
An FPGA Implementation of the Hestenes-Jacobi
Algorithm for Singular Value Decomposition

Xinying Wang and Joseph Zambreno

Department of Electrical and Computer Engineering

Iowa State University, Ames, Iowa, USA

Email: {xinying, zambreno}@iastate.edu

Abstract—As a useful tool for dimensionality reduction, Singu-
lar Value Decomposition (SVD) plays an increasingly significant
role in many scientific and engineering applications. The high
computational complexity of SVD poses challenges for efficient
signal processing and data analysis systems, especially for time-
sensitive applications with large data sets. While the emergence
of FPGAs provides a flexible and low-cost opportunity to
pursue high-performance SVD designs, the classical two-sided
Jacobi rotation-based SVD architectures are restricted in terms
of scalability and input matrix representation. The Hestenes-
Jacobi algorithm offers a more parallelizable solution to analyze
arbitrary rectangular matrices; however, to date both FPGA and
GPU-based implementations have not lived up to the algorithm’s
potential. In this paper, we introduce a floating-point Hestenes-
Jacobi architecture for SVD, which is capable of analyzing
arbitrary sized matrices. Our implementation on an FPGA-based
hybrid acceleration system demonstrates improved efficiency of
our architecture compared to an optimized software-based SVD
solution for matrices with small to medium column dimensions,
even with comparably large row dimensions. The dimensional
speedups can be achieved range from 3.8× to 43.6× for matrices
with column dimensions from 128 to 256 and row sizes from 128
to 2048. Additionally, we also evaluate the accuracy of our SVD
process through convergence analysis.

Keywords-Architecture, FPGA, Singular Value Decomposition,
Hestenes-Jacobi Algorithm.

I. INTRODUCTION

In many real-world applications, data dimensionality is

rapidly growing. Principal Component Analysis (PCA) is

widely employed to reduce the dimensions of data in high-

dimensional spaces. Among the classical solutions for PCA,

Singular Value Decomposition (SVD) is the most popular

technique to approximate high-dimensional data through or-

thogonal transformations. SVD-based PCA has been used in

many signal processing applications such as image processing,

computer vision, pattern recognition and remote sensing [1]–

[3]. However, SVD is a computationally-expensive procedure,

which makes its use unlikely to meet the requirements of

many time-sensitive designs, especially when it is processed

iteratively in those applications. For instance, in the appli-

cation of video surveillance [4], it takes 185.2 seconds to

recover the square matrix with the dimensions of 3000 through

running partial SVD 15 times, which makes it difficult to

satisfy stringent real-time performance requirements. As data

dimensionality is increasing continuously, the runtime of SVD

is likely to have further substantial growth.

The SVD operation diagonalizes an arbitrary m×n matrix

through a series of orthogonal transformations [5]. Optimized

software implementations (e.g., MATLAB, LAPACK) employ

the Householder transformation [6] to perform SVD computa-

tion; however, their performance is restricted by their inherent

computational complexity and high data dependency. Highly

parallel accelerators such as Graphic Processing Unit (GPUs)

and multi-core platforms have been employed to explore

parallel implementations, although these previous works only

achieved speedups when the input matrices have dimensions

greater than 1000 [7], [8].

In the reconfigurable architecture community, systolic-

arrays have been implemented on modern FPGAs to compute

the classic two-sided Jacobi rotations [9], [10]. Although

improved performance has been demonstrated, the scalability

of those implementations are limited, and the designs are

restricted to only handle square input matrices.

Hestenes [10] discovered the equivalence between zeroing

out an off-diagonal aij and orthogonalizing the ith and jth
vectors through plane rotation. Instead of annihilating every

non-zero off-diagonal element by rotating 2 × 2 matrices,

the Hestenes-Jacobi method is capable of decomposing an

arbitrary m × n non-square matrix through vector compu-

tations. GPUs and FPGAs have been employed to evaluate

parallel Hestenes-Jacobi designs; however, the performance

has suffered from the iterative thread synchronizations (in the

case of GPUs [11]) and repeated calculations (in the case of

FPGA implementations [12]).

In this paper, we present an FPGA-based hardware design

of the Hestenes-Jacobi algorithm for SVD with floating-point

arithmetic, which attempts to analyze an arbitrary m × n
matrix. Compared to a previous FPGA-based Hestenes-Jacobi

implementation [12], our architecture optimizes the calcu-

lations through improving data reuse, and employs IEEE-

754 double precision floating-point operators to provide a

wider dynamic range. Also, off-chip memory is employed to

break the restriction of the analyzable matrix dimensions. Our

experimental results have demonstrated the efficiency of our

design for matrices with small to medium column dimensions,

even when they have comparably large row dimensions. The

dimension-dependent speedups that can be achieved range

from 3.8× to 43.6× for matrices with column sizes from

128 to 256 and row dimensions from 128 to 2048. Compared

to other GPU-based and FPGA-based implementations of

2014 IEEE 28th International Parallel & Distributed Processing Symposium Workshops

978-1-4799-4116-2/14 $31.00 © 2014 IEEE

DOI 10.1109/IPDPSW.2014.29

220

Hestenes-Jacobi SVD, our architecture is currently the fastest

in terms of overall performance. We have also evaluated the

accuracy of our approach through analysis of the convergence

properties.

The remainder of this paper is organized as follows. Section

II introduces the theoretical background of SVD, while related

work is discussed in Section III. Section IV presents the

modified Hestenes-Jacobi algorithm, and Section V introduces

our novel hardware architecture for Hestenes-Jacobi algorithm,

including detailed descriptions of individual components. The

evaluation of performance and accuracy for our architecture

is presented in Section VI. Finally, the paper is concluded in

Section VII with a preview of future planned work.

II. THEORETICAL BACKGROUND

A. Singular Value Decomposition (SVD)

The Singular Value Decomposition transforms an m × n
matrix into a product of an m × m orthogonal matrix, an

m×n diagonal matrix with singular values and the transpose

of an n× n orthogonal matrix [5] in the form of eq. (1).

Am×n = Um×mΣm×nV
T
n×n (1)

B. Classic Two-sided Jacobi Rotations

Jacobi rotations are widely used in diagonalizing matrices.

To perform Jacobi rotation, Jacobi rotation matrices J l and Jr

are applied to the matrix from both sides as shown in eq. (2).

By applying the Jacobi rotation matrices to a 2×2 matrix, the

off-diagonal elements are annihilated as in eq. (3).

Ai+1 = J l
iAiJ

r
i (2)

J l′ ·
(

App Apq

Aqp Aqq

)
·Jr=

(
A”

pp 0
0 A”

qq

)
(3)

The Jacobi rotation matrices are generated through eq. (4)

and eq. (5), where θ represents plain rotation angles α or β
[9].

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Jpp = cos(θ);
Jpq = sin(θ); (p < q)
Jqp = -sin(θ); (p < q)
Jqq = cos(θ);
Jii = 1; (i�= p,q)
Jij = 0, Others.

(4)

β+α=arctan(
Aqp +Apq

Aqq −App
) β-α=arctan(

Aqp −Apq

Aqq +App
) (5)

To process SVD, Jacobi rotations are calculated on every

2×2 matrix to zero out all the non-zero off-diagonal elements.

The calculation of an independent 2× 2 Jacobi rotation only

affects two rows and columns of a matrix, which provides

an opportunity for parallel designs through simultaneously

performing independent 2 × 2 Jacobi rotations. Due to the

nature of 2× 2 Jacobi rotations, the input matrix is restricted

to square dimensions.

C. Hestenes-Jacobi Method

In [10], Hestenes observed that the annihilation of a matrix

element is equivalent to orthogonalizing two column vec-

tors. Instead of directly annihilating non-zero off-diagonal

elements, the Hestenes-Jacobi algorithm (also known as the

one-sided Jacobi method) performs the matrix decomposition

through iterative orthogonal transformations between every

pair of vectors. In the Hestenes-Jacobi method, the matrix

is orthogonalized by columns through post-multiplying an

orthogonal matrix, which is generated through a product of

plane rotations as in eq. (6).

A · V = B, where bTi · bj = 0 (6)

Next, matrix B is further normalized through the equation

B = B · Σ−1 · Σ, in which Σ is a diagonal matrix with the

squared column norms as diagonal elements. Then, by setting

U = B ·Σ−1, eq. (6) can be rewritten as eq. (7), which is the

result form of SVD.

A · V = U · Σ ←→ A = U · Σ · V T (7)

Compared to the classic two-sided Jacobi rotation approach,

the Hestenes-Jacobi method is capable to analyze an arbitrary

rectangular matrix.

III. RELATED WORK

In recent years, the significant surge of data dimensionality

has made the application of SVD seem ubiquitous [13]. To

compute SVD, the Householder transformation-based method

and the Jacobi rotation-based method have demonstrated satis-

fied stability and accuracy [14], [15]. The Householder trans-

formation [6], [16] is capable of efficiently bi-diagonalizing

matrices through vector computations, which is then followed

by iterative implicit QR factorization [17] or divide-and-

conquer iterations [18] for generating singular values. In

Householder transformation-based method, the SVD process

is dominated by the calculations of Householder vectors and

their respective updates, whose performance improvement is

challenged by the inherent data dependency. To parallelize

the Householder transformation, implementations have been

demonstrated on GPUs [7], [11] and multi-core platforms [8],

in which possible accelerations of GPU-based designs are

achieved only for matrices with significantly large dimensions

due to the iterative thread synchronization, while, the perfor-

mance of implementation on multi-core platform is dominated

by the task splitting and time consumption of communications.

The emergence of reconfigurable fabrics such as FPGAs

introduces low-cost solutions to parallelize the algorithm at

the operand-level granularity. To perform SVD, 1-dimensional

or 2-dimensional systolic arrays have been employed to paral-

lelize the classic two-sided Jacobi rotation algorithm [9], [19]–

[21]. With the featured independent 2 × 2 rotations, a highly

parallel 2-dimensional systolic array is employed to map the

classic two-sided Jacobi rotation algorithm into FPGA devices

with the computational complexity of O(n log n) for an n-by-n
square matrix. However, to fit the architecture on a single chip,

221

the scalability is limited, as n2 processing elements (PEs) is

needed by the systolic array implementation.

Compared to the classical Jacobi rotation approach, the

Hestenes-Jacobi algorithm provides a more flexible solution

to analyze the rectangular matrices. To explore the high per-

formance SVD design, FPGAs and GPUs have been employed

to demonstrate the parallel implementations of the Hestenes-

Jacobi SVD algorithm [10]; however, the performance has

suffered from iterative thread synchronizations for the im-

plementation on GPUs [11], and the iterative design with

duplicated computations in the case of FPGA implementation

[12].

IV. MODIFIED HESTENES-JACOBI ALGORITHM

As previously mentioned, the Hestenes-Jacobi algorithm

computes the SVD through orthogonalizing every pair of vec-

tors. Instead of directly performing element-wise operations to

annihilate an off-diagonal, the Hestenes-Jacobi method applies

orthogonal transformation between the two vectors whose

indexes are equal to the row and column indexes of that off-

diagonal element. To orthogonalize a pair of vectors, Jacobi

rotation is computed with the squared 2-norms of the vectors

and the covariance between them.

In the Hestenes-Jacobi process (detailed in Algo. 1), the or-

thogonalization between two column vectors is started with the

calculation of their squared 2-norms and respective covariance.

Then, Jacobi rotation is performed with the calculated squared

2-norms and covariance, after which, the elements in those two

column vectors are updated by applying the generated rotation

angle parameters. At runtime, pairwise orthogonalizations are

performed iteratively until the satisfied convergence is reached.

The singular values are obtained as the square root of the

diagonal elements in the resulted matrix.

To optimize the algorithm by reducing the amount of

computations, the squared 2-norms of rotated vectors and

their associated covariances are updated directly after each

rotation. Thus, the repeated regeneration of squared 2-norms

and covariances has become unnecessary. In Algo. 1, matrix

D is the covariance matrix, whose diagonal and off-diagonal

elements are the squared 2-norms of column vectors and the

covariances between them, respectively.

V. OUR HESTENES-JACOBI SVD ARCHITECTURE

The Hestenes-Jacobi SVD process primarily consists of

three computations: (1), calculating the squared 2-norms of

vectors and the covariances between vector pairs; (2), perform-

ing Jacobi rotations with paired squared 2-norms and their

respective covariance; (3), updating rotated vector elements

and affected covariances.

To implement the Hestenes-Jacobi SVD, we created three

components: the Hestenes preprocessor, the Jacobi rotation
component and the Update operator (shown in Fig. 1), all of

which are pipelined. The Hestenes preprocessor is responsible

for computing the squared column 2-norms and the associated

covariances. The Jacobi rotation component is used to zero

out the covariance through applying plane rotation with its

Algorithm 1: SINGULAR VALUE DECOMPOSITION VIA

MODIFIED HESTENES-JACOBI ALGORITHM

Input: matrix A
Output: singular value vector Sig

1 R← A
/* Generating the squared 2-norms of column

vectors and their associated covariances
*/

2 for i← 1 to NumofColumn do
3 for j ← i to NumofColumn do
4 Di,j ← RT

i ∗Rj

5 repeat
6 for i← 1 to NumofColumn− 1 do
7 for j ← i to NumofColumn do

/* Generating Jacobi rotation angle
parameters with squared 2-norms
of column vectors and their
respective covariance */

8 norm1 ← Dj,j

9 norm2 ← Di,i

10 cov ← Di,j

11 ρ← (norm2 − norm1)/(2 ∗ cov)
12 t← sign(ρ)/(|ρ|+√

1 + ρ2)
13 cos← 1/

√
1 + t2

14 sin← cos ∗ t
/* Updating the squared 2-norms

affected by rotation */
15 Dj,j ← Dj,j + t ∗ cov
16 Di,i ← Di,i − t ∗ cov
17 cov ← 0

/* Updating the covariances
affected by rotation */

18 for k ← 1 to i− 1 do
19 Dk,i = Dk,i ∗ cos−Dk,j ∗ sin
20 Dk,j = Dk,i ∗ sin+Dk,j ∗ cos
21 for k ← i+ 1 to j − 1 do
22 Di,k = Di,k ∗ cos−Dk,j ∗ sin
23 Dk,j = Di,k ∗ sin+Dk,j ∗ cos
24 for k ← j + 1 to NumofRow do
25 Di,k = Di,k ∗ cos−Dj,k ∗ sin
26 Dj,k = Di,k ∗ sin+Dj,k ∗ cos

27 until convergence reached
28 for i← 1 to min(NumofColumn,NumofRows) do
29 Sigi ←

√
Di,i

associated vectors. The Update operator is employed to update

the affected columns and covariances.

The Hestenes-Jacobi SVD is an iterative diagonalization

process, which performs the orthogonal transformations be-

tween every pair of columns by numerous iterations to achieve

satisfied convergence. To reduce the amount of computations,

instead of repeatedly regenerating all the squared 2-norms

and covariances in each iteration, our Hestenes-Jacobi SVD

architecture calculates all the squared 2-norms and covari-

ances only in the first iteration, and then those squared 2-

norms and covariances are directly updated and reused in the

subsequent iterations. To reduce the hardware resource usage,

the Hestenes preprocessor is reconfigured to function as an

222

Fig. 1: Block diagram of the Hestenes-Jacobi SVD architec-

ture.

additional Update operator after the first iteration. The square-

root operator in the Jacobi rotation component is employed to

finalize the SVD process, from which the singular values are

produced. Besides, as shown in Fig. 1, FIFOs are employed to

synchronize the computations and transmit data between the

Hestenes preprocessor and the Update operator. Local BRAMs

are used to hold the generated rotation angle parameters cos
and sin, and the covariances whose computations have not

been completed with the current vector pairing.

A. Hestenes Preprocessor

The Hestenes preprocessor is responsible for calculating

the squared column 2-norms and the covariances between

column vectors, in which AT
i ∗ Aj is computed. Considering

the overall system performance, we have to balance the amount

of parallel computation with the I/O requests. In the Hestenes

preprocessor (shown in Fig. 2), multiple layers of pipelined

multiplier-arrays are devised, in which operands are reused

by all the multipliers successively in a multiplier-array to

calculate the partial results of various squared column 2-

norms and their related covariances. The resulting product of a

multiplier is summed up with the results of its corresponding

multiplications across layers, whose operands are the matrix

elements from the same columns. For example, in Fig. 2, the

matrix element Ai,j+3 multiplies with Ai,j at the first layer,

whose product is then added to the product of multiplying

Ai+1,j+3 by Ai+1,j at the second layer, the product of multi-

plying Ai+2,j+3 by Ai+2,j at the third layer, and the product

of multiplying Ai+3,j+3 by Ai+3,j at the forth layer, whose

sum is the partial result of the covariance between the jth
and (j + 3)th columns. Meanwhile, Ai,j+3 moves leftwards

to be applied to the adjacent multiplier for multiplication of

Ai,j+3 and Ai,j+1, whose product is used for computing the

Fig. 2: Example architecture of the Hestenes preprocessor.

covariance between (j + 1)th and (j + 3)th columns.

The example input for a single multiplier-array with four

multipliers is described in Fig. 3, in which the new operand

requests for the multiplier array are underlined. The dashed

arrows highlights the data movement for reuse and the dashed

circles indicate the entered operands, which are reused in later

computations. In this case, in a single layer, four double-

precision floating-point numbers and at most one double-

precision floating-point number are needed as the input for

the starting cycle and every subsequent cycle respectively to

perform the computations on a sub-vector. Then, the compu-

tations on different layers are initialized successively. Thus,

16 cycles are used for the input to obtain the covariance

matrix of an 8 × 8 matrix if 8 layers of multiplier-arrays

are equipped. Additional adders are employed to process the

accumulations of partial results of covariances and squared

2-norms for vectors with the lengths over 8.

B. Jacobi Rotation Component

Jacobi rotation component performs the orthogonal transfor-

mation between two column vectors through a series of op-

erations on their squared column 2-norms and the covariance

between them. To calculate the Jacobi rotations, the CORDIC

(for COordinate Rotation DIgital Computer) algorithm [22] is

a popular choice in the research literature, due to its advantages

on efficiently performing complicated trigonometric functions

through simple shift-and-add operations. Although CORDIC

has been demonstrated as a hardware-efficient algorithm for

fixed-point operations, its efficient floating-point implemen-

tation is challenged by its inherent bit-width shift-and-add

structure. As floating-point arithmetic has become increasingly

popular in signal processing applications for its support of a

much wider range of values compared to decimal fixed-point

223

Fig. 3: Example input to a single layer of multiplier-array.

Fig. 4: Dataflow of the Jocobi rotation procedure.

format, our architecture is designed to perform floating-point

calculations by using pipelined IEEE-754 double-precision

floating-point operators.

As described in Algo. 1, Jacobi rotation of two column

vectors is computed with their squared 2-norms and covari-

ance through a series of addition, subtraction, multiplication,

division and square-root. The Jacobi rotation equations can

be represented as eq. (8), eq. (9), eq. (10), where n1 and n2

represents the squared 2-norms of column vectors, while the

covariance between them is represented by c1,2. The calculated

parameter t is then applied to update the squared 2-norms

of rotated vectors and zero out their covariance. In Fig. 4,

the computations of Jacobi rotation is demonstrated, in which

independent calculations can be processed simultaneously. To

minimize hardware resource usage, the expensive floating-

point computational cores are reused by those calculations.

Once all the orthogonal transformations are completed, the

square-root operator in the Jacobi rotation component is used

to generate the singular values by applying it to the diagonal

elements of the processed matrix.

Fig. 5: The architecture of a single update kernel.

t =
|2∗c1,2|

|n2−n1|+
√

(n2−n1)2+4∗c21,2
(8)

cos =

√
(n2−n1)2+2∗c21,2+|n2−n1|∗

√
(n2−n1)2+4∗c21,2

(n2−n1)2+4∗c21,2+|n2−n1|∗
√

(n2−n1)2+4∗c21,2
(9)

sin = (sign)
√

2∗c21,2
(n2−n1)2+4∗c21,2+|n2−n1|∗

√
(n2−n1)2+4∗c21,2

(10)

C. Update Operator

A
′
i = Ai × cos−Aj × sin (11)

A
′
j = Ai × sin+Aj × cos (12)

The Update operator is responsible for updating column

elements and covariances which are affected by the processed

rotations. Generated rotation angle parameters cos and sin
are employed to update the covariances before they are used

by later rotations. The update process for a pair of elements

contains simple multiplications, additions and subtractions as

is shown in eq. 11 and eq. 12. An architecture of a single

update kernel is demonstrated in Fig. 5, in which pipelined

multipliers, an adder and a subtractor are employed. Multiple

update kernels are included in the Update operator. The

number of update kernels that can be allocated to a single

chip is determined by the resource capacity on the chip.

This determines the efficiency of the system, especially for

large-scale matrices, where performance is dominated by the

amount of updates after each rotation. The convergence of

SVD requires the orthogonal transformation of the matrix to

be performed in numerous iterations. Both individual column

elements and covariances have to be updated in the first

iteration, and in the subsequent iterations, only covariances

are operated. To optimize the use of hardware resources, the

Hestenes preprocessor is able to be reconfigured to function

as multiple update kernels.

224

Fig. 6: Demonstration of employed cyclic order for vector

pairing.

D. The Cyclic Order for Vector Pairing

The order of vector pairing determines the speed and

feasibility of the convergence. In our design, we employ the

cyclic ordering, which was demonstrated with the capability of

achieving convergence efficiently [9]. In Fig. 6, cyclic ordering

is demonstrated with 32 vectors, in which the numbers repre-

sent the column indexes, and the arrows indicate the direction

for the movement of indexes to form the new vector pairs. In

the cyclic ordering, each column has to be paired with every

other column. The paired vectors are highlighted by solid

boxes in Fig. 6. Besides, due to the limited hardware resources

on a single chip, a limited number of vector pairs can be

operated simultaneously. In Fig. 6, a dashed box highlights a

group of vector pairs, whose computations can be performed in

parallel. All the vector-pair groups enter our Hestenes-Jacobi

architecture successively.

VI. EXPERIMENTS AND EVALUATIONS

A. Implementation and experimental setup

To evaluate the performance of our Hestenes-Jacobi design,

a single Xilinx Virtex-5 XC5VLX330 FPGA on our Convey

HC-2 system [23] is used to implement our architecture. In our

implementation, double-precision floating-point computational

cores are generated by using Xilinx Coregen generator [24].

In the Hestenes preprocessor, four layers of multiplier-array

are implemented, in which 16 multipliers and 16 adders are

used. To improve the computational intensity on the limited

hardware resources, the Hestenes processor calculates all the

squared 2-norms and covariances in the first iteration of

orthogonalization, and it is then reconfigured as four update

kernels with 16 multipliers and 8 adders in the remaining

Fig. 7: SVD computation time (in seconds) for square matrices

by our Hestenes-Jacobi architecture, Matlab, Intel MKL and

GPU

iterations. To perform Jacobi rotation, 1 multiplier, 2 adders,

1 divider and 1 square-root calculators are used, which can

start 8 independent Jacobi rotations in every 64 clock cycles.

Additionally, an array of eight update kernels are implemented

in the Update operator, which contains 32 multipliers and 16

adders or subtractors. The IP core generated computational

cores are configured with default latencies as 9, 14, 57, 57

clock cycles for multiplier, adder or subtractor, divider and

square-root calculator respectively. Two groups of eight 64-bit

width FIFOs are programmed to synchronize the input and

output, while a group of eight 127-bit width FIFOs are used

for the data transmissions between the Hestenes processor and

the Update operator. Simple dual port RAMs are employed

to temporarily cache the rotation angle parameters and some

covariances. The whole covariance matrix can be stored in the

local memory for matrices of column dimension no greater

than 256. The system is tested by executing at 150Mhz

for 6 iterations, which is believed sufficient for achieving

convergence with certain thresholds. Also, a software model

is implemented using Matlab to conduct the convergence

evaluation.

B. Performance analysis

We experimented with both square and rectangular matrices

with various dimensions, the performance of which has been

summarized in Table I. The experimental results demonstrate

that the execution time grows significantly as the number

of matrix columns increases, which determines the amount

of covariances, whose computation dominates the overall

performance. Comparably, the number of rows, which only

affects the execution time of the Hestenes preprocessing,

has smaller impact on the performance. When the matrix

column size grows over 256, the performance is increasingly

affected by the I/O bandwidths due to the increased covariance

communications have to be made between our Hestenes-Jacobi

architecture and off-chip memory.

Comparisons of execution times have been made between

our implementation and experimental results from the pub-

lished literature [7] as well as a Matlab SVD routine. In

225

Fig. 8: SVD computation time (in seconds) for rectangular

matrices by our Hestenes-Jacobi architecture, Matlab, Intel

MKL and GPU

Fig. 9: Speedup of our Hestenes-Jacobi SVD compare to

Matlab SVD

Fig. 7 and Fig. 8, the performance of our design, the Matlab

7.10.0 SVD routine running on a 2.2 GHz dual core Intel

Xeon processor, SVD solutions with Intel MLK 10.0.4 and

NVIDIA 8800 GPU with 128 stream processors [7] have

been demonstrated. By analyzing those data points in Fig.

7, our architecture has better efficiency than other software

solutions when matrix with dimensions under 512, and our

execution slows down when the dimensions over 512 due to

the limits of our chosen platform’s I/O throughput. In Fig.

8, the comparison is made between matrices with identical

column dimensions but various row sizes, which indicates the

growth of row number causes a relatively slow increase of the

execution time due to the quantity of covariances is determined

by the column size.

In Fig. 9, the dimensional speedups of our FPGA-based

Hestenes-Jacobi SVD compared to the Matlab SVD solution

running on an Intel platform are presented, in which our

Hestenes-Jacobi architecture shows better efficiency in ana-

lyzing matrices with small to medium column dimensions

compared to the standard software solution, even when they

are with comparably large row dimensions. The dimensional

speedups that can be achieved range from 3.8× to 43.6×
for matrices with column sizes from 128 to 256 and row

Fig. 10: Convergence process of different dimensional matri-

ces.

dimensions from 128 to 2048. Table II shows the resource

utilization by our Hestenes-Jacobi architecture.
Compared to the experimental results of the latest GPU-

based and FPGA-based Hestenes-Jacobi implementations, our

architecture shows the best performance [11], [12]. In [12],

the GPU-based implementation, which ran 106.90ms and

1022.92ms to decompose a 128×128 and a 256×256 matrix

respectively, failed to achieve any speedup compared to a

conventional software solution. The FPGA-based design [11]

was devised to perform fixed-point operations, which can only

analyze the matrices with the size up to 32×128 due to the lim-

itation of on-chip memory. Although the better performance

has been demonstrated compared to their software execution

with Matlab SVD for matrices with dimensions range from

2×2 to 32×127, our Matlab SVD routine runs 100 times faster

than their Matlab SVD, and shares comparable speeds with

their FPGA-based design. In further comparison to [11], in

which 24.3143ms is needed to decompose the largest analyzed

matrix with the dimensions of 32×127, the execution time of

operating a 128× 128 matrix by our architecture shows more

than 5 times speedup.

TABLE I: Execution time in seconds.

m\n 128 256 512 1024
128 4.39×10−3 6.30×10−3 1.01×10−2 1.79×10−2

256 2.52×10−2 3.30×10−2 4.84×10−2 7.94×10−2

512 1.70×10−1 2.01×10−1 2.63×10−1 3.87×10−1

1024 1.23 1.35 1.61 2.01

TABLE II: Resource consumption of our Hestenes-Jacobi architecture.

Resource Slice LUT BRAM DSPs
OurArchitecture 89% 91% 53%

C. Convergence Analysis
SVD is a process of diagonalizing matrix through iterative

rotations; to evaluate the correctness and accuracy of the

226

Fig. 11: Convergence process of matrices with column size of

1024 and various row sizes.

Hestenes-Jacobi produced singular values, the convergence

speed needs to be analyzed. In our evaluation, randomly

generated datasets have been applied to the implemented

software model of our Hestenes-Jacobi design. The mean

absolute deviations from zero of the covariances after being

processed by a number of iterations are shown in Fig. 10,

in which covariances between column vectors are rapidly

converged to zero as the number of processing iterations

increase. Reasonable convergence can be achieved within 6

iterations of operations for matrices of dimensions no greater

than 2048. Also, similar observations can be obtained from

the convergence performance evaluation of m × n matrices

(shown in Fig. 11), in which the applied datasets are with

identical column size of 1024 but various row dimensions.

VII. CONCLUSION AND FUTURE WORK

An FPGA-based hardware architecture is proposed and

implemented to perform Singular Value Decomposition with

Hestenes-Jacobi approach; which is capable to analyze arbi-

trary m×n rectangular matrix with double-precision floating-

point arithmetic. The performance analysis demonstrates the

dimensional-dependent efficiency of our design compared to

standard software solutions, and the better performance com-

pared to other Hestenes-Jacobi implementations on GPUs and

FPGAs. Also, convergence is evaluated by applying random

generated datasets with various dimensions. Our proposed

framework will be extended to perform principal component

analysis for latent semantic indexing as the future work.

ACKNOWLEDGEMENTS

This work is supported in part by the National Science

Foundation (NSF) under awards CNS-1116810 and CCF-

1149539.

REFERENCES

[1] H. Xu, C. Caramanis, and S. Sanghavi, “Robust PCA via outlier pursuit,”
IEEE Transactions on Information Theory, vol. 58, no. 5, pp. 3047–
3064, April 2012.

[2] Y. Mu, J. Dong, X. Yuan, and S. Yan, “Accelerated low-rank visual
recovery by random projection,” in Proceedings of IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), June 2011, pp.
2609–2616.

[3] R. Liao, Y. Fernandess, K. Tavernier, G. Taylor, and M. Irving, “Recog-
nition of partial discharge patterns,” in Proceedings of IEEE Power and
Energy Society General Meeting, July 2012, pp. 1–8.

[4] E. J. Candes, X. Li, Y. Ma, and J. Wright, “Robust principal component
analysis?” The Computing Research Repository, vol. 0912.3599, 2009.

[5] L. N. Trefethen and D. Bau, Numerical Linear Algebra. SIAM: Society
for Industrial and Applied Mathematics, 1997.

[6] G. Golub and W. Kahan, “Calculating the singular values and pseudo-
inverse of a matrix,” Journal of the Society for Industrial and Applied
Mathematics, Series B: Numerical Analysis, vol. 2, no. 2, pp. 205–224,
1965.

[7] S. Lahabar and P. Narayanan, “Singular Value Decomposition on GPU
using CUDA,” in Proceedings of IEEE International Symposium on
Parallel Distributed Processing, May 2009, pp. 1–10.

[8] A. Haidar, J. Kurzak, and P. Luszczek, “An improved parallel singular
value algorithm and its implementation for multicore hardware,” in
Proceedings of SC13: International Conference for High Performance
Computing, Networking, Storage and Analysis (SC ’13), New York, NY,
USA, Nov. 2013, pp. 90:1–90:12.

[9] F. T. Brent, Richard P. Luk and C. V. Loan, “Computation of the Singular
Value Decomposition using mesh-connected processors,” Journal of
VLSI Computer Systems, pp. 243–270, 1985.

[10] M. Hestenes, “Inversion of matrices by biorthogonalization and related
results,” Journal of the Society for Industrial and Applied Mathematics,
vol. 6, no. 1, pp. 51–90, 1958.

[11] C. Kotas and J. Barhen, “Singular Value Decomposition utilizing parallel
algorithms on graphical processors,” in Proceedings of OCEANS 2011,
Sept. 2011, pp. 1–7.

[12] L. Ledesma-Carrillo, E. Cabal-Yepez, R. de J Romero-Troncoso,
A. Garcia-Perez, R. Osornio-Rios, and T. Carozzi, “Reconfigurable
FPGA-Based unit for Singular Value Decomposition of large m x n
matrices,” in Proceedings of International Conference on Reconfigurable
Computing and FPGAs (ReConFig), Nov.-Dec. 2011, pp. 345–350.

[13] C. D. Martin and M. A. Porter, “The extraordinary SVD,” The American
Mathimatical Monthly, vol. 119, no. 10, pp. 838–852, 2012.

[14] T. F. Chan, “An improved algorithm for computing the Singular Value
Decomposition,” Journal of ACM Transactions on Mathematical Soft-
ware, vol. 8, no. 1, pp. 72–83, 1982.

[15] Z. Drmac, “Implementation of Jacobi Rotations for accurate singular
value computation in floating point arithmetic,” SIAM Journal on Sci-
entific Computing, vol. 18, no. 4, pp. 1200–1222, 1997.

[16] G. Golub and C. Reinsch, “Singular Value Decomposition and least
squares solutions,” Numerische Mathematik, vol. 14, no. 5, pp. 403–
420, 1970.

[17] J. Demmel and W. Kahan, “Accurate singular values of bidiagonal
matrices,” SIAM Journal on Science and Statistical Computing, vol. 11,
no. 5, pp. 873–912, Sep. 1990.

[18] M. Gu and S. C. Eisenstat, “A divide-and-conquer algorithm for the
bidiagonal SVD,” SIAM Journal on Matrix Analysis and Applications,
vol. 16, no. 1, pp. 79–92, Jan. 1995.

[19] R. P. Brent and F. T. Luk, “A systolic architecture for the Singular Value
Decomposition,” Ithaca, NY, USA, Tech. Rep., 1982.

[20] A. Ahmedsaid, A. Amira, and A. Bouridane, “Improved SVD systolic
array and implementation on FPGA,” in Proceedings of IEEE Inter-
national Conference on Field-Programmable Technology (FPT), Dec.
2003, pp. 35–42.

[21] W. Ma, M. E. Kaye, D. M. Luke, and R. Doraiswami, “An FPGA-Based
Singular Value Decomposition processor,” in Proceedings of Canadian
Conference on Electrical and Computer Engineering (CCECE), May
2006, pp. 1047–1050.

[22] P. Meher, J. Valls, T.-B. Juang, K. Sridharan, and K. Maharatna, “50
years of CORDIC: algorithms, architectures, and applications,” IEEE
Transactions on Circuits and Systems I, vol. 56, no. 9, pp. 1893–1907,
2009.

[23] “The convey hc-2 computer architecture overview.” [Online]. Available:
http://www.conveycomputer.com/

[24] “Logicore IP floating-point operator data sheet,” March 2011. [Online].
Available: http://www.xilinx.com/

227

