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ABSTRACT
Sparse LU decomposition has been widely used to solve
sparse linear systems of equations found in many scien-
tific and engineering applications, such as circuit simulation,
power system modeling and computer vision. However, it is
considered a computationally expensive factorization tool.
While parallel implementations have been explored to accel-
erate sparse LU decomposition, irregular sparsity patterns
often limit their performance gains. Prior FPGA-based ac-
celerators have been customized to domain-specific sparsity
patterns of pre-ordered symmetric matrices. In this paper,
we present an efficient architecture for sparse LU decompo-
sition that supports both symmetric and asymmetric sparse
matrices with arbitrary sparsity patterns. The control struc-
ture of our architecture parallelizes computation and pivot-
ing operations. Also, on-chip resource utilization is config-
ured based on properties of the matrices being processed.
Our experimental results show a 1.6 to 14× speedup over
an optimized software implementation for benchmarks con-
taining a wide range of sparsity patterns.
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1. INTRODUCTION
Many important scientific and engineering applications

(e.g. circuit simulation [3, 4], power system modeling [18],
and image processing [9]) have at their core a large system
of sparse linear equations that must be solved. Sparse LU
decomposition has been widely used to solve such systems of
equations, but it is considered a computationally expensive
factorization tool.
Left-looking, Right-looking and Crout are the main di-

rect methods for sparse LU decomposition, but are not ef-
ficient when implemented in software. Supernodal [5] and
Multifrontal [10] are approaches that lend themselves well
to software implementations of sparse LU decomposition.
Supernodal considers the input matrix as sets of continu-
ous columns with the same nonzero structure, while Multi-
frontal organizes large sparse datasets into small dense ma-
trices. Parallel implementations of Supernodal and Multi-
frontal have been demonstrated on multi-core platforms and
GPUs with shared or distributed memory [3, 4, 8, 11]. How-
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ever, Supernodes may not exist in some applications, and it
is a challenge to parallelize the Multifrontal method in a
distributed memory system.

Although many FPGA-based architectures have been pro-
posed for accelerating LU decomposition of dense matrices,
only a few have been proposed for accelerating sparse matrix
LU decomposition [13, 15, 16, 17]. Of these architectures,
they either target domain-specific sparsity patterns [13, 15,
16], or require a pre-ordered symmetric matrix [17].

In this paper, we propose an FPGA-based architecture
for sparse LU decomposition, which can efficiently process
sparse matrices having arbitrary sparsity patterns. Our ar-
chitecture mitigates issues associated with arbitrary spar-
sity patterns and extracts parallelism in two primary ways.
First, it factorizes columns from the lower triangular part of
a matrices in parallel with factorizing rows from the upper
triangular part of the matrix. Second, our control structure
performs pivoting operations in parallel with the factoriza-
tions of rows and columns. Our experimental results show a
1.6 to 14× speed up over an optimized software implemen-
tation for benchmarks containing a wide range of sparsity
patterns.

2. THEORETICAL BACKGROUND

2.1 Sparse LU decomposition with pivoting
LU decomposition factorizes a matrix A into two matrices,

L and U , as shown in eq. (1)

A=LU (1)

Here, A is an m × n matrix, L is an m × n lower trian-
gular matrix, and U is an n × n upper triangular matrix.
This linear process is called sparse LU decomposition when
matrix A is sparse.

Sparse matrices commonly appear in a broad variety of
scientific and engineering applications. These matrices are
characterized by having relatively few non-zero elements.
This property can be leveraged to store them in efficient
formats. The two most popular of these formats are Com-
pressed Sparse Column (CSC) format and Compressed Sparse
Row (CSR). Fig. 1 illustrates the CSC and CSR format of a
sparse matrix. Both CSC and CSR formats consist of three
components: 1) an array of non-zero values, 2) an integer
array of row or column indexes of those non-zero elements,
and 3) an array of pointers where each element points the
first non-zero element of a column or a row.

Stability and Accuracy. To ensure stability during LU de-
composition, pivoting operations are performed to remove

ACM SIGARCH Computer Architecture News 76 Vol. 43 No. 4 September 2015




8 0 4 0 0 7
0 5 0 0 0 0
3 0 0 3 0 0
0 0 2 −1 0 0
0 0 0 0 4 0
0 7 0 0 0 3


(a) Example sparse matrix

(b) Compressed Sparse Column format

(c) Compressed Sparse Row format

Figure 1: Compact storage formats for sparse matrices

zero elements from the diagonal of matrix A. This can be
accomplished conceptually by applying a pivoting matrix,
P , to matrix A as PA=LU. P is an m×m matrix in which
each column has one element of value 1 and all other ele-
ments are 0 [12].

2.2 Algorithms for Sparse LU Decomposition
Direct methods for sparse LU decomposition include Left-

looking, Right-looking, and Crout [14], which generally con-
tain division operations and update processes (see Fig. 2).

2.2.1 Leftlooking
The Left-looking algorithm factorizes a matrix in a column-

by-column manner. Before normalizing a given column,
non-zero elements of the previously factored column are
used to update the current column elements A(i, j) using
the equation A(i, j) = A(i, j)− L(i, k) ∗ U(k, j), where k =
1 · · ·min(i, j) (see Fig. 2a).

2.2.2 Rightlooking
The Right looking algorithm first factorizes a column from

the lower triangular part of a matrix, then uses the resulting
non-zero elements of that column to update the affected
components in the rest of the matrix by using the equation
A(i, k) = A(i, k)−L(i, j)∗U(j, k), where k = j+1 · · ·N , j is
the index of current factored column, and N is the column
dimension of matrix A (see Fig. 2b).

2.2.3 Crout
Similarly to the Left-looking algorithm, the Crout method

performs updates with previously factored elements before
normalizing a given vector. The difference is that the Crout
method operates both on columns and rows, while the Left-
looking algorithm only operates on columns (see Fig. 2c).

3. RELATED WORK
FPGA architectures have been shown to be effective in

accelerating a wide range of matrix operations. However,

accelerating the LU decomposition of large sparse matri-
ces with arbitrary sparcity patterns is a challenge for hard-
ware acceleration. In [16], the authors propose an efficient
sparse LU decomposition architecture targeting the power
flow analysis application domain. Their FPGA-based archi-
tecture implements the right looking algorithm and includes
hardware mechanisms for pivoting operations. The perfor-
mance of their architecture is primarily I/O bandwidth lim-
ited. Kapre et al., in [13, 15], introduced an FPGA imple-
mentation of sparse LU decomposition for the circuit simu-
lation application domain. A matrix factorization compute
graph is generated to capture the static sparsity pattern
of the application domain, and it is exploited to distribute
the explicit data flow representation of computation across
processing elements. For their approach, they also illustrate
that their performance gains are highly sensitive to the man-
ner in which computations are distributed across the avail-
able processing elements. Wu et al., in [17], devised a more
general hardware design to support sparse LU decomposi-
tion for a wider range of application domains. Their archi-
tecture parallelizes the left-looking algorithm to efficiently
support processing symmetric positive definite or diagonally
dominant matrices. One factor limiting the performance
of their architecture arises from dynamically determining
data dependency during their column-by-column factoriza-
tion, which leads to their processing elements stalling for the
purpose of synchronizing to resolve data dependency across
processing elements.

4. THE PARALLEL SPARSE LU DECOM
POSITION ALGORITHM

In general, the process of LU factorization primarily con-
sists of pivot, division, and update operations. These op-
erations can be performed in parallel when no data depen-
dencies exist among them. Our architecture aims to extract
this type of parallelism specifically from the Crout method
of sparse LU decomposition at three different levels: 1) we
leverage the fact that the structure of the Crout method
naturally allows parallelization of processing columns and
rows from the lower and upper triangular part of a matrix
respectively (Fig. 2c), 2) we perform block partitions of the
matrix to identify elements for which update operations can
be performed in parallel and thus share an update processing
element (see Fig. 3, the computations of matrix elements in
the blocks with identical shaded pattern can be assigned to
the same update processing element), and 3) the structure
of the architecture control logic performs pivot operations
in parallel with update and division operations.

5. THE SPARSE LU DECOMPOSITION
ARCHITECTURE

Our architecture consists of four primary types of process-
ing elements: 1) Input, 2) Update, 3) Division, and 4) Pivot.
Fig. 4 provides a high-level view of how these processing el-
ements are related within our architecture.

As a brief summary of the flow of data through our ar-
chitecture, the Input processing elements are responsible for
the initial processing of columns from the lower triangular
part of the matrix and rows from the upper triangular part
of the matrix. The output of the Input processing elements
is then forwarded to the Update processing elements, which
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Figure 2: Popular algorithms for sparse LU decomposition

Algorithm 1 Our parallel sparse LU decomposition
algorithm

1: [m n]← size(A)
2: for i← 1 to minm,n do
3: {1.Perform pivoting operations in parallel}
4: A(i, i)← max(A(:, i))
5: for j ← 1 to n do
6: A(i, j)↔ A(max index, j)
7: end for
8: {2.Update column entries before division in par-

allel}
9: for j ← i to m do
10: if FL(j, k) ∈ block(pidrow) then
11: A(j, i)← A(j, i)− FL(j, i)
12: end if
13: end for
14: {3.Parallelized division operations}
15: for j ← i+ 1 to m do
16: if A(j, i) ̸= 0 then
17: L(j, i)← A(j, i)/A(i, i)
18: end if
19: end for
20: {4.Update row entries after division in paral-

lel}
21: for k ← i+ 1 to n do
22: if FU (j, k) ∈ block(pidcol) then
23: U(i, k)← A(i, k)− FU (i, k)
24: end if
25: end for
26: {5.Calculate Update factors in parallel}
27: for z ← 1 to i do
28: for j ← z + 1 to m(or n) do
29: for k ← i+ 1 to i+ 1 + block size do
30: if L(j, i) ̸= 0 and U(i, k) ̸= 0 and FL(j, k)(or

FU (j, k)) ∈ block(pidrow( or pidcol)) then
31: FL(j, k) = FL(j, k) + L(j, i) ∗ U(i, k)
32: (or FU (j, k) = FU (j, k) + L(j, i) ∗ U(i, k))
33: end if
34: end for
35: end for
36: end for
37: end for

Figure 3: Two examples of block partitioning.

implement a major portion of the Crout method’s compu-
tation. After a set of entries within a column of the lower
triangular part of the matrix have been updated, the Di-
vision processing element normalizes these entries with re-
spect to the matrix’s diagonal element associated with that
column. The Pivot processing element directs movement be-
tween Update processing elements in a manner that results
in the pivoting of matrix elements. Additionally, the Pivot
processing element manages the output data stream.

The number of processing elements used for our architec-
ture is configurable based on three factors 1) amount of on-
chip resources, 2) matrix block partitioning strategy used,
and 3) matrix properties (e.g. matrix dimensions, sparsity
rate).

5.1 Input
The Input PEs have two variations. One is for initially

processing columns from the lower triangular part of the ma-
trix, and one is for processing rows from the upper triangular
part of the matrix. As shown in Fig. 5, the architecture of
these two are similar, with the column version having some
additional logic.

The additional logic for column processing serves three
purposes: 1) it reduces the amount of processing by de-
tecting if the update of an element involves multiplication
by zero, 2) it determines if updating the current element
will impact updating elements to be processed in adjacent
columns from the upper triangular part of the matrix, and 3)
it obtains the pivot information for each column by locating
the element with the largest value.

The functionality that the two variations of the Input PE
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Figure 4: The block diagram of our sparse LU decomposition architecture

Figure 5: Input PE architecture.

share is that based on the row (column) index information
received from the input, either 1) the element of the row
(column) read in will be routed to a row (column) Update
processing element, or 2) if the element is to be pivoted from
the lower triangular part of the matrix to the upper trian-
gular part of the matrix or visa-verse, then the element is
directed to the Pivot PE, which will be responsible for for-
warding the element to the proper Update PE in the future.
Additionally, both Input PE types take as input matrix row
(column) information formatted as CSR (CSC).

5.2 Update
The Update PEs are responsible for helping compute the

core update equation of the Crout method, A(i, j) = A(i, j)−
L(i, k) ∗U(k, j), where k = 1 · · ·min(i, j). It is composed of
two primary components: 1) an Update Compute Engine,
and 2) an Update Input Manager. Fig. 6 gives a block-level

diagram of the Update PE.
The Update Compute Engine performs multiply accumu-

late operations over rows (columns) that are currently being
updated. It is fed appropriate values from the Update Input
Manager. The Update Input Manager provides two services.
Firstly, it manages what we call an “Update Check Table”
to indicate if a given element of a row or table needs to
be updated. Secondly, it maintains a data structure (using
Address Pointer Table and Dist Table) that keeps track of
addresses of non-zero values that are stored in Data mem
of Fig. 6. These are the values fed to the Update Compute
Engine from Data mem.

Once a matrix element has been updated by the Update
PE, then if it is associated with the lower triangular part of
the matrix its value is normalized with respect to matrix’s
diagonal element associated with that element’s column.

5.3 Pivot
As indicated in Section 2.1, pivot operations are required

to ensure numerical stability during sparse LU decomposi-
tion. The Pivot PE (see lower right side of Fig. 4) performs
pivots by acting as a router between the lower triangular
and upper triangular part of the matrix. Based on an ele-
ment’s ⟨row, column⟩-index information, when read into an
Input PE, the Pivot PE determines if that element should
pivot (i.e. be transferred from the lower to upper triangular
part of the matrix or visa-verse). Lookup tables within the
Pivot PE are used to store and evaluate ⟨row, column⟩-index
information to determine if and where an element should
be pivoted. The Pivot PE is also responsible for buffer-
ing and sending elements to off-chip storage that have been
completely processed. In other words, an element’s value
is stored off-chip when it can no longer be affected by the
processing of future elements.

6. EXPERIMENTS AND EVALUATIONS
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Figure 6: Update PE architecture.

6.1 Implementation and Experimental Setup
Our architecture was evaluated using a Convey Computer

HC-2 system [2]. The HC-2 is a hybrid-core system that
couples a standard Intel based server with a co-processor
board that hosts four Xilinx Virtex-5 XC5VLX330 FPGAs
and a specialized memory subsystem for high throughput
random memory access. We implemented our architecture
for one of the HC-2’s Virtex-5 FPGAs, referred to by Convey
as an Application Engine (AE).
All floating-point operations were performed using double-

precision computing cores generated with Xilinx’s Coregen
[1]. The pipeline latency for each type of core used in our
design was: 9, 14, and 57 clock cycles for multiplication,
addition, and division, respectfully. The modular structure
of our design allows us to easily customize the number and
types of PEs implemented to best suit the properties of the
matrix being processed. For example, for a “skinny” and
“tall” matrix we implement more Update PEs for process-
ing columns than rows. The largest design that fits on the
Virtex-5 LX330 consisted of 64 Update PEs. The FPGA re-
source utilization was 76.4% LUTs, 48.4% DSPs, and 87.5%
BRAMs. It could be run at a maximum frequency of 176
MHz, which easily meets the 150 MHz frequency typically
used for designs run using the HC-2.
Benchmarks were selected from the University of Florida

sparse matrix collection [7] as workloads for our performance
evaluation. As can be seen in Table 1, the selected bench-
marks cover a wide range matrix types in terms of Dimen-
sion, Element pattern (e.g. symmetric, asymmetric, rectan-
gular), and Sparsity rate. All matrices were split into upper
triangular and lower triangular matrices and stored using
CSR and CSC formats respectively.

6.2 Performance Analysis
In this section, we first investigate how different architec-

tural configuration parameters impact our design’s perfor-
mance. Then we evaluate the performance of our approach
against an existing FPGA implementation and against sev-
eral software implementations, including Matlab.
With respect to the impact of parameter settings on per-

(a) 494 bus (b) photogrammetry

Figure 7: Impact of multiply-accumulate block size and No.
of Input matrix partitions on performance.

Figure 8: Throughput comparison between our architecture,
and the FPGA and software implementations in [17].

formance, we chose to examine two parameters: 1) the multiply-
accumulate blocks size of the Update PE, where block size
refers to the number of columns or rows processed as a
batch while a previous column is being normalized using
the division operator, and 2) the number of partitions the
input matrix is divided into. As Fig. 7 illustrates, multiply-
accumulate block size has a significant impact on perfor-
mance. Choosing a block size that is too big or too small
causes up to a 2.5× difference in performance for the repre-
sentative benchmarks shown. Deeper analysis showed that
when block size was too large, the Update PE spends more
time searching the block space for non-zero values, thus in-
creasing multiply-accumulate stalls. When block size was
too small, the multiply-accumulate engine of the Update PE
will finish before the normalization process and will need to
block until normalization completes. An interesting obser-
vation is that different benchmark matrices have different
optimal multiply-accumulate block sizes. With respect to
the number of partitions used to split up the input matrix,
we observed a much smaller impact.

Figure 8 and 9 compares the performance of our archi-
tecture against others. When compared against the FPGA
architecture of [17] our throughput is 1.2 to 5× better. Addi-
tionally, while both architectures target acceleration across
arbitrary application domains, our architecture does not re-
quire the input matrix to be reordered into a diagonally
dominate matrix. When compared to the software approaches
in [17], where optimized linear solvers UMFPACK [6] and
PARDISO [11] were used on a single-core (UMFPACK [17]),
single-core (PARDISO [17]), and 4-core (PARDISO2 [17])
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Table 1: Experimental benchmark matrices, properties, and their performance.

Matrix Dimensions Sparse rate nnz(L+U) Pattern Application domain
Matlab Our FPGA

performance (ms) performance (ms)

494 bus 494 × 494 0.68% 13,425 sym Power network 1.92 0.359
Powersim 15838 × 15838 0.03% 136,472 sym Power network 19.7 12.3
Msc01050 1050 × 1050 2.38% 61,234 sym Structural problem 5.89 1.20
problem1 415 × 415 1.61% 12,242 sym FEM 1.33 0.533
qc2354 2354 × 2354 7.22% 926,209 sym Electromagnetic 652 107

West1505 1505 × 1505 0.24% 42,688 asym Chemical process 31.3 13.7
CAG mat1916 1916 × 1916 5.34% 2,542,599 asym Combinatorial problem 3920 279
lpi chemcom 288 × 744 0.74% 1,878 rec Linear programming 0.203 0.112
Well1850 1850 × 712 0.66% 122,104 rec Least square problem 50.2 4.90

photogrammetry 1388 × 390 2.18% 213,891 rec Computer vision 74.3 6.28

Figure 9: Speedups of our FPGA implementation normal-
ized to Matlab’s LU decomposition routine.

CPU, we show a 1.2 to 75× speedup. A comparison with
Matlab’s LU decomposition function (Fig. 9) run on a 2.2
GHz dual core Intel Xeon processor with 16GB of memory
shows a speedup of 1.6 to 14×.

7. CONCLUSIONS
An FPGA-based architecture is presented that performs

sparse LU decomposition using a modified version of the
Crout method. As opposed to targeting matrices with domain-
specific sparsity patterns, it efficiently processes input matri-
ces with arbitrary sparsity patterns, without requiring pre-
ordering of the input matrix. For sparse matrix benchmarks
having a wide range of properties, our experimental results
show a 1.6 to 14× speedup over an optimized software solu-
tion.
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