
Research Article
A Scalable Unsegmented Multiport Memory for
FPGA-Based Systems

Kevin R. Townsend, Osama G. Attia, Phillip H. Jones, and Joseph Zambreno

Reconfigurable Computing Laboratory, Department of Electrical and Computer Engineering, Iowa State University,
Ames, IA 50011, USA

Correspondence should be addressed to Joseph Zambreno; zambreno@iastate.edu

Received 30 June 2015; Revised 13 October 2015; Accepted 10 December 2015

Academic Editor: Miriam Leeser

Copyright © 2015 Kevin R. Townsend et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

On-chip multiport memory cores are crucial primitives for many modern high-performance reconfigurable architectures and
multicore systems. Previous approaches for scaling memory cores come at the cost of operating frequency, communication
overhead, and logic resources without increasing the storage capacity of the memory. In this paper, we present two approaches for
designing multiport memory cores that are suitable for reconfigurable accelerators with substantial on-chip memory or complex
communication. Our design approaches tackle these challenges by banking RAMblocks and utilizing interconnect networks which
allows scaling without sacrificing logic resources. With banking, memory congestion is unavoidable and we evaluate our multiport
memory cores under different memory access patterns to gain insights about different design trade-offs. We demonstrate our
implementation with up to 256 memory ports using a Xilinx Virtex-7 FPGA. Our experimental results report high throughput
memories with resource usage that scales with the number of ports.

1. Introduction

Following Moore’s Law, transistor densities on FPGAs con-
tinue to increase at an exponential rate [1]. This allows for
increasingly complex System-on-Chip implementations that
require high throughput communication and sharedmemory
on networks of distributed compute nodes. ASIC designs
used as accelerators in the field of high-performance com-
puting often utilize multiport memories for communication.
By comparison, FPGA vendors do not provide scalablemulti-
portmemories in their fabric, withmost device families being
limited to using dual-port memories [2, 3]. In these cases
designers must use a multiport memory constructed with
FPGA logic and RAM blocks. These soft IP cores consume
significant resources if the memory must behave identically
(in terms of performance) as an ASIC equivalent. As an
alternative design strategy, if the multiport memory can stall,
exhibit variablemulticycle latencies, and not have strictmem-
ory coherence, substantially fewer resources can be used.
Heavily pipelined processing elements can often tolerate
these restrictions.

In this paper, we present two FPGA-based multiport
memory designs that allow for scalability in terms of the
number of ports as well as the addressable memory space.
By providing a banked RAM block architecture, our designs
allow for implementations that support up to 256 ports
and 1MB of memory space on current-generation FPGA
devices. In contrast to previous banked implementations
in the research literature, our multiport memories utilize
buffering and reordering of memory requests. This results in
throughput that approaches the ideal-case throughput, while
providing an unsegmented address space. An unsegmented
address space allows for simpler integrationwith the rest of an
accelerator implementation.This buffering and unsegmented
address space does introduce issues including nonideal
throughput, variablemulticycle latency, and a lack ofmemory
coherence across different ports. We attempt to minimize
these issues.

The rest of this paper is organized as follows. Section 2
provides an overview of related work in the field of multiport
memory design. Section 3 presents our two designs (the
fully connected and Omega memories), which provide for

Hindawi Publishing Corporation
International Journal of Reconfigurable Computing
Volume 2015, Article ID 826283, 12 pages
http://dx.doi.org/10.1155/2015/826283



2 International Journal of Reconfigurable Computing

an explicit trade-off between implementation complexity and
achievable throughput. Section 4 discusses our evaluation
methodology. Section 5 follows with an analysis of resource
usage and performance. Finally, Section 6 concludes with a
detailed view towards planned future work.

2. Related Work

If a multiport memory only requires a small amount of
memory space, one can synthesize the multiport memory
using only FPGA logic resources, as seen in [4]. Otherwise,
soft multiport memories utilize the dual-port RAM blocks
available on most FPGAs. A review of the research literature
illustrates the four design strategies using dual-port RAM
blocks:multipumping, replication, LVT/XOR, and banking.

Multipumping, seen in [5–7], gains ports by using an
internal clock and an external clock, with a clock speed of
a constant multiple slower than the internal clock. This way
the RAM block can process the requests of multiple ports.
This approach limits the number of ports, as each added port
decreases themaximumclock frequency (as seen in Figure 3).

Replication, seen in [8–10], gains read-only ports by
connecting the write ports of multiple RAM blocks together.
This approach does not sacrifice clock speed or FPGA logic
resources. However, each extra RAM block just provides one
read-only port. Also, increasing the RAM blocks does not
expand the storage space of the memory, since the data is
explicitly replicated among the blocks.

LVT/XOR, seen in [11–13], gains ports by using a quadrat-
ically growing number of RAMblocks. Live value table (LVT)
is the first published paper using this method [11]. An LVT-
based memory with𝑀 write port and𝑁 read ports requires
𝑀 × 𝑁 RAM blocks. Similar to replication, live value table
connects the write ports of several RAM blocks. A write
request writes to𝑁 RAMs. A write on a different port writes
to𝑁 different RAMs. During a read𝑀 RAM blocks are read
from. The most recent of the 𝑀 values is valid and is out-
putted. The “live value table” is a module that keeps track of
the most recent values.

The “live value table” module can be eliminated by using
XORs. The idea is that by storing the new data XORed with
the old data on other rows (e.g., new ⊕ old

0
⊕ old
1
) it is easy

to extract to newest data during a read by XORing one value
from each row (e.g., (new⊕ old

0
⊕ old
1
) ⊕ old

0
⊕ old
1
= new).

We show an implementation, which we call bidirectional
XOR memory. (Note that this is not exactly the same as
the XOR memory in [14].) The setup consists of 𝑁 × 𝑁
RAM blocks for𝑁 bidirectional ports. We illustrate a 3-port
bidirectional XORmemory in Figure 1. During a write, a port
writes to all the RAMblocks in one row. During a read, a port
reads fromall theRAMblocks in one column. In order to read
a value, all the output ports of the column corresponding to
that port are XORed together. In order to write a value, all the
output ports of the column corresponding to the port minus
the RAM block on the (upper left to lower right) diagonal
areXORed togetherwith the (1-clock cycle delayed) incoming
value. This value is written to all the RAM blocks on the row
corresponding to that port. An example is shown in Figure 2.
Because of the one-clock cycle write delay, this means if we

BR
A

M

BR
A

M

BR
A

M

BR
A

M

BR
A

M

BR
A

M

BR
A

M

BR
A

M

BR
A

M

Acolumn Bcolumn Ccolumn

Arow

Brow

Crow

Ain

Bin

Cin

Aout Bout Cout

Figure 1: This XOR memory has 3 ports. 𝐵in and 𝐵out are part of
the same port. Port 𝐵 controls the address of each BRAM’s read port
in 𝐵column and each BRAM’s write port in 𝐵row. Writing to memory
using port 𝐵 requires reading from BRAMs in 𝐵column (except the
one in 𝐵row) as well as writing to the BRAMs in 𝐵row. Reading from
memory requires reading from all the BRAMs in 𝐵column. Because
the same read port on the BRAMs is used for reading and writing
to the memory, it is not possible to split port 𝐵 into a read-only port
and a write-only port as it is with LVT.

1000 1000 1000

0101 0101 0101

0011 0011 0011

1111

Acolumn Bcolumn Ccolumn

Arow

Brow

Crow

Ain

Bin

Cin

Aout Bout Cout

Figure 2: In this XORmemory example 1111 is being written on port
𝐵. This results in 1000⊕ 0011⊕ 1111 = 0100 being written on all the
RAM blocks on 𝐵row. The next time this address is read the result
will be 1000 ⊕ 0100 ⊕ 0011 = 1111.

use read-after-write RAMblocks, the behavior of thememory
would be write-after-read. This can be rectified if needed
using the same technique in [14].

The work presented in [14] has similarities to our
approach. But the main difference is the addition of the RAM
blocks on the (upper left to lower right) diagonal that enable
reading or writing on a port rather than only writing. If we



International Journal of Reconfigurable Computing 3

4 8 16 32
Ports

Fr
eq

ue
nc

y 
(M

H
z)

60

120

180

240

300 300
274

234 234258

99

49
25

258
257 260 262

XOR memory
Multipump memory

Banked memory

Figure 3: Max frequency for XOR, multipumped, and banked
memory designs as the number of ports is varied.Weused the results
of our Omega memory in Table 1 for the banked memory.

wanted write-only ports, we would eliminate the BRAMs on
the diagonal. Also using the same approach in [14] additional
columns can be added to create additional read-only ports.

These approaches have the advantage of low latency and
working at relatively high frequencies. A significant drawback
is the resource usage, since the number of extra RAM blocks
scales quadratically with the number of ports (as seen in
Figure 4). Another drawback, which this approach shares
with replication, is that these added RAM blocks do not
expand the storage space of the memory.

Banking, seen in [15–17], gains ports by adding RAM
blocks to expand the memory. This is also the approach in
this paper. This approach allows the memory to gain a full
port and increase thememory space. However,multiple ports
can not access the sameRAMblock (and therefore the unique
memory space it holds) at the same time. Also, some type of
network must route signals between the ports and the banks.
These previous banking approaches do not buffer requests
and therefore restrict the access of each port to a fraction of
the memory space, explicitly segmenting each bank. By com-
parison, the work presented in this paper buffers and reorders
messages, allowing unsegmented access to memory.

3. Architecture

As previously mentioned we implemented two different
memory designs, hereafter referred to as the fully connected
and Omega multiport memories. As will be further demon-
strated in Section 5, a key differentiator is that the fully
connected memory has better throughput, while the Omega
memory scales better in terms of resource usage. However,
both memories share common characteristics. Both designs
use single-port RAM blocks for the memory banks and
utilize reorder queues. Also, both utilize a network structure
for routing between ports and banks and buffer requests to
resolve contention.

4 8 16 32
Ports

RA
M

 b
lo

ck
s

20

40

60

80

100

16

64

256 1024

2 2 2 2
4 8

16

32

XOR memory
Multipump memory

Banked memory

Figure 4: RAM block usage for XOR, multipumped, and banked
memories as the number of ports is varied.We used the results of our
Omega memory in Table 1 for the banked memory. In this figure we
use theminimumnumber of block RAMs for each internalmemory,
which is 1 except in themultipumpmemorywhere it is 2.This results
in the memories having different depths. The XOR memory has a
depth of 512 (4KB memory space). The multipump memory has a
depth of 1024 (8 KB memory space). And the banked memory has
a depth equal to 512 times the number of ports (16 KB to 128KB
memory space).

IN0

OUT0

Bank0

IN1

OUT1

Bank1

IN2

OUT2

Bank2

IN3

OUT3

Bank3

Fully connected interconnect network

Fully connected interconnect network

Figure 5: In the fully connected multiport memory all the buffering
occurs in the fully connected interconnect networks.

3.1. Fully Connected Multiport Memory. The fully connected
multiport memory (Figure 5) received its name because it
uses fully connected interconnect networks. The first of two
fully connected networks routes requests from the input ports
to the banks. The second routes read responses from the
banks to the output ports. Compared to other networks, fully
connected networks provide better contention resolution and
handle uneven requests to memory banks better.

3.1.1. Memory Banks. For any banking approach, a memory
with 𝑁 ports requires at least 𝑁 RAM blocks. Each RAM
block holds a unique segment of the total memory space. We
have multiple options to decide how to segment the memory



4 International Journal of Reconfigurable Computing

Ta
bl
e
1:
A
na
ly
sis

of
th
et
w
o
m
ul
tip

or
tm

em
or
y
de
sig

ns
.

Po
rt
s

4
8

16
32

64
12
8

25
6

M
em

or
y
sp
ac
e

16
KB

32
KB

64
KB

12
8K

B
25
6K

B
51
2K

B
1M

B

Sm
al
lr
es
ou

rc
e:
lin

ke
d
lis
tF

IF
O
an
d
re
or
de
rq

ue
ue

de
pt
h
se
tt
o
64

Fu
lly

co
nn

ec
te
d
m
ul
tip

or
tm

em
or
y

Re
so
ur
ce

Re
gi
ste

rs
4K

14
K

50
K

19
0K

72
8K

U
til
iz
at
io
n

LU
Ts

5.
7K

18
K

61
K

24
1K

90
6K

Vi
rt
ex

7
Bl
oc
kR

A
M

4
8

16
32

64
V
20
00
T2

Cl
oc
k
fre

qu
en
cy

34
5M

hz
31
3M

hz
25
6M

hz
27
3M

hz
23
0M

hz

Se
qu

en
tia

l
Th

ro
ug

hp
ut

10
0%

10
0%

10
0%

10
0%

50
%

La
te
nc
y1

16
20

36
64

12
8

Ra
nd

om
Th

ro
ug

hp
ut

97
%

93
%

88
%

72
%

49
%

La
te
nc
y1

66
65

85
97

14
4

C
on

ge
ste

d
Th

ro
ug

hp
ut

25
%

13
%

6%
3%

2%
La
te
nc
y1

10
5

23
0

49
0

10
34

27
80

Se
gr
eg
at
ed

Th
ro
ug

hp
ut

10
0%

10
0%

10
0%

10
0%

10
0%

La
te
nc
y1

16
24

34
63

61
O
m
eg
am

ul
tip

or
tm

em
or
y

Re
so
ur
ce

Re
gi
ste

rs
3K

9K
22

K
53

K
U
til
iz
at
io
n

LU
Ts

5K
11
K

24
K

53
K

Vi
rt
ex

7
Bl
oc
kR

A
M

4
8

16
32

V
20
00
T2

Cl
oc
k
fre

qu
en
cy

25
8M

hz
25
7M

hz
26
0M

hz
26
2M

hz

Se
qu

en
tia

l
Th

ro
ug

hp
ut

10
0%

10
0%

10
0%

10
0%

La
te
nc
y1

17
25

37
56

Ra
nd

om
Th

ro
ug

hp
ut

94
%

83
%

68
%

52
%

La
te
nc
y1

72
110

13
1

19
3

C
on

ge
ste

d
Th

ro
ug

hp
ut

25
%

13
%

6%
3%

La
te
nc
y1

25
0

46
2

78
6

10
46

Se
gr
eg
at
ed

Th
ro
ug

hp
ut

25
%

13
%

6%
3%

La
te
nc
y1

24
7

46
1

75
6

10
43



International Journal of Reconfigurable Computing 5

Ta
bl
e
1:
C
on

tin
ue
d.

Po
rt
s

4
8

16
32

64
12
8

25
6

M
em

or
y
sp
ac
e

16
KB

32
KB

64
KB

12
8K

B
25
6K

B
51
2K

B
1M

B

La
rg
er

es
ou

rc
e:
lin

ke
d
lis
tF

IF
O
an
d
re
or
de
rq

ue
ue

de
pt
h
se
tt
o
51
2

Fu
lly

co
nn

ec
te
d
m
ul
tip

or
tm

em
or
y

Re
so
ur
ce

Re
gi
ste

rs
4.
2K

14
K

50
K

19
1K

74
4K

U
til
iz
at
io
n

LU
Ts

5.
3K

17
K

60
K

24
1K

92
8K

Vi
rt
ex

7
Bl
oc
kR

A
M

7
13

25
48

96
V
20
00
T2

Cl
oc
k
fre

qu
en
cy

35
2M

hz
31
5M

hz
25
3M

hz
27
1M

hz
23
0M

hz

Se
qu

en
tia

l
Th

ro
ug

hp
ut

10
0%

10
0%

10
0%

10
0%

10
0%

La
te
nc
y1

16
20

36
68

10
0

Ra
nd

om
Th

ro
ug

hp
ut

96
%

95
%

94
%

99
%

98
%

La
te
nc
y1

13
4

29
6

51
2

55
3

61
6

C
on

ge
ste

d
Th

ro
ug

hp
ut

25
%

13
%

6%
3%

2%
La
te
nc
y1

10
5

23
1

49
1

10
19

27
50

Se
gr
eg
at
ed

Th
ro
ug

hp
ut

10
0%

10
0%

10
0%

10
0%

10
0%

La
te
nc
y1

16
23

38
61

63
O
m
eg
am

ul
tip

or
tm

em
or
y

Re
so
ur
ce

Re
gi
ste

rs
3.
0K

8.
4K

23
K

53
K

12
5K

30
0K

67
7K

U
til
iz
at
io
n

LU
Ts

7.3
K

16
K

36
K

77
K

16
3K

34
5K

74
6K

Vi
rt
ex

7
Bl
oc
kR

A
M

9
17

32
65

12
9

25
7

51
3

V
20
00
T2

Cl
oc
k
fre

qu
en
cy

23
4M

hz
23
4M

hz
23
0M

hz
23
0M

hz
22
5M

hz
20
2M

hz
17
5M

hz

Se
qu

en
tia

l
Th

ro
ug

hp
ut

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

La
te
nc
y1

17
25

37
57

93
16
1

29
3

Ra
nd

om
Th

ro
ug

hp
ut

10
0%

99
%

96
%

89
%

78
%

63
%

48
%

La
te
nc
y1

31
2

58
0

56
6

75
1

118
2

13
97

20
72

C
on

ge
ste

d
Th

ro
ug

hp
ut

25
%

13
%

6%
3%

2%
1%

0.
4%

La
te
nc
y1

20
40

40
46

79
54

15
35
1

28
69
8

49
18
2

65
55
6

Se
gr
eg
at
ed

Th
ro
ug

hp
ut

25
%

13
%

6%
3%

2%
1%

0.
4%

La
te
nc
y1

20
37

40
39

79
53
0

15
33
1

28
59
3

49
17
4

65
38
8

1
Th

is
m
ea
su
re
st
he

nu
m
be
ro

fc
lo
ck

cy
cle

sb
et
w
ee
n
th
e
en
d
of

th
e
be
nc
hm

ar
k
an
d
w
he
n
th
e
la
st
re
sp
on

se
of

th
e
la
st
re
qu

es
tg

et
sr
ec
ei
ve
d.

In
th
e
w
or
st
ca
se

sc
en
ar
io

se
ve
ra
lF

IF
O
sq

ue
ue

da
ta
th
at
ha
st
o
w
ai
tf
or

ac
ce
ss
to

th
es

am
eb

an
k.

2
Th

is
pa
rt
ic
ul
ar

ch
ip

ha
s2

.4
M

re
gi
ste

rs
,1
.2
M

LU
Ts
,a
nd

1.3
K
RA

M
bl
oc
ks
.



6 International Journal of Reconfigurable Computing

0 1 2 3 4 5 6 7 8

(a)

0 3 6 1 4 7 2 5 8

(b)

Figure 6: The above 2 sets of memory banks illustrate a simple addressing scheme and an interleaving addressing scheme. Certainly more
complex addressing/hashing exists but is beyond the scope of this paper.

MUX A

A
0

A
1

A
2

A
3

MUX B

B0 B1 B2 B3

MUX C

C0 C1 C2 C3

MUX D
D

0
D

1
D

2
D

3

Figure 7: Fully connected interconnect network.

space. The simplest option assigns the first 𝑁th of the
address space to Bank0, the next 𝑁th to Bank1, and so
on (Figure 6(a)). However, this approach can easily cause
bottlenecks. For example, assume that all the processing ele-
ments start to read from a low address located in Bank0 and
continue to sequentially increment the read addresses. All the
requests would route to Bank0, necessitating multiple stalls.
The interleaving memory address space that our design uses
decreases the chance that these specific types of bottlenecks
occur (Figure 6(b)).

3.1.2. Fully Connected Interconnect Network. A fully con-
nected interconnect network (Figure 7) consists of multiple
arbiters. An arbiter routes data from several inputs to one
output and typically consists of simple FIFOs, a multiplexer,
and some control logic. In Figure 7, FIFOs A0 to A3 and
MUX A construct one of the four arbiters needed for a four-
port fully connected interconnect network.

We use a simple round robin scheme to resolve con-
tention. Assuming the arbiter most recently read from FIFO
A0, the arbiter would continue to read from FIFO A0 until
it is empty. Then, the arbiter reads from FIFO A1. Again, the
arbiter continues to read from FIFO A1 until it is empty, and
the cycle repeats. To reduce area and simplify the design we
spend at least one clock cycle on each FIFO even if it is empty.
This “vertical” control scheme limits the wasted time spent
processing empty FIFOs.

Generally,𝑁-by-𝑁 fully connected interconnect network
consists of𝑁,𝑁-to-1 arbiters.The arbiters act independently.
This independence allows for good arbitration schemes that
achieve high throughput and low latency. Unfortunately, as
the size of a fully connected interconnect network grows,
the FIFOs and multiplexers require more space. An 8-to-
1 multiplexer requires approximately twice the number of
resources of a 4-to-1 multiplexer. This means that the area
the multiplexers require grows by around 𝑁2. The number
of FIFOs grows by𝑁2 as well.

IN0

OUT0

Linked
list

FIFO

Bank0

IN1

OUT1

Linked
list

FIFO

Bank1

IN2

OUT2

Linked
list

FIFO

Bank2

IN3

OUT3

Linked
list

FIFO

Bank3

Omega network

Omega network

Figure 8: In the Omega multiport memory all the buffering occurs
in the linked list FIFOs.Theuse ofmultistage interconnect networks,
in this case Omega networks, helps reduce the area of the design.

3.2. Omega Multiport Memory. The Omega multiport mem-
ory (Figure 8) has hardware structures designed for scaling.
Instead of using fully connected interconnect networks, area
efficient Omega networks (a type of multistage interconnect
network) route signals to and from the memory banks. In
addition, this memory uses 𝑁 linked list FIFOs to buffer
incoming requests, instead of 𝑁2 FIFOs. Omega networks
and linked list FIFOs pair well, because they both save logic
resources. However, these structures aremore restrictive than
fully connected networks.

3.2.1. Omega Network. An Omega network consists of
columns of Banyan switches [18, 19]. A Banyan switch is
synthesized to two multiplexers. In the ON state, the switch
crosses data over to the opposite output port. As an illustra-
tive example, the second column in Figure 9 only contains
switches in the ON state. In the OFF state, the switch passes
data straight to the corresponding output port. The first and
last columns in Figure 9 only contain switches in the OFF
state.

TheOmega network has features that make it attractive in
a multiport memory design. If we switch whole columns of
Banyan switches ON or OFF, we can easily determine where
signals route by XORing the starting port index with the bits
controlling the columns. For example, in Figure 9, the control
bits are equal to 010

2
(with the least significant bit controlling

the right most column) or 2 and input port 2 (010
2
) routes



International Journal of Reconfigurable Computing 7

0
1

2
3

4
5

6
7

0
1

2
3

4
5

6
7

0 1 0Control = 2

Figure 9: An 8-by-8 Omega network. We turn columns ON or OFF
to rotate between different routing configurations.

to output port 0. Not coincidentally, the same configuration
routes in reverse. Input port 0 routes to output port 2 and
input port 2 routes to output port 0. This means that the
design can use identical control bits for both the receiving and
sending Omega networks.

In the Omega multiport memory design, the control for
this network increments every clock cycle. As an example,
input port 5 would connect to output port 5 and then ports 4,
7, 6, 1, 0, and so forth, until it cycles around again.This means
that each input connects to each output an equal number of
times.

3.2.2. Linked List FIFO. The partnering hardware structure,
the linked list FIFO (Figure 10), behaves similarly to a regular
FIFO with one major exception, when data is pushed or
popped the “color” of the data must be specified. Each color
has its own linked list in a shared RAM block. Similar to a
software linked list, there exists a free pointer that points to
the beginning of the free space linked list. Linked list FIFOs
have previously been used in multicore CPU [20] and FPGA
[21] designs.

Due to the linking pointers, the size of the shared RAM
block now needs 𝑂(𝑁 log𝑁) space to store 𝑁 elements.
However, log𝑁 grows slowly. For example, data stored in a
64-bit-wide by 1024-entry RAM would need an additional
11-bit-wide by 1024-entry RAM for the linking pointers. An
illustrative example of the linked list FIFO is shown in
Figure 10, which uses a 12-entry RAM and 3 colors.

In the initial state (Figure 10(a)), the red box and blue box
FIFOs have no messages (read or write requests). The green
box FIFOhas 4messages (marked as green striped rectangle).
However, every FIFO reserves one empty space for the next
incoming value. This limits the total available space in the
linked list FIFO to TOTAL DEPTH − FIFO COUNT.

(i) On the first clock cycle (Figure 10(b)), the linked list
FIFO receives a push containing a greenmessage.The
new green message gets stored in the reserved space
at the tail of the green linked list. The free linked list
pops one space.That space gets pushed onto the green
linked list.

(ii) On the second clock cycle (Figure 10(c)), the linked
list FIFO receives a pop for a green message. A green
message gets popped from the head of the green
linked list.The newly freed space gets pushed onto the
free linked list.

(iii) On the third clock cycle (Figure 10(d)), the linked list
receives a pop for a greenmessage and a push for a red
message. In this case the space that the green message
was popped from gets pushed onto the red linked list.
The free space linked list stays the same.

3.3. ReorderQueue. Thebuffering in both the fully connected
and Omega memory ensures relatively high throughput;
however, this buffering causes a problem for both memories,
as read responses from different banks from the same port
may come back out of order. Although out of order reads do
not always cause an issue, to alleviate this issuewe add reorder
queues (Figure 12) to both multiport memory designs.

A reorder queue behaves similarly to a FIFO. However,
some of the messages in between the head and tail pointer
exist “in flight” (meaning the read request has been sent to
a memory bank and has not yet come back) and not at the
reorder queue memory. The reorder queue keeps track of the
presence of messages with a bit array (a 1-bit-wide RAM).

Figure 11 shows an example with 5 clock cycles of opera-
tion. In the initial state (Figure 11(a)), the reorder queue has
one present message and one in flight message.

(i) On the first clock cycle (Figure 11(b)), the present
message at the head gets popped from the queue.
A new message increments the tail, but the message
remains in flight until it arrives at the reorder queue.

(ii) On the second clock cycle (Figure 11(c)), a new mes-
sage arrives at the reorder queue; however, it does not
arrive at the head of the queue so no message can get
popped.

(iii) On the third clock cycle (Figure 11(d)), a message
arrives at the head of the reorder queue.

(iv) On the fourth clock cycle (Figure 11(e)), this message
at the head of the reorder queue gets popped. If the
reorder queue did not exist, themessage that appeared
on clock cycle 2 would have reached the output first
even though it was sent later.

(v) On the fifth clock cycle (Figure 11(f)), a message
arrives.

4. Evaluation Methodology

We implemented a small resource and a large resource
version of eachmemory.The small version does not use RAM
blocks for buffering and limits linked list FIFOs and reorder
queues to a depth of 64. The large version does use RAM
blocks for buffering and limits these memories to a depth of
512. However, in both cases we limit the depth of the FIFOs
in the fully connected interconnect network to 32 since the
number of FIFOs in it grows by 𝑂(𝑁2).

Unless otherwise specified we use a data width of 64. We
set the depth of the memory to PORTS × 512. This depth is



8 International Journal of Reconfigurable Computing

Free
H

ea
d

Ta
il

(a) Initial example

Free

H
ea

d
Ta

il

(b) First clock cycle

Free

H
ea

d
Ta

il

(c) Second clock cycle

Free

H
ea

d
Ta

il

(d) Third clock cycle

Figure 10: A linked list FIFO during 3 clock cycles of operation.

Head Tail

(a) Initial example

Head Tail

(b) First clock cycle

Head Tail

(c) Second clock
cycle

Head Tail

(d) Third clock cycle

Head Tail

(e) Fourth clock
cycle

Head Tail

(f) Fifth clock cycle

Figure 11: Reorder queue example.

IN0

OUT0

Reorder

IN1

OUT1

Reorder

IN2

OUT2

Reorder

IN3

OUT3

Reorder

Multiport memory with banking

Figure 12: A reorder queue tags incoming read requests with an ID
(which is the address into the reorder queue memory); this allows
the reorder queue to correct the order of the read responses.

where each bank is the size of 1 RAM block. A smaller depth
will still cause the bank to consume a whole RAM block. A
larger depth would cause the banks to consume more RAM
blocks.

For synthesis, we used Xilinx Synthesis Tools (XST) and
targeted the Xilinx Virtex-7 V2000T. The V2000T has a rel-
atively large number of logic blocks and RAM blocks, which
helps us push the limits of these designs.These designs should
also work well on Altera FPGAs, given the commonalities
between the devices. Both Xilinx and Altera use a base depth
of 32 for distributed RAM and a base depth of 512 for RAM
blocks.

We used the ModelSim logic simulator to evaluate the
throughput and latency of each configuration. The test
bench used for evaluation consists of four benchmarks. Each
benchmark tests the read performance of different memory
access patterns: sequential, random, congested, or segregated.

The sequential benchmark begins by sending a read
request to memory address 0 on each port. On the next clock
cycle each port requests data from memory address 1. This
continues unless a port stalls. On a stall, the memory address
of that port does not increment until thememory resolves the
stall.

The random benchmark begins by sending a read request
to a randommemory address on each port. On the next clock
cycle, every port gets a new randommemory address to read
from. This continues until the end of the benchmark.

The congested benchmark begins by sending a read
request to memory address 0 on each port. On subsequent
clock cycles, the memory address does not change. This
results in all the ports attempting to access the same memory
bank. The purpose of this benchmark is to demonstrate the
worst-case performance for any type of multiport memory
with banking, including our designs.

The segregated benchmark begins by sending a read
request to memory address 𝑖 on each port, where 𝑖 equals the
index of the requested port. This address does not change on
subsequent clock cycles.This results in all the banks receiving
an equal number of requests. However, unlike the sequential
and random benchmarks, there exists an uneven distribution
of requests among all𝑁2 port to bank connections.



International Journal of Reconfigurable Computing 9

4 8 16 32

50 k

100 k

150 k

200 k

Ports

LU
Ts

/r
eg

ist
er

s

4 k 14 k
50 k

190 k

6 k 18 k
61 k

241 k

3 k 9 k
22 k

53 k

5 k 11 k
24 k

53 k

Fully connected LUTs
Fully connected registers

Omega LUTs
Omega registers

Figure 13: The effect of varying the number of ports on FPGA
resource utilization (area) on the small resourcememories.The fully
connected memory grows by approximately 𝑁2 and the Omega
memory grows almost linearly.

We calculate the throughput of a given benchmark
by measuring the ratio of read requests to potential read
requests. If no stalls occur, the throughput equals 100%. We
calculate the latency bymeasuring the number of clock cycles
between the last read request and the last read response.

5. Results and Analysis

We present most of our results of different memory configu-
rations in Table 1. We also use graphs in Figures 13, 14, 15, and
16. From a quick analysis of the results we can confirm several
expected outcomes. The Omega memory uses fewer FPGA
resources than the fully connected memory, particularly for
memories with more ports. The fully connected memory
achieves better throughput particularly for the segregated
benchmark.We further analyze the effect of varying the num-
ber of ports, the depth of the buffering structures, and the bit
width of the data.

5.1. Varying the Number of Ports. In terms of area, Figure 13
shows the effect on FPGA logic resources due to varying the
number of ports. As expected, the fully connected memory
consumes resources at a rate of approximately 𝑂(𝑁2). The
Omega memory consumes resources at a slower rate of
approximately 𝑂(𝑁 log𝑁). At 8 ports, the fully connected
memory consumes 50% more resources than the Omega
memory, and either design is viable on the target device.
However, as the number of ports is increased, the fully
connected memory runs out of resources quicker than the
Omega memory. In Table 1 the cells reporting the perfor-
mance of the fully connected memory with 128 and 256 ports

4 8 16 32
Ports

Th
ro

ug
hp

ut
 (%

)

20

40

60

80

100 97% 94%
88%

72%

94% 83%

68%

52%

100%
99%

87%

64%

Fully connected
Omega

Estimate 1 − ((p − 1)/p)32

Figure 14: The effect of varying the number of ports on throughput
of the random memory access benchmark on the small resource
memories.

16 32 64 128
Reorder queue and linked list FIFO depth

Th
ro

ug
hp

ut
 (%

)

20

40

60

80

100

51%

70%

83%
92%

64%

84%

93% 97%

66%

88%

99% 100%

Fully connected
Omega

Estimate 1 − ((8 − 1)/8)N/2

Figure 15: The effect of varying the depth of the linked list FIFOs
and reorder queues on throughput of the random memory access
benchmark (using 8-port memories).

are empty, because the fully connectedmemory for these con-
figurations uses more than the available amount of resources
on the Virtex-7 V2000T.The Omega memory does not reach
this limit until it has more than 256 ports.

In terms of throughput, Figure 14 shows that increasing
the number of ports decreases throughput, and Table 1 shows
that increasing the number of ports increases latency. As
expected, throughput decreases a little faster for the Omega
memory. In both memories the latency grows almost linearly
with the number of ports, because of the round robin con-
tention resolution scheme in both. On average it takes 𝑁/2
clock cycles to start processing the first memory request.



10 International Journal of Reconfigurable Computing

16 32 64 128

6 k

12 k

18 k

24 k

Width

LU
Ts

/r
eg

ist
er

s

8 k

12 k

18 k

31 k

6 k

9 k

14 k

25 k

3 k
5 k

9 k

17 k

3 k
7 k

11 k

19 k

Fully connected LUTs
Fully connected registers

Omega LUTs
Omega registers

Figure 16: The effect of varying the bit width of the memory on
FPGA resource utilization.

5.2. Varying the Buffer Depth. Increasing the buffer depth,
that is, the reorder queue depth and the linked list FIFO
depth, increases the throughput of the memories. Figure 15
shows that the throughput increases by around 𝑂(1 − ((𝑝 −
1)/𝑝)
𝑁/2
), where 𝑝 equals the number of ports and𝑁 equals

the buffer depth. 1−((𝑝−1)/𝑝)𝑁/2 equals the probability that
at least one of the last 𝑁/2 memory requests requested data
on bank0 (or any specific bank). This approximately equals
the probability that the next FIFO in the round robin has at
least one message.

The buffer depth imposes a hard limit on the number
of ports the Omega memory has. The Omega memory must
have a buffer depth larger than the number of ports, because
of the empty slots required in the linked list FIFOs. In Table 1
the cells reporting the performance of the small resource
Omega multiport memory, which have 64, 128, or 256 ports,
are empty because the linked list FIFOs have a depth of 64.

The fully connected memory does not share this restric-
tion; however, an interesting anomaly occurs in the same
situation. Table 1 shows that the sequential throughput of
the small resource fully connected memory with 64 ports
equals 50%. In this case, the messages wait 64 clock cycles to
pass through the first interconnect network and then another
64 clock cycles to pass through the second. This happens
because messages keep arriving at the FIFO the arbiter had
just finished processing, similar to arriving at a bus stop just as
the bus leaves. Since the reorder queue only allows 64 in flight
messages, the 128-clock cycle latency only allows for 50%
throughput.The problem disappears when the reorder queue
is of size 128 or greater.

Increasing the buffer depth increases the latency. The
buffers fill up over time as they attempt to prevent the mem-
ory from stalling. Full buffers mean that latency increases by

the depth of the buffer. So, in benchmarks with contention,
the latency increases linearly with the buffer depth.

Increasing the buffer depth increases FPGA utilization.
The increase in buffer depth affects the Omegamemorymore
since the fully connected memory does not have linked list
FIFOs. If we use RAM blocks for buffers, any depth less
than 512 results in using approximately the same number of
resources. Consequently in this configuration we only imple-
ment FIFO depths of 64 and 512. Unsurprisingly, if buffers
consist entirely of distributed RAMs (LUT resources), FPGA
utilization increases linearly with the buffer depth.

5.3. Varying the Data Bit Width. Data width only effects
resource utilization. As Figure 16 shows, FPGA utilization
scales linearly with the data bit width. However, bit width
does effect throughput when measuring by bytes per second
instead of by percentage. The bytes per second measurement
equals PERCENT THROUGHPUT × PORT COUNT ×
BIT WIDTH × CLOCK FREQUENCY. For example, the
throughput on the random benchmark of the Omega mem-
ory with 256 ports is 172GB/s.

6. Conclusions and Future Work

In total, the contributions of this work include the design of
two multiport memories with banking and the components
used to construct them. Based on the analysis of the results
we recommend the fully connected multiport memory for
designs that require low latency and high throughput. How-
ever, if the design requires 16 or more ports we recommend
the Omega multiport memory. In other cases, either version
should work fine.

Overall, we find that multiport memories with banking
can provide high throughput communication to distributed
compute nodes. We also find that these memories provide
a substantial amount of shared memory. Upon the time of
publication we will provide the source code for the memory
designs on our research group’sGitHub page (http://www.git-
hub.com/ISURCL/A-Scalable-Unsegmented-Multi-port-
Memory-for-FPGA-based-Systems), so that other research-
ers can further analyze our work and integrate these cores
into future high-performance reconfigurable computing
applications.

In terms of planned future work, we are currently con-
sidering four main ideas: more aggressive pipelining, better
contention resolution, memory coherence, and use of dual-
port RAM blocks.

6.1. Improvements in Pipelining. Currentlymost of our design
configurations achieve an estimated clock frequency between
200Mhz and 300Mhz. The Virtex-7 V2000T (with −2 speed
grade) has a maximum achievable frequency of approxi-
mately 500Mhz.Going through the design and pipelining the
critical paths should increase the maximum frequency by
100Mhz.

6.2. Better Contention Resolution. Currently the arbiters in
the fully connectedmultiport memory process the FIFOs in a
round robin scheme. In this scheme, processing empty FIFOs



International Journal of Reconfigurable Computing 11

IN0

OUT0

Bank0

IN1

OUT1

Bank1

IN2

OUT2

Bank2

IN3

OUT3

Bank3

Fully connected interconnect network

Fully connected interconnect network

Fully connected interconnect network

Fully connected interconnect network

IN4

OUT4

IN5

OUT5

IN6

OUT6

IN7

OUT7

Figure 17: A banked multiport memory using single-port RAM blocks can be modified to use dual-port RAM blocks by replicating the
design and sharing RAM blocks.

still consumes one clock cycle. Skipping empty FIFOs would
improve latency and throughput [22]. Allowing the arbiter to
skip empty FIFOs would also enable a horizontal arbitration
scheme that would prevent starvation issues.

Improving the contention resolution of the Omegamem-
ory has more complications. The Omega network limits the
number of routes from input ports to the banks. One avenue
to explore is setting the control bits of the Omega networks
so that the fullest FIFO is always being processed.

6.3. Memory Coherence. Memory coherence is an issue with
these memories because of the variable latency. For example,
if port 0 sends a write request to address 42 and takes 5 clock
cycles to reach the appropriate bank and port 1 sends a read
request for address 42 and takes 3 clock cycles to reach the
bank then the read request will retrieve old data.

The fully connected memory can be made memory
coherent bymaking arbiters give priority to requests sent first.
This would require memory requests to be time-stamped.
The timestamp would need enough bits to cover the largest
latency difference between two active requests. The 𝑁 − 1
compares to determine the earliest request probably need
more than one clock cycle to complete, so a min-heap binary
tree hardware structure can be used to pipeline the arbiter.
However, this does not work in the Omega memory because
of the more restrictive hardware structures used.

6.4. Use of Dual-Port RAM Blocks. In either version (fully
connected or Omega), designing 𝑁-port memory as two
𝑁/2-port memories with banks connected by dual-port
RAM blocks, instead of using single-port RAM blocks, can
achieve superior results (Figure 17). The matching memory
banks (by their index) of the two smaller designs would
combine tomake dual-port RAMblocks.Thismakes the esti-
mated throughput and latency equal to the memory with half
the number of ports in Table 1. This also makes the estimated
resource utilization twice the resource utilization of themem-
ory with half the number of ports in Table 1. For example,
a small resource fully connected multiport memory with
32 ports utilizing dual-port RAM blocks would use around
100K registers, 122 K LUTs, and 32 RAM blocks, versus 190K
registers, 241 K LUTs, and 32 RAMblocks when only utilizing
single-port RAM blocks.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

This work is supported in part by the National Science
Foundation (NSF) under the Awards CNS-1116810 and CCF-
1149539.

References

[1] V. Betz and L. Shannon, Eds., FPGAs in 2032: Challenges and
Opportunities in the next 20 Years, 2012.

[2] Stratix V Device Overview, SV51001, Altera, 2015, https://www
.altera.com/content/dam/altera-www/global/en US/pdfs/liter-
ature/hb/stratix-v/stx5 51001.pdf.

[3] Xilinx, 7 Series FPGAs Overview, DS180, Xilinx, 2014.
[4] A. K. Jones, J. Fazekas, R. Hoare, D. Kusic, and J. Foster, “An

FPGA-based VLIW processor with custom hardware execu-
tion,” in Proceedings of the ACM/SIGDA International Sympo-
sium on Field-Programable Gate Arrays (FPGA ’05), pp. 107–117,
Monterey, Calif, USA, February 2005.

[5] N.Manjikian, “Design issues for prototype implementation of a
pipelined superscalar processor in programmable logic,” in Pro-
ceedings of the IEEE Pacific RimConference on Communications,
Computers and signal Processing (PACRIM ’03), vol. 1, pp. 155–
158, IEEE, Vancouver, Canada, August 2003.

[6] A. Canis, J. H. Anderson, and S. D. Brown, “Multi-pumping for
resource reduction in FPGA high-level synthesis,” in Proceed-
ings of the IEEE Design, Automation & Test in Europe (DATE
’13), pp. 194–197, Grenoble, France, March 2013.

[7] H. E. Yantir, S. Bayar, and A. Yurdakul, “Efficient implementa-
tions of multi-pumped multi-port register files in FPGAs,” in
Proceedings of the Euromicro Conference on Digital System
Design (DSD ’13), pp. 185–192, IEEE, Los Alamitos, CA, USA,
September 2013.

[8] B. Fort, D. Capalija, Z. G. Vranesic, and S. D. Brown, “A multi-
threaded soft processor for SoPC area reduction,” in Proceedings
of the 14th Annual IEEE Symposium on Field-Programmable
Custom Computing Machines (FCCM ’06), pp. 131–140, IEEE,
Napa, Calif, USA, April 2006.

[9] R.Moussali, N. Ghanem, andM. A. R. Saghir, “Supportingmul-
tithreading in configurable soft processor cores,” in Proceedings



12 International Journal of Reconfigurable Computing

of the ACM International Conference on Compilers, Architecture,
and Synthesis of Embedded Systems (CASES ’07), pp. 155–159,
September 2007.

[10] P. Yiannacouras, J. G. Steffan, and J. Rose, “Application-specific
customization of soft processor microarchitecture,” in Proceed-
ings of the ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays (FPGA ’06), pp. 201–210, Monterey,
Calif, USA, February 2006.

[11] C. E. LaForest and J. G. Steffan, “Efficient multi-ported memo-
ries for FPGAs,” in Proceedings of the 18th Annual ACM/SIGDA
International Symposium on Field Programmable Gate Arrays
(FPGA ’10), pp. 41–50, ACM, Monterey, Calif, USA, February
2010.

[12] F. Anjam, S. Wong, and F. Nadeem, “A multiported register
file with register renaming for configurable softcore VLIW
processors,” in Proceedings of the International Conference on
Field-Programmable Technology (FPT’ 10), pp. 403–408, IEEE,
Beijing, China, December 2010.

[13] A. M. S. Abdelhadi and G. G. F. Lemieux, “Modular multi-
ported SRAM-based memories,” in Proceedings of the ACM/
SIGDA International Symposium on Field Programmable Gate
Arrays (FPGA ’14), pp. 35–44, ACM, February 2014.

[14] C. E. LaForest, M. G. Liu, E. R. Rapati, and J. G. Steffan, “Multi-
ported memories for FPGAs via XOR,” in Proceedings of the
ACM/SIGDA International Symposium on Field-Programable
Gate Arrays (FPGA ’12), pp. 209–218, Monterey, Calif, USA,
February 2012.

[15] J. Moscola, R. K. Cytron, and Y. H. Cho, “Hardware-accelerated
RNA secondary-structure alignment,” ACM Transactions on
Reconfigurable Technology and Systems, vol. 3, no. 3, article 14,
2010.

[16] M. A. R. Saghir, R. Naous, and M. A. R. Saghir, “A configurable
multi-ported register file architecture for soft processor cores,”
in Reconfigurable Computing: Architectures, Tools and Applica-
tions: Third International Workshop, ARC 2007, Mangaratiba,
Brazil, March 27–29, 2007. Proceedings, pp. 14–25, Springer,
Berlin, Germany, 2007.

[17] M. A. R. Saghir, M. El-Majzoub, and P. Akl, “Datapath and
ISA customization for soft VLIW processors,” in Proceedings of
the IEEE International Conference on Reconfigurable Computing
and FPGA’s (ReConFig ’06), pp. 1–10, IEEE, September 2006.

[18] C. L. Wu and T. Y. Feng, “On a class of multistage interconnec-
tion networks,” IEEE Transactions on Computers, vol. 29, no. 8,
pp. 694–702, 1980.

[19] D. H. Lawrie, “Access and alignment of data in an array proces-
sor,” IEEE Transactions on Computers, vol. 24, no. 12, pp. 1145–
1155, 1975.

[20] S. Bell, B. Edwards, J. Amann et al., “TILE64TM processor:
a 64-core SoC with mesh interconnect,” in Proceedings of the
IEEE International Solid-State Circuits Conference (ISSCC ’08),
pp. 88–598, February 2008.

[21] A. Nikologiannis, I. Papaefstathiou, G. Kornaros, and C.
Kachris, “An FPGA-based queue management system for high
speed networking devices,” Microprocessors and Microsystems,
vol. 28, no. 5-6, pp. 223–236, 2004.

[22] M.Weber, “Arbiters: design ideas and coding styles,” in Proceed-
ings of the Synopsys Users Group Boston Conference (SNUG ’01),
Boston, Mass, USA, September 2001.


