-bandwidth networks. A
single core can keep pace with 10 Gigabit Ethernet, and further
parallelization can empower FPGA designs to fully utilize higher
network bandwidths.

I. INTRODUCTION

Hash functions are extremely versatile algorithms with
many diverse uses. They compress (or ‘“hash”) inputs of
varying length into outputs of fixed size. A subcategory of hash
functions are cryptographic, meaning they take a security key
as an additional input to encrypt their hash. In applications
such as hash-based message authentication codes (HMACS)
[1]-[3], distributed hash tables (DHTSs) [4]—[6], and blockchain
[7], [8], keyed hash functions offer security in addition to
data compression and fault-tolerance. Their ubiquity has led
noted cryptographer Bruce Schneier to comment, “Much more
than encryption algorithms, one-way hash functions are the
workhorses of modern cryptography” [9]. These cryptographic
hash algorithms have two desirable characteristics: speed and
security.

However, achieving high speed in tandem with crypto-
graphic strength is not trivial. Many secure hash functions
struggle to keep pace with throughput demands, and this
problem becomes exacerbated in the presence of large in-
puts. Applications like peer-to-peer file-sharing networks and
blockchain regularly process inputs of megabytes or more,
compelling a difficult choice between security and efficiency.
This explains why insecure hash functions like MD5 and
SHA-1 remain commonplace despite their well-documented

Joseph Zambreno
Electrical and Computer Engineering
Iowa State University
Ames, 1A, USA
zambreno @iastate.edu

vulnerabilities [10], [11]: designers have no choice but to use
a fast, insecure algorithm when strict throughput demands
make a more secure alternative’s latency intolerable. Other
more robust hash functions such as SHA-2 enable foundational
services such as HTTPS and SSH [12], but the computational
complexity that gives them cryptographic strength also limits
their throughput. Many applications could benefit from a
hash function implementation that combines high speed with
cryptographic integrity. To achieve this goal, it is much more
straightforward to accelerate a secure algorithm as opposed to
modifying an insecure one.

In the past, exponential improvements in integrated circuit
fabrication might have sufficiently accelerated hash functions
like SHA-2. But Moore’s Law, at least according to its original
formulation, is dead. We can no longer rely on decreasing
feature sizes to accelerate general purpose computing. As such,
Horowitz and others have advocated specialized hardware as
the best available means to continue improving performance
and energy efficiency [13]. With respect to hash functions
in particular, field-programmable gate arrays (FPGAs) offer
a promising acceleration option. As Herbordt et al. point
out, FPGAs excel at speeding up scalable, low-precision
computations, and they have the flexibility to implement a
family of algorithms as opposed to a single point solution
[14]. The literature also contains many examples of leveraging
FPGAs’ programmable logic to explore tradeoffs between area
and performance such as [15]. Modern FPGA fabrics are also
tightly integrated with general purpose processors and vari-
ous other hardware modules, promoting a healthy symbiosis
between hardware and software. Consequently, various FPGA
accelerators already implement common hash functions like
MD5 [16] and SHA-2 [17]-[21] with varying emphases on
speed, area, energy efficiency, etc. Such designs can achieve
high and efficient throughput, but they leave algorithmic
deficiencies unresolved. For instance, accelerating MD5 does
not fix its inherent insecurity, and SHA-2’s complexity incurs
substantial power and utilization overhead on an FPGA.

To avoid these common algorithms’ shortcomings and meet
the demand for fast, secure hashing, we propose implementing
a family of hash functions known as SipHash on an FPGA
[22]. Unlike MDS5, SipHash is cryptographically robust, and
unlike SHA-2, its simple sponge construction relies wholly
on ARX (add-rotate-xor) operations amenable to hardware
acceleration. SipHash was originally intended as an HMAC

K21

== 27

N

Fig. 1. The ARX Network of SipRound

and for creating flooding-resistant hash tables [22], so our
architecture can service these applications as well as many
others requiring fast and secure hashing.

II. StPHASH

SipHash was first proposed by J.P. Aumasson and Daniel
Bernstein in 2012 to replace MD5 as an HMAC and to combat
hash-flooding denial of service attacks [22]. It consists of three
stages:

1) Initialization: four internal state variables, vy, v, v,

and vs, are initialized to algorithmic constants:

vg = ko ® x736F6D6570736575
v1 = k1 @ x646F72616E646F6D
vo = ko @ x6C7967656E657261
vg = k1 @ x7465646279746573

Here, k1 and kg are the upper and lower 64 bits of the
security key, respectively, in little-endian format.

2) Compression: SipHash-c-d processes a b-byte string
s [(b+ 1)/8] 64-bit little endian words, the last of
which includes the final b % 8 bytes of the message
followed by null bytes and terminated with a byte
encoding of b % 256. For example, a 9-byte message
consisting of x00, x01, x02, x03, x04, x05, x06, x07,
and x08 would form two words: x0706050403020100
and x0900000000000008. To compress the message, the
internal state iteratively absorbs each word, m;, with
these steps:

e Us @ my
o c iterations of SipRound
e Vg Dmy;

The SipRound function, also pictured in Figure 1 from
[22], consists of the following operations:

v9 + =11 Vg K 32
v K 13 vy + = U3
V1D = v, v K 16
vy K 32 v3 @ = vy
Vg + =101 Vo + = s,
v K 17, v3 K 21
V1 D=1v2 V3 D=1

Here, ‘4’ denotes bitwise logical or, ‘@’ denotes
bitwise exclusive or, and ‘<<’ denotes a left barrel
shift. Obviously, these concurrent operations present an
opportunity for parallelism in hardware.

3) Finalization: After compressing each message word,
SipHash xors the constant xFF to the internal state,
performs SipRound d more times, and then returns
v1 D vy B vg @ vy as the hash.

Figure 2 shows an illustration from [22] of SipHash2-4
hashing a 15-byte message. Bernstein and Aumasson recom-
mend using SipHash2-4 for maximum security, but SipHash1-
3 is also widely used. For more information on the SipHash
algorithm, please see [22].

Compared to more popular algorithms like SHA-2, crypt-
analysis of SipHash is in its infancy, but several preliminary
studies present promising results. [23] did not uncover any
viable differential characteristics for a key-extraction attack.
The authors from [24] refine the methodology from [23]
but similarly deem both SipHash2-4 and SipHashl-3 secure
against differential cryptanalysis. Although successful attacks
have been devised against reduced-round SipHash [25], these
do not affect versions of the algorithm used in practice.

In terms of side-channel attacks, the authors of [26] demon-
strate that an attacker can determine SipHash’s security keys
by monitoring the power consumption of a CPU executing
it, although they note this is significantly more difficult and
requires many more power probes than for other common al-
gorithms like AES. Since this attack targets SipHash software,
moving to an FPGA-based design would actually mitigate
it. However, it might be possible to adapt an attack similar
to the one outlined against SHA-3 in [27] to determine

ko ki

mo ma
736£6d6570736575 —(1) - D] D I
NN O = O = < = =
646£72616e646f6d D 52 58 S BB E
- PN E =
6c7967656e657261 —(a—a o e s e e e = 9_/
| R tn| R m| |m| Al |
T465646279746573 ? ? — ? - [)
koki mo ma £f

Fig. 2. SipHash2-4 Hashing a 15-byte Message

SipHash keys based on an FPGA’s power consumption. But as
the authors of [27] observe, such energy-based side-channel
attacks become more difficult on boards with lower supply
voltages. It therefore seems the electrical characteristics of
the specific board a design is deployed on will determine its
resiliency against power-based attacks more than the choice
of a hashing algorithm.

III. RELATED WORK

[28] details attempts by researchers at Google to accelerate
SipHash using the AVX2 SIMD extensions to the x86 ISA,
but this proved relatively unsuccessful due to AVX2’s lack of
vector shift instructions. The authors of [29] include an FPGA
implementation of SipHash in their work outlining attacks
and defenses for multi-tenant FPGA systems. However, their
design’s 32-bit interface can only load half of SipHash’s 64-bit
inputs during one clock cycle. As such, it can only approach
throughput of 0.5 cycles/byte for long messages. [29] also
loads the security key serially into the core over 4 clock cycles,
indicating that it may have been intended as more of an ASIC
prototype than an FPGA-specific architecture.

The literature contains few SipHash accelerators outside the
works outlined above, but it does present numerous FPGA
implementations of other hash functions, most notably SHA-
2. These architectures differ in emphasizing energy efficiency
[21], throughput per unit area [18], and a combination of
both [20], but the algorithm’s inherent complexity incurs
painful tradeoffs between these metrics. The design in [21],
for example, achieves reasonable throughput - about 2.5 Gbps
- but at the cost of over 200,000 LUTs and 350,000 flip-
flops. Furthermore, because of SHA-2’s complexity, many of
these designs accelerate SHA-2 with a fully programmable
processor that only includes the functional units required for
hashing [19]. By contrast, streamlined algorithms like SipHash
can hash inputs without fetching and decoding instructions. In
applications that don’t specifically require SHA-2, it therefore
seems prudent to choose a simpler hash function.

IV. ARCHITECTURE

We present here the first SipHash design tailored to an
FPGA. Figure 3 shows the proposed architecture which we
implemented at the RTL level with VHDL. The notation for
ko, k1, and m; is kept from [22], and the variable names cy,
c1, c2, and c3 denote the algorithmic constants that initialize
the internal state. Four 64-bit registers store the intermediate
values of vy, v1, v2, and vs following each of the algorithm’s
initialization and compression phases. The internal state’s
initial and current values are multiplexed onto the datapath to
appropriately update the state depending on whether hashing is
just starting or already underway. To accomplish finalization,
the internal state passes through a pipeline of d SipRounds
before the state variables are xored together to produce the
hash.

A hardware wrapper interfaces the core with two separate
AXI-Stream buses, one which receives input data and the
other which streams out the resulting hashes [30]. As such,
control signals from the incoming slave AXIS interface (e.g.
TLAST, TREADY, TVALID, etc.) demarcate valid input data,
control the compression datapath’s multiplexers, and ensure
the register holding the final output will only latch valid
hashes.

It is worth noting that this design assumes the final word in
the input message has already been padded with zeros and the
message size in bytes size modulo 256. This allows the core to
dynamically handle inputs of various sizes determined by the
position of TLAST on the input stream as opposed to requiring
a configuration register or a similar recalibration mechanism to
handle inputs of varying size. However, this does necessitate
either software or an upstream unit to pad the last word before
it reaches the core. Since hash functions typically have a large
ratio of input to output data, this design assumes each hash
will be read via either hardware or software before the next
valid hash overwrites it.

This design also includes several registers that allow a
modern FPGA'’s processing subsystem to easily configure it. In

k 1 mi

C[_.——bé—)
o '—) > —){%)—) » > —
17 EP '—» nH— > o — | —
b 0 =
kgp—— A e
) 4 8 Q >
CZ—’@*] > 2 > > »(+)—> 2 > —> >

>
>
>

csH>F) > > =FF >
T }»@—» >] > S —
k1 m; |—|
xC xD
Fig. 3. Proposed SipHashC-D Architecture
Regi . it Descripti . . .
egmoer No Oxget kegc[r;?g}n available during the same cycle as the next input, so each
1 x4 kO [63:32] pipeline stage during compression would require delaying each
2 x8 kl [31:0] input word by a cycle, defeating the purpose of a pipeline.
3 x12 k1 [63:32] Unrolling this loop to further pipeline it as in [15] would
4 x16 | Soft Reset (Active high; only Oth bit) _ g P : p1p : _
5 x20 Hash Count irrevocably tether the design to a fixed input size. As such,
6 x24 Hash Value [31:0] leaving the critical path in the compression stage sacrifices
7 x28 Hash Value [63:32] . . .
some performance while allowing the architecture to hash

TABLE 1
SIPHASH CORE CONFIGURATION REGISTERS

our implementation, an embedded processor can read and write
to these registers using the AXI-Lite protocol [31]. Table IV
describes the memory-mapped registers in detail. They allow
software to reset the core, initialize the SipHash keys, and read
the last valid hash as well as the number of valid hashes since
the last reset. The core’s output is therefore accessible at both
the RTL and application levels.

Theoretically, this architecture will achieve throughput of
% cycles per byte where w is the number of 64-bit words
in the message and d is the number of finalization rounds. This
follows from straightforward analysis: if the design processes
one 64-bit word (8 bytes) each cycle, it will produce a
valid hash d cycles after compressing the last word. If w
is much larger than d or if the core receives multiple back-
to-back inputs, this will hide the extra latency introduced by
the pipeline, allowing throughput to asymptotically approach
0.125 cycles/byte. The design’s throughput therefore depends
primarily on the fastest possible clock frequency in its critical
path, the recursive loop connecting the internal state register’s
output to its input. Further pipelining of this region is impos-
sible because the output of each compression must become

inputs of arbitrary length.

V. EVALUATION METHODOLOGY

We evaluated the proposed architecture based on its
throughput and resource utilization on an FPGA. We are
particularly interested in our architecture’s performance on
large inputs, e.g. 2'2 bytes and greater. Large input sizes
naturally cause hashing to consume more CPU time and make
its acceleration more beneficial in accordance with Amdahl’s
Law. Applications like IPSec that use HMACs may need to
hash messages up to 2'3 bytes in size [2], and inputs to
blockchain and peer-to-peer file sharing systems can easily
exceed 1 MB [5], [8].

We profiled our design using Xilinx’s Zynq-7000 and Ul-
trascale+ SoCs to gauge its performance on edge and server
devices. The specific boards we chose that contained each
FPGA were the Zedboard and the ZCU-106, respectively. This
provided comparisons between our SipHash core implemented
on multiple generations of programmable logic fabric, the
Zyng-7000’'s ARM Cortex-A9 CPU, and the Ultrascale+’s
more performant ARM Cortex-AS53.

We measured resource utilization after synthesizing this
design for the aforementioned platforms. Table II contains
these results as well as the design’s fastest possible clock
frequency on both boards. Throughput was profiled using a

Axl-Lite

> SipHashC-D

%
NS

DMAy 4

> SipHashC-D

AX]

AX|-Lite
PS Subsystem :|_|AXI-Li|a)
AXI-Lile
DDR Ports (xN)
AX]-Lite
AXl-Lite
AX|-Lite

o) i

> SipHashC-D

AX]

N

SipHashC-D

AI-Lites

D

AX]-Lite A

Timer

AXI

Fig. 4. Hardware Test Bench

TABLE 11
UTILIZATION AND MAX CLOCK FREQUENCIES

. Max CIk. LUTs Registers

Board Algorithm Frequency (% total) (%gtotal)
Zedboard | SipHash2-4 71.4 MHz 2397 (4.5%) 1396 (1.3%)
Zedboard | SipHashl-3 111.1 MHz 1598 (3.0%) 1138 (1.1%)
ZCU-106 | SipHash2-4 | 214.3 MHz | 2355 (1.02%) 1395 (0.3%)
ZCU-106 | SipHashl-3 | 214.3 MHz | 1594 (0.69%) 1141 (0.25%)

test bench comprised of complementary hardware and software
available on Github [32]. Figure 4 shows the hardware test
bench; it instantiates multiple SipHash cores, each with an
accompanying DMA to stream input vectors from off-chip
DRAM. Software initiates DMA transactions to stream test
vectors to each SipHash core before polling its result register
to check if hashing has completed. This application also times
the core by reading a hardware timer instantiated in the
programmable logic fabric to measure the clock cycles that
elapse while the core generates each hash. The processing

subsystem can then similarly measure the number of PL timer
cycles it needs to execute Bernstein and Aumasson’s open
source software implementation of SipHash [33] compiled
with -O3 optimization. This scheme fairly compares the time
required to initiate and complete hashing in both hardware and
software. We repeated this experiment on both boards with an
increasing number of cores until adding additional cores no
longer increased the total throughput.

VI. RESULTS

The tests described in Section V were run using input
vectors ranging in size from 8 bytes to 1 MiB. Figure 5
shows the design’s throughput and acceleration vs. software
on both the Zedboard and the ZCU-106. (Since SipHashl1-3
only performs as well or worse than SipHash2-4 on the ZCU-
106, we omit a graph for those results). These graphs approach
asymptotes as the input sizes increase because hardware
hashing includes the latency required to initiate each DMA
transaction and read the PL timer. For small inputs, these

SipHash2-4 Throughput (Zyng-7000)

SipHash1-3 Throughput (Zyng-7000)

SipHash2-4 Throughput (Ultrascale+)

140

SipHash2-4 x1
SipHash2-4 =2
SipHash2-4 x4
SipHash2-4 =8
SipHash2-4 x16 _—

120

100

!
|
I
4

Thraughput (Ghits/sec)

35 35
® SipHash2-4 x1 @ SipHashl-3x1
E'i] A& SipHash2-4 x2 0 & SipHashl.3 x2
¥ SipHash2-4 x4 ¥ SipHashl-3 x4
in m SipHashZ.4 xB s m SipHashl-3 x8
Ed =2
7 o]
a &
@ 5
= ¥ | =
K T 8
‘g. 15 _E 15
3
E) £y
E s | E
3 ~—r———o 5
o . T T T T T 0- T
7 7 21 P 28 2 24 Py 21

Input Size (bytes)

sipHash2-4 Speedup vs. Software (Zyng-7000)

Input Size (bytes)

SipHash1-3 Speedup vs. Software (Zyng-7000)

e
Input Size (bytes)

S A T =

- SipHash2-4 Speedup vs. Software (Ultrascale+)

@ SipHashZ2.4 x1 # SipHazhl.3xl @ SipHash2.4 x1
s A SipHash2-4 x2 35 A SipHashl-3 x2 A SipHazh2-4 x2
¥ SipHash2-4 x4 ¥ SipHashl-3 x4 20 ¥ SipHash2-4 x4
! m SipHash2-4 x8 0 m SipHaszhl-3 xB m SipHazh2-4 xB —
Hash2-4 x —
- - s + SipHash2-4 x16 ﬂ/
g g) »
Tw T 2
4 H b
15 15 10
10 10
5
5 5
0 g T T T T T 0 T T 0 y T T T
zl 2.‘ 211 zll ZLL zl" EA 2.‘ 2” 2I.l 2'.5 2!') al 2!’ 2'.3 2!! zlt 2'.5
Input Size (bytes) Input Size (bytes) Input Size (bytes)
Fig. 5. Throughput and Acceleration vs. Software

TABLE III
S1PHASH THROUGHPUT AND ACCELERATION
. SipHash | Throughput | Speedup vs.
Board Algorithm Cpores (Gb/feg I;oftwle)lre
Zedboard | SipHash2-4 1 4.57 5.12
Zedboard | SipHash2-4 2 9.14 10.23
Zedboard | SipHash2-4 4 18.03 3141
Zedboard | Siphash2-4 8 32.49 36.89
Zedboard | SipHashl-3 1 7.11 2.83
Zedboard | SipHashl-3 2 14.04 5.58
Zedboard | SipHashl-3 4 28.08 17.36
Zedboard | SipHashl-3 8 33.25 20.56
ZCU-106 | SipHash2-4 1 13.18 2.62
ZCU-106 | SipHash2-4 2 26.36 5.31
ZCU-106 | SipHash2-4 4 52.59 10.46
ZCU-106 | SipHash2-4 8 79.40 13.08
ZCU-106 | SipHash2-4 16 93.86 18.41
ZCU-106 | SipHashl-3 1 13.18 1.60
ZCU-106 | SipHashl-3 2 26.36 3.14
ZCU-106 | SipHashl-3 4 52.59 6.23
ZCU-106 | SipHashl-3 8 76.30 7.14
ZCU-106 | SipHashl-3 16 92.45 10.89

overheads dwarf the hash time itself, making throughput and
acceleration poor. However, as the inputs become larger, these
overheads become less significant, improving performance.
We are primarily interested in accelerating hashing for large
inputs (> 2'2 bytes), and the overhead from initializing the
DMA is insignificant in these cases. We therefore report the
core’s asymptotic throughput and acceleration for both boards
in Table III.

Table II shows the resource utilization and maximum clock
frequency for SipHash2-4 and SipHash1-3 on both the Zyng-
7000 and Ultrascale+. SipHashl-3 requires fewer resources

TABLE IV
COMPARISON TO OTHER WORK
Max CIk.
Algorithm ('Ihr;)u%lp ut Frequency | LUTs | Registers
ycles/byte) (MHz)
SipHash2-4 [28] 1.26 N/A N/A N/A
SipHash1-3 [28] 0.68 N/A N/A N/A
SipHash2-4 [29] 0.5 173.0 907 789
SipHash2-4 [us] 0.125 214.3 2355 1395
SipHash1-3 [us] 0.125 214.3 1594 1141

than SipHash2-4 because it instantiates fewer SipRounds in
the core’s compression and finalization stages. On the Zyng-
7000, this also reduces the critical path by downsizing the
unpipelineable compression loop, increasing the maximum
clock frequency. However, on the Ultrascale+, the test bench’s
critical path resides in the DMAs. In practice, this causes
SipHash2-4 and SipHashl-3 to have the same max clock
frequency and therefore the same throughput on the ZCU-106.

A single core implementing either SipHash2-4 or SipHash1-
3 on the Zyng-7000 FPGA can easily hash packets received
from Gigabit Ethernet faster than they come in, and on
the Ultrascale+, one core can outpace 10 Gigabit Ethernet
by itself. Deploying multiple parallel cores further improves
performance; Figure 6 depicts total and average throughput
as a function of the number of parallel cores in use. Both
FPGAs only offer four DRAM ports, so multiple cores must
share a port if N > 4. This explains the dropoff in average
throughput we usually observe each time the number of cores
is incremented past a multiple of four: such increases also
increment the largest number of cores sharing an input bus.

Total Throughput vs. Num. Cores (Zyng-7000)

Total Throughput vs. Num. Cores (Ultrascale+)

- | -=-- Max DRAM Bandwidth
120 & SipHash2-4
30 SipHashl-3 6\-
— — 100
R 2
=] 9 apd
5 20 5
2 g
g5 F ,
'E 10 E 40 4 '2"
=== Max DRAM Bandwidth P
5 ® SipHash2-4 20 1 i,"
SipHash1-3 v
01— : . : . . : T 0 : . - - : : : :
1 2 3 4 5 6 7 8 2 4 6 8 10 12 14 16
Num. Cores Num. Cores
. Average Throughput per Core (Zyng-7000) 200 Average Throughput per Core (Ultrascale+)
e SipHash2-4 e SpHash2-4
7 SipHash1-3 17.5 SipHash1-3
6 15.0

Throughput (Gbps)
F -

1 2 3 a 5 6 7 8
Num. Cores

® 8 &4

Nt

e

Throughput (Gbps)
B
o

7.5 1 \‘\‘
5.0 4
25 4
0.0 T T T T T T r r
2 4 6 B 10 12 14 16
Num. Cores

Fig. 6. Total and Average Throughput per Core

On the Zedboard, eight cores implementing either SipHash2-
4 or SipHash1-3 achieve throughput of up to 34 Gb/sec on
the Zynq-7000, maximizing the bandwidth of the Zedboard’s
DDR3. Since SipHash1-3 is faster on the Zedboard, five cores
are actually sufficient to reach the memory bandwidth bound
and cause a steep decrease in average throughput for five cores
compared to four. On the Ultrascale+, performance is limited
by contention for the finite number of DRAM ports instead
of the DDR’s bandwidth, but peak performance still exceeds
100 Gb/sec, reaching 111 Gb/sec with fourteen parallel cores
before more units create bus contention that decreases the total
throughput.

Table IV compares our design to other examples of
SipHash acceleration. For SipHash2-4, the proposed architec-
ture achieves nearly ten times the throughput per cycle of the
AVX2 implementation in [28] (this is the only throughput
measurement they provide). It also achieves four times the
throughput per cycle of the FPGA implementation in [29]
with about 2.6 times as many LUTs and 1.8 times as many
registers. It achieves similar numbers for SipHashl1-3, but its
acceleration vs. the AVX?2 implementation is less pronounced.
This is consistent with Table III which shows that the core
accelerates SipHash1-3 less than SipHash2-4 compared to
software.

To gauge our design’s viability in a server environment, we

also compared our results to the performance of a 12th gener-
ation Intel i7 Alder Lake CPU [34] executing both SipHash2-
4 and SipHashl-3. The Alder Lake CPU’s throughput var-
ied widely across runs, but on average, it achieved roughly
11.08 Gbps throughput for SipHash2-4 and 13.04 Gbps for
SipHash1-3. These numbers are only slightly lower than our
FPGA design’s 13.70 Gbps mark for both algorithms on the
ZCU-106. However, it’'s worth noting that the Ultrascale+
uses 8th generation (28 nm node) technology whereas the
Alder Lake uses 12th gen (14 nm). Clearly, this skews the
comparison in favor of the Alder Lake. Since we did not have
an 8th generation CPU to compare against, future work could
better contextualize our design’s performance compared to a
server CPU from a similar generation.

VII. CONCLUSION

In this paper, we present a novel design capable of imple-
menting any algorithm from the SipHash family on an FPGA.
This architecture will allow embedded FPGA-based systems
to securely and performantly hash incoming and outgoing
network traffic in a wide range of applications. Experimental
results show the design can outpace Gigabit Ethernet using
just one core, and deploying multiple cores in parallel can
generate throughput exceeding 100 Gigabits per second. This
represents a marked improvement over related accelerators in

the literature for both SipHash and other hash functions like
SHA-2. Future work might investigate architectural improve-
ments such as implementing SipHash with fewer resources as
well as comparing this design to a conventional server using
an FPGA and a CPU fabricated with the same technology
process.

[1]
[2]

[3]

[4]

[5]

[6]

[7]

[8]

[10]

(11]

(12]

[13]

[14]

[15]

REFERENCES

H. Krawczyk, M. Bellare, and R. Canetti, “HMAC: Keyed-hashing for
message authentication,” 1997.

S. I. Naqvi and A. Akram, “Pseudo-random key generation for secure
HMAC-MDS.” in 2011 IEEE 3rd International Conference on Commu-
nication Software and Networks, 2011.

O. Elkeelany, M. Matalgah, K. Sheikh, M. Thaker, G. Chaudhry,
D. Medhi, and J. Qaddour, “Performance Analysis of IPSec Protocol:
Encryption and Authentication,” in 2002 IEEE International Confer-
ence on Communications. Conference Proceedings. ICC 2002 (Cat.
No.02CH37333), 2002.

H. Zhang, Y. Wen, H. Xie, and N. Yu, Distributed hash table: Theory,
Platforms and Applications. Springer, 2013.

A. Rosen, B. Levin, and A. G. Bourgeois, “Autonomous load balancing
in distributed hash tables using Churn and the Sybil attack,” in IEEE
International Parallel and Distributed Processing Symposium Workshops
(IPDPSW), 2001.

M. Li, L. Zhou, Z. Yang, A. Li, F. Xia, D. G. Andersen, and A. Smola,
“Parameter server for distributed machine learning,” in Big learning
NIPS workshop, 2013.

A. H. Lone and R. Naaz, “Demystifying cryptography behind
blockchains and a vision for post-quantum blockchains,” in 2020 IEEE
International Conference for Innovation in Technology (INOCON),
2020.

S. Jiang and J. Wu, “Bitcoin mining with transaction fees: A game on
the block size,” in 2019 IEEE International Conference on Blockchain
(Blockchain), 2019.

B. Schneier, “Encryption must move beyond secure hash algorithm,”
Network World Canada, 2004.

S. Turner and L. Chen, “Updated security considerations for the MD5
message-digest and the HMAC-MDS algorithms,” Internet Engineering
Task Force (IETF), RFC-6151, 2011.

T. Polk, L. Chen, S. Turner, and P. Hoffman, “Security considerations for
the SHA-0 and SHA-1 message-digest algorithms,” Internet Engineering
Task Force (IETF), RFC-6194, 2011.

D. Bider, “Use of RSA keys with SHA-256 and SHA-512 in the secure
shell (SSH) protocol,” Internet Engineering Task Force (IETF), RFC-
8332, 2018.

M. Horowitz, “Computing’s energy problem (and what we can do about
it),” in 2014 IEEE International Solid-State Circuits Conference Digest
of Technical Papers (ISSCC), 2014.

M. C. Herbordt, T. VanCourt, Y. Gu, B. Sukhwani, A. Conti, J. Model,
and D. DiSabello, “Achieving high performance with FPGA-based
computing,” Computer, 2007.

J. Zambreno, D. Nguyen, and A. Choudhary, “Exploring area/delay
tradeoffs in an AES FPGA implementation,” in International Conference
on Field Programmable Logic and Applications, 2004.

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]
(33]

[34]

D. He and Z. Xue, “Multi-parallel architecture for MD5 implementations
on FPGA with gigabit-level throughput,” in 2010 International Sympo-
sium on Intelligence Information Processing and Trusted Computing,
2010.

J. He, H. Chen, and H. Huang, “A compatible SHA series design based
on FPGA,” in ECTI-CON2010: The 2010 ECTI International Confernce
on Electrical Engineering/Electronics, Computer, Telecommunications
and Information Technology, 2010.

M. D. Rote, V. N, and D. Selvakumar, “High performance SHA-2 core
using the round pipelined technique,” in 2015 IEEE International Con-
ference on Electronics, Computing and Communication Technologies
(CONECCT), 2015.

S. S. Omran and L. F. Jumma, “Design of multithreading SHA-1
and SHA-2 MIPS processor using FPGA,” in 2017 8th International

Conference on Information Technology (ICIT), 2017.
S.-H. Lee and K.-W. Shin, “An efficient implementation of SHA

processor including three hash algorithms (SHA-512, SHA-512/224,
SHA-512/256),” in 2018 International Conference on Electronics, In-
formation, and Communication (ICEIC), 2018.

H. L. Pham, T. H. Tran, V. T. Duong Le, and Y. Nakashima, “A high-
efficiency FPGA-based multimode SHA-2 accelerator,” IEEE Access,
2022.

J.-P. Aumasson and D. J. Bernstein, “SipHash: a fast short-input PRF,”
in International Conference on Cryptology in India, 2012.

C. Dobraunig, F. Mendel, and M. Schliffer, “Differential cryptanalysis
of SipHash,” in International Conference on Selected Areas in Cryptog-
raphy, 2014.

W. Xin, Y. Liu, B. Sun, and C. Li, “Improved cryptanalysis on SipHash,”
in International Conference on Cryptology and Network Security, 2019.
L. He and H. Yu, “Cryptanalysis of reduced-round SipHash,” Cryptology
ePrint Archive, 2019.

M. Oleksak and V. Miskovsky, “Correlation power analysis of SipHash,”
in 2022 25th International Symposium on Design and Diagnostics of
Electronic Circuits and Systems (DDECS), 2022.

C.-Y. Chu and M. Lukowiak, “Two step power attack on SHA-3
based MAC,” in 2018 25th International Conference “Mixed Design
of Integrated Circuits and System” (MIXDES), 2018.

J. Alakuijala, B. Cox, and J. Wassenberg, “Fast keyed hash/pseudo-
random function using SIMD multiply and permute,” arXiv preprint
arXiv:1612.06257, 2016.

R. Elnaggar, R. Karri, and K. Chakrabarty, “Multi-tenant FPGA-based
reconfigurable systems: Attacks and defenses,” in 2019 Design, Automa-
tion Test in Europe Conference Exhibition, 2019.

“AXI-Stream Protocol Specification.” [Online]. Available:
https://developer.arm.com/documentation/ihi0051/b
“AXI-Lite Protocol Specification.” [Online]. Avail-

able: https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI4-
Lite-Interface-Specification

“An FPGA Implementation of SipHash.” [Online].
https://github.com/bwelte99/SipHash-FPGA-Accelerator
“SipHash: High-speed pseudorandom function.” [Online]. Available:
https://github.com/veorq/SipHash

12th Generation Intel Core Processor Family Datasheet, Intel Corpora-
tion, 2023, rev. 010.

Available:

