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Abstract—Sparse matrix-vector multiplication (SMVM) is a fun-
damental core of many high-performance computing applications,
including information retrieval, medical imaging, and economic
modeling. While the use of reconfigurable computing technology
in a high-performance computing environment has shown recent
promise in accelerating a wide variety of scientific applications, ex-
isting SMVM architectures on FPGA hardware have been limited
in that they require either numerous pipeline stalls during com-
putation (due to zero padding) or excessive input preprocessing
during run-time. For large-scale sparse matrix scenarios, both of
these shortcomings can result in unacceptable performance over-
heads, limiting the overall value of using FPGAs in a high-perfor-
mance computing environment. In this paper, we present a scalable
and efficient FPGA-based SMVM architecture which can handle
arbitrary matrix sparsity patterns without excessive preprocessing
or zero padding and can be dynamically expanded based on the
available I/O bandwidth. Our experimental results using a com-
mercial FPGA-based acceleration system demonstrate that our re-
configurable SMVM engine is highly efficient, with benchmark-de-
pendent speedups over an optimized software implementation that
range from ���� to ���� in terms of computation time.

Index Terms—FPGA, reconfigurable computing, sparse matrix-
vector multiplication.

I. INTRODUCTION

F LOATING-POINT sparse matrix-vector multiplication
(SMVM) plays a paramount role in many scientific

and engineering applications, including image construction,
economic modeling, industrial engineering, control system
simulation and information retrieval [1], [2]. In solving large
linear systems (where is an sparse matrix with

nonzero entries, and and are matrices) and eigen-
value problems using iterative methods, SMVM
can be performed hundreds or even thousands of times on the
same matrix. For example, Google’s PageRank eigenvector
problem is dominated by SMVM, where the size of the matrix

is of the order of billions [3]. A naive sequential solution
of the PageRank problem using the power method would take
days to converge. As the size of the datasets used in scientific
and engineering applications (including Google PageRank)
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continue to grow rapidly, the runtime of SMVM is likely to
continue to dominate these applications.

SMVM can be characterized as containing large amounts of
floating-point computation, coupled with irregular memory ac-
cess patterns [4]. Memory bandwidth has been a significant per-
formance bottleneck in traditional microprocessor architecture.
While multilevel cache hierarchies are successfully used to im-
prove the memory throughput of data-intensive applications, the
irregularity of SMVM memory access has led to limited per-
formance scalability of these applications on traditional micro-
processors [5], [6]. More recently, Graphics Processing Units
(GPUs), in addition to being used for accelerating graphics ren-
dering applications have been exploited for accelerating gen-
eral-purpose computations [7]. These modern GPUs have a hy-
brid caching/memory hierarchy with various latencies and op-
timal access patterns. This architectural complexity (coupled
with a highly parallel execution model) has made it a chal-
lenge to optimize an irregular data-intensive application such
as SMVM for GPUs [4].

Several companies have leveraged the highly parallel and
specialized computational fabric of modern FPGAs to de-
velop FPGA-based high-performance computing systems (e.g.,
SRC [8], Cray [9], XtremeData [10], and Convey [11]). While
large-capacity FPGAs have been successfully used in these plat-
forms to accelerate important computational kernels, it is clear
that improving on I/O throughput is necessary for accelerating
FPGA-based data-intensive applications, including SMVM
[12]. The main contribution of this paper is a new FPGA-based
architecture for SMVM, which attempts to minimize memory
access overhead without performing excessive preprocessing
of the input matrix, as required in previous approaches. Our
design efficiently keeps track of interrow computation in the
SMVM pipeline, eliminating the need for zero padding (stalls),
while adding little hardware overhead as compared to previous
approaches.

The remainder of this paper is organized as follows. Section II
describes related work in the general field of SMVM optimiza-
tion, with examples of both hardware (e.g., FPGA) and soft-
ware (e.g., CPU, GPU) implementations. The details of our ar-
chitecture are presented in Section III, including the individual
computational building blocks, how zero padding is eliminated,
and an algorithm that generates the mapping table for an arbi-
trary I/O bandwidth budget. Performance evaluation and exper-
imental results are presented next, with circuit implementation
details followed by HW/SW platform integration in Section IV.
Finally, the paper is concluded in Section V with a preview of
future planned work in this area.
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II. RELATED WORK

Due to its importance in scientific and engineering applica-
tions, a considerable amount of effort has been devoted to max-
imizing the performance of SMVM [13], [14]. The authors in
[14] describe techniques that increase instruction-level paral-
lelism on superscalar RISC processors. In [13], the balancing
of distributed storage of nonzero elements among parallel pro-
cessor arrays is investigated. More recently, several new opti-
mizations for multicore platforms have been proposed in the
research literature. In [1], the authors explore the potential ad-
vantages of explicit multicore programming. The emergence
of GPU as a powerful multicore architecture in recent years
has made it an attractive target for SMVM optimization. Sev-
eral different approaches of SMVM on GPU have been pre-
sented, including [4], [15]–[18]. Some online toolkits and li-
braries for GPUs are also available [19], [20]. It is important to
note that these GPU SMVM implementations achieve consis-
tent speedups only for matrices with regular sparsity patterns.

FPGAs provide a relatively low-cost platform for paral-
lelizing algorithms at the operand-level granularity. Conse-
quently, a diverse selection of FPGA-based accelerators can
be found in the research literature [21]–[26]. FPGAs have
great potential in coping with the irregularity of SMVM due
to their easily pipelined ability, inherent parallelism and con-
figurable architecture. The design of SMVM in [2] employs
double-precision floating-point multipliers and adders, and
performs multiple floating-point and I/O operations in parallel.
The results show that their design achieves over 350MFLOPS
for all test matrices when the memory bandwidth is 8 GB/s.
However, the performance of their design is greatly affected
by the padding overhead. The smaller the overhead, the higher
the performance. The implementation in [27] partitions the set
of dot products across multiple Processing Elements (PEs).
A matrix mapping algorithm is critical in reducing the compu-
tation latency while minimizing the inter-PE communication.
Also, since only on-chip BlockRAM (BRAM) is used to store
the matrix, the matrix size is constrained by the BRAM. This
preprocessing of the input matrix and vector would lead to
potentially large overheads for very big matrices. As the perfor-
mance speedup due to the use of FPGA technology is a function
of the percentage of time spent in SMVM in the accelerated
application, this preprocessing can quickly amortize the overall
performance benefit. The design in [28] has pipeline stalls and
depends less on the matrix structure compared with a software
approach. An efficient SMVM computation of very large sparse
Finite-Element matrices is proposed in [29].

III. OUR APPROACH

A. Design Principle

Although not an optimization technique per se, to save
storage space and improve performance, it is extremely
common to store and process only the nonzero values in a
sparse matrix. Our architecture assumes that the sparse ma-
trix is stored in row-major order and aims at improving the
performance of arbitrary sparsity patterns. One straightfor-
ward implementation is composed of a multiplier array (

Fig. 1. Proposed SMVM architecture �� � ��.

multipliers) and a binary adder tree. In each clock cycle, the
multipliers in the array multiply the nonzero elements in the
same row in the sparse matrix with the elements in the vector.
If the number of nonzeros of each row is equal to , this
architecture is quite efficient. However, if is smaller than ,
there will be zero paddings; if is larger than , there will
be pipeline stalls. The goal of our design is to remove these
hurdles without overly complicating the architecture.

B. Input Patterns

Suppose there are four multipliers in the architec-
ture described above. The elements of the matrix are transferred
to the system in one clock cycle, disregarding whether they
are from the same row or consecutive rows. The nonzeros of a
sparse matrix in row-major order can be considered as a stream
of numbers which can be divided into a bulk of segments. Each
segment has numbers. The Input Pattern Vector (IPV) for each
segment is defined as the following:

Definition 1 (Input Pattern Vector): The th bit of a -bit IPV
is 1 if the th number in a segment is the last nonzero of a row;
otherwise, the th bit of a -bit IPV is 0.

Different IPVs can correspond to different structural configu-
rations of the adder tree. In Fig. 2, the four inputs from the matrix
are from four different rows when . Thus, the
four outputs from the multipliers need not be sent to the adder
tree. The first input may have to be accumulated with the outputs
of the previous clock cycle. The last input must be accumulated
with the outputs of the next clock cycle when . In
Fig. 2, the first three inputs must be added together and sent to
the adder tree in the case of because they
are from the same row. To assure the uniqueness of the adder
tree structure, we require the addition operation to be left asso-
ciative. This requirement does not negatively affect the compu-
tation accuracy due to the associativity of addition operation. It
is easy to see that the number of adder trees with distinct struc-
tures is if the length of the IPV is . An example of IPV
generation is provided in Appendix A.
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Fig. 2. Input pattern and tree structure �� � ��.

C. SMVM Architecture

Our architecture as shown in Fig. 1 is composed of a mul-
tiplier array, an adder tree, two adder accumulators (AACs), a
map table, and register arrays. All components in the architec-
ture are pipelined and run in parallel. The data flows top-down
in a pipelined fashion. In each clock cycle, numbers from the
matrix are multiplied pairwise with numbers from the vector.
The number of multipliers is a configurable parameter which
can be any natural number. The connections between the out-
puts of multipliers and the inputs of adder tree are configured
by looking up the map table on the fly. Similarly, the connec-
tions among the adder tree and register arrays, and between the
adders/register arrays and accumulators, are determined by the
map table during runtime.

D. Multipliers and Adders

The double-precision floating-point multipliers and adders
used in the SMVM architecture are pipelined and have two in-
puts. In each clock cycle, pairs of numbers from the sparse
matrix and vector are fed into the inputs of the multipliers.
After some clock cycles, the products are ready at the outputs
of the multipliers. Based on the input pattern vector, some of
the products are summed up together since they come from the
same row of the input matrix. Since each adder has only two
inputs, an adder tree is leveraged to sum more than two prod-
ucts. A product does not necessarily go through the adder tree
if it is the only nonzero in a row during a specific clock cycle.
For example, the first and second products will not be put into
the adder tree if in Fig. 2. In this scenario,
these products are sent into register arrays between the map ta-
bles in Fig. 1, which have the same delay as the adders to guar-
antee they arrive at the next level at the same clock cycle as

those sums of products. The register arrays are simply 64-bit
FIFO queues. One 64-bit number (corresponding to an IEEE
754 double-precision floating-point value) is pipelined out of
an array in each clock cycle. Due to the associativity of addi-
tion, adders are needed to sum up numbers. Therefore,

floating-point adders are enough to reduce no more than
products in our architecture. The adder tree has in total
levels. The number of adders in each level is generated by the
algorithm shown in Appendix B. The number of registers in the
array in each level is , which guarantees all products go through
them if all the bits in the IPV are 1.

E. Adder Accumulator

When a row has more than nonzeros, say , the prod-
ucts have to be moved into the SMVM engine in clock
cycles. The value of is unpredictable in a large sparse ma-
trix. Since floating-point adders are usually deeply pipelined to
achieve a high clock frequency, and the subsums of each row
are generated in different clock cycles, designing a floating-
point adder accumulator is not trivial. Several AAC (also re-
ferred to as reduction circuit) architectures have been proposed
in recent years [30]–[33]. The AAC in [34] can reduce an ar-
bitrary number of groups with arbitrary size and does not re-
quire any preprocessing of the inputs. Consequently, it is suit-
able to handle the accumulation operation for SMVM with an
irregular input matrix. The AAC accepts a data input of a group
in each clock cycle. Once all the elements in a group go into
the AAC, the sum of the group will be ready as an output after
some number clock cycles. Fig. 3 is a timing diagram of the
AAC computation model in [34]. The products for row A, B, C,
and D are sent to the AAC sequentially. The number of pipeline
stages of the AAC is two, and consequently, the sum of a row is
ready two clock cycles after the last product is sent to the AAC.
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Fig. 3. Timing diagram of AAC computation model.

In the extreme case, the AAC acts as a FIFO queue if each row
only includes one product.

Taking AAC as a building block renders neatness and com-
pactness to the SMVM architecture. For some patterns in Fig. 2,
the sum of products of a row in current clock cycle should be
accumulated with the sum of products of the same row in the

th and/or the th clock cycle. In a clock cycle, the
products may come from several rows. Only the sum of prod-
ucts in the first and last row in the current clock cycle need be
accumulated with products in adjacent clock cycles. The prod-
ucts in the other rows are already reduced into one sum by the
register-adder tree. Therefore, only two AACs should be used to
accumulate the sum of products generated by the register-adder
tree. The left AAC accumulates the sum of products of the first
row in the current clock cycle with the sum of products of the last
row in the previous clock cycle. In this case, the first row in the
current clock cycle and the last row in the previous clock cycle
are the same. The right AAC accumulates the sum of products
of the last row in the current clock cycle and the sum products of
the first row in the next clock cycle. In this case, the last row in
the current clock cycle and the first row in the next clock cycle
are the same.

For example, if we have in clock cycle
and in clock cycle , the sum of the last three
products in clock cycle should be accumulated with the
first product in clock cycle . The second and third products
in clock cycle come from the same row and are reduced into
one sum by the register-adder tree which should not be accumu-
lated with any other products. The last product in clock cycle
should be accumulated with the first sum of products in clock
cycle . If there is only one row in a clock cycle, the sin-
gular sum of products reduced by the register-adder tree is sent
to the left AAC. There are at most reduced sums in each clock
cycle if the products come from different rows. Hence, an-
other register arrays are placed in the same level with the
two AACs. The inputs to these register arrays are the reduced
sums of rows which are resolved in the register-adder tree. If
the products in the previous clock cycle are from at least two
rows and the last row has products in both previous and current
clock cycle, the positions of the two AACs must be switched
in the current clock cycle (illustrated as the horizontal arrow for
AAC inputs in Fig. 1). This assures the sum of products of a row
are sent to the same AAC for accumulation.

F. IPV Reduction

The structure of the adder tree is entirely determined by the
IPV. On the other hand, the register-adder tree structure is dy-
namically generated at run-time to fully utilize the configurable
ability of the FPGA. Therefore, the IPV is an ideal source to
code and index the map table and is critical to generate valid

Fig. 4. IPV Reduction and tree structure �� � ��� ��� � �����������.

outputs. The process of IPV reduction and mapping to register-
adder tree is illustrated in Fig. 4. The IPV is checked bit by bit
from left to right. If the current bit is 0, it is paired off with the
next bit. Each bit is only in one pair. The pattern of a pair is ei-
ther (0, 0) or (0, 1) which is reduced to 0 or 1 and sent to the next
level. Those bits which are not in any pairs are sent to the next
level directly. This reduction procedure is repeated in each level
and executed times. The length of the IPV decreases or
remains unchanged during the reduction process. Initially, each
bit in the IPV corresponds to a multiplier in the SMVM circuit. If
a bit in the IPV is reduced with another adjacent bit, the product
of the corresponding multiplier is summed up with its adjacent
product; otherwise, the product is sent to the register array. The
number of valid outputs in the register adder tree is equal to the
length of the reduced IPV in the same level. The structure of the
register-adder tree is a bijection of the IPV. The isomorphism
between them is the proof of correctness of the map table gen-
erator discussed later. The Reduced IPV (RIPV) has the same
number of 1 s as the original IPV with all set bits “pushed” to
the left.

G. Map Table

The map table is a 2-D array and provides connections be-
tween the inputs and outputs of adjacent levels during run-time.
For an architecture with multipliers, numbers from the ma-
trix are multiplied with numbers from the vector in each clock
cycle. At the same time, a -bit IPV is transferred to the reg-
ister array pipeline. The map table entries used in each level
and clock cycle are solely determined by the integer value of
the IPV. That is, the integer values of the IPVs are used to index
the map table. The register arrays for IPVs shown in the right-
most column of Fig. 1 are -bit FIFO queues.

In order to create the map table, the inputs and outputs of each
level are assigned an index as shown in Fig. 1. The inputs and
outputs of the adders are numbered sequentially ahead of the
register arrays. For each level, the index starts from 1 instead of
0, since 0 is reserved for those inputs which are unconnected.
Table I shows the map table in the case of . The first
level is the mapping between the multipliers and the register-
adder tree. The second level is the mapping inside the register-
adder tree. The third level represents the mapping between the
register-adder tree and the register-AAC group. Each input in a
specific level whose column index is and row index is in
the table has a value . This indicates that the th input
of the map table in level should be connected to the th
output of the map table in level when the IPV of level in the
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TABLE I
MAP TABLE �� � ��

current clock cycle is equal to . If is equal to 0, the
input is not connected to any interface in the current clock cycle
and the input value of it is 0. Notice that the last output to the
last level is always sent to the right AAC. The rationale behind
this is that if the outputs in the last level are from different rows,
the output from the last row may need to accumulated with the
sum of the products in the same row of the next clock cycle. If
there is only one row, the sum of the products reduced by the
register-adder tree is sent to the left AAC.

The map table generation is closely related to the IPV reduc-
tion. The map table generator checks the IPVs bit by bit from left
to right. Based on the action of reduction, it puts the outputs of
the previous level into the inputs of adders or register arrays. We
used a software implementation of Alg. 2 (listed in Appendix)
to generate the map table. The output of it for is similar
to Table I. The output table is then manually hard-coded into
the hardware description language as a 2-D array which is syn-
thesized and put into distributed memory of FPGA chips For
an architecture with multipliers, the map table is solely deter-
mined by the value of and is independent of the characteristics
of matrices or vectors. Note that the software algorithm is not
implemented as part of the architecture and has no impact on
the run-time performance—map table generation is a one-time
task that is generated offline for a given value of .

H. Outputs

The AACs and register arrays in Fig. 1 send the sums of
products to the output registers in each clock cycle. However,
there will not be valid outputs from different rows unless
the first bits of the corresponding IPV are all ones. Some
outputs are just partial sums of products from different rows.
In this sense, we need a -bit Valid Output Vector (VOV) to
indicate the valid outputs in each clock cycle. If the th bit of the
VOV is 1, the th output register has a valid output; otherwise,
its output is a partial sum of a row.

The number of ones remains unchanged during the IPV re-
duction. From the definition of the IPV, the th bit of a IPV is
1 if the th number is the last nonzero in a row. That implies
that all the nonzeros of the th row have been transferred into
the system. After the reduction of the register-adder tree with or
without the accumulation of AACs, the sum of products of that
row is ready at an output register. In other words, the number of
valid outputs in a clock cycle is equal to the number of ones in
the corresponding IPV. Consequently, the IPV has a close rela-
tionship with the VOV. Nevertheless, the positions of the valid

outputs in the output registers may not be the same as those in-
dicated in IPV, due to the reduction in the register-adder tree and
accumulators. Based on Alg. 2, the products are sent to the left
operation units in the architecture as often as possible except
that the final product is sent to the right AAC. Therefore, one
can expect that all the valid outputs are packed into the left side
of the output register arrays except the last one. If we shift the
output of the right AAC to the left position adjacent to a valid
output, the Reduced IPV (RIPV) in the last level can be used as
the VOV. In our architecture, we generate the VOV by extending
the RIPV to bits filled with zeros if the number of ones is less
than . The output of the right AAC is sent to the th output
register if the number of ones in the current IPV is . In this way,
there are outputs from the output registers and a -bit VOV in
each clock cycle. If the th bit of the VOV is 1, the output of the
th output register is a valid sum for a row. The reduce module

in Fig. 1 generates the VOV. Notice that the IPV reduction for
VOV here is different from the IPV reduction in the map table
generation. The former is performed during run-time for each
IPV input while the latter is processed off-line in Alg 2 .

IV. PERFORMANCE EVALUATION

The performance of the computing platform as a whole
system determines the speed of SMVM. SMVM is a typical
data-intensive application where the processing requirement
scales linearly with data size. IO bandwidth is a usually major
performance constraint for data-intensive computing. However,
the IO bandwidth and pin count requirement of the FPGA chip
is practically determined by design strategy and where the
original data is stored. For example, the computation power of
our SMVM engine can be fully utilized and the required IO
bandwidth is negligible if the data is stored in on-chip memory.
The required number of pins can be greatly reduced if the
SMVM module is wrapped in other modules.

Consequently, a memory-management methodology that
would improve the effectiveness of our approach is to partition
large sparse matrices into blocks of smaller size which can
fit into the architecture. Similarly, the loading time cannot be
ignored if the original data is stored in external storage (e.g.,
hard disk, network storage). Our SMVM architecture can be
considered as an engine with processing elements (PEs).
Each PE processes one element from the input matrix in one
clock cycle. If the whole matrix is partitioned into blocks,
all elements in one block can be processed in one clock cycle,
with the blocks loaded into the engine and processed sequen-
tially. This is also referred to as the locally parallel globally
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TABLE II
COMPARISON OF SMVM HARDWARE ARCHITECTURES

sequential(LPGS) method in [35]. If the whole SMVM engine
is considered as one PE and multiple FPGA chips are used,
then locally sequential globallly parallel (LSGP) methods
[35] can be used. In the LSGP approach, a large matrix can
be divided into multiple blocks where each block contains
a continuous sequence of rows. Our planned future work in
porting this architecture to the Convey HC-1 platform [11]
will adopt the LSGP method. A discussion of these and other
partition schemes can be found in [2], [27].

A. Architectural Comparison

Floating point Operations Per Second (FLOPS) is a common
measure of computing performance in high-performance com-
puting environments. To compute , each nonzero el-
ement of A requires two floating-point operations. The FLOPS
are computed by the following equations where is the total
number of floating-point operations.

(1)

Independent of the IO bandwidth and data source, the com-
parison of different hardware SMVM architectures is shown in
Table II, where is the clock frequency, is the zero-padding
overhead [2], and is a utilization factor [29]. Note
that the IPVs are generated only once for each sparse matrix
given a specific . In the scenario of computing ,
for , the IPVs are generated once for matrix . For each
iteration, the IPVs are sent with the data to the FPGA. This is
a one-time overhead, as compared to the other architectures in
Table II for which the overhead recurs across all iterations.

B. Demonstration in Reconfigurable System

1) Experimental Setup: The XD2000i from XtremeData [10]
is an example of a cutting-edge system that provides a complete
platform to deploy high-performance computing solutions with
FPGAs. It greatly reduces the development effort of integrating
the software and hardware components. The XD2000i consists
of a Dual Xeon motherboard with one Intel Xeon processor and
two Altera Stratix III EP3SE260 FPGAs in the other socket as
shown in Fig. 5. The Xeon CPU has 4 GB system memory and
four cores running at 1.6 GHz which communicate with the
FPGAs through the Intel Memory Controller Hub (MCH). The
MCH is connected to the bridge FPGA via the 1067 M Front
Side Bus (FSB) interface. The FSB with 8.5 GBytes/s peak com-
munication bandwidth is the highest performing, lowest latency
bus in this generation of Intel platform [37]. The communica-
tion behavior between the MCH and FPGAs is nailed down to
the cycle accuracy level.

The clock speed of the FPGAs is hardwired to 100 MHz by
the platform. We used the Altera MegaWizard Plug-In Manager
to customize the IEEE 754 double-precision floating-point mul-
tipliers and adders in our implementation. The multipliers were
configured to use dedicated multiplier circuitry (DSPs). Our
SMVM engine is integrated into one of the application FPGAs
with other hardware IP components provided by XtremeData.
Specifically, the SMVM engine module is wrapped in an

module which is again wrapped in an
module provided by the XtremeData XD2000i platform. These
modules serve as the intermediator between the SMVM engine
and the bridge FPGA. The design was simulated, synthesized,
placed and routed using Altera Quartus II 8.1.

During the run-time, the CPU reads the entries in the input
sparse matrices and vectors from disk and prepares a data buffer
in system memory. The size of the buffer for transmission is no
larger than 4 MB, which is an XD2000i constraint. Once the
data buffer is full, it is sent to the FPGA chip directly using a
send-request command. Only one Send operation may be active
at a time. The Receive command corresponding to the previous
Send command must complete before the next Send command is
submitted. However, the Send request may return immediately
so that CPU can perform other operations before sending the Re-
ceive request. The computation in hardware is overlapped with
the fetching data operation in software. A data buffer of known
size is received back from the FPGA hardware and is stored in
system memory [10]. We calculate the size of the receiving data
buffer by counting the number of rows which have at least one
nonzero in the sending data buffer. Based on our experimental
results, the bandwidth available for sending data from CPU to
FPGA and back to CPU during run-time is 1.035 GBytes/s in
each direction, which is solely a function of the XtremeData ar-
chitecture and drivers. All inputs are set to zeros to fill the idle
clock cycles during which no data has arrived.

The performance of our system implemented on the Xtreme-
Data XD2000i platform is compared with SparseLib++ [38],
which is a widely-used general-purpose software implemen-
tation and an object oriented C++ library for sparse matrix
computations. It is designed for portability and high perfor-
mance across a wide class of machine architectures [39]. The
SparseLib++ is built upon the Sparse BLAS which provides
high-performance sparse matrix-vector kernels that can be
application or platform-specific [40].

2) Parameter Design: The design is characterized by several
parameters. The depth of the pipelines in the multipliers, adders
and AACs is 11, 14, and 48, respectively. Increasing these pa-
rameters would achieve a higher clock frequency at the expense
of greater resource usage and initial latency. The number of mul-
tipliers, adders and register arrays, the width of IPV and the
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Fig. 5. XtremeData XD2000i architecture with SMVM engine.

size of the map-table increase with . Depending on the de-
sign strategy and data source, the value of is usually deter-
mined by several factors including IO bandwidth, clock speed,
pin count of the chip, and FPGA logic resources. However,
the pin count of the FPGA chip has no impact on since the
SMVM engine must be wrapped in other hardware modules in
the XD2000i platform. The on-chip memory such as BRAMs or
distributed memory usually runs at the same clock frequency as
the logic and the bit-widths are large enough. If the data is orig-
inally stored in the on-chip memory, the number of multipliers

is only limited by the logic resource in FPGAs, allowing the
SMVM performance to grow linearly with the value of . When
the data source is off-chip, the IO bandwidth constrains the value
of in this platform. In our SMVM architecture, the number of
input bits in each clock cycle is if double-precision
floating-point data is used. The calculation of based on peak
IO bandwidth is consequently

(2)

Based on the values of clock frequency and IO bandwidth
shown in Section IV-B-I, is enough to fully utilize the
peak bandwidth of the FSB. Hence, using more multipliers
will not provide higher performance given that communication
bandwidth would become the bottleneck. Only one applica-
tion FPGA is used since the two FPGA chips share the same
communication channel. In Table III, the computation time for
FPGA ranges from to (the design complexity
exceeded the capabilities of the Quartus FPGA synthesis tool
for ). The SMVM architecture uses 62% of the total
logic in the Stratix III EP3SE260 FPGA when . The
components in the whole XD2000i system which incorporates
the SMVM architecture into the FPGA consume 14% of the
total available FPGA LUT resources.

3) Experimental Results: In order to have a fair comparison,
the SparseLib++ software also runs on the XtremeData 2000i
platform using one CPU of the Intel Xeon subsystem. Table III
characterizes the sparse matrices from the University of Florida
Sparse Matrix Collection [41]. The matrices are stored as Ma-
trixMarket Coordinate format (shown in Appendix A). These
matrices have different sparsity patterns. The nonzeros in ,

, , are confined to a diagonal band. The

TABLE III
SMVM CHARACTERISITICS ON MATRICES

Fig. 6. FPGA computation time as a function of �.

Fig. 7. Speedup of FPGA computation over CPU (for � � �).

sparsity patterns of tomography, and are not
obvious. The values in the vectors are generated randomly and
saved in a file on disk. The FPGA computation time for dif-
ferent benchmarks is shown in Fig. 6. The computation speedup
of FPGA over CPU (the running time ratio of CPU to FPGA) is
depicted in Fig. 7. Note that our design can run at higher clock
frequencies in the Stratix III EP3SE260 FPGA, which would re-
quire linearly less time for computation.

The floating-point data is stored in scientific notation format.
The in Table III is the time for reading the matrix and
vector from the disk into the system memory. The size of the
file is determined by the number of digits in the mantissa which
explains for is larger than that of even
though has less nonzeros. The is the time for trans-
ferring the data from the system memory to the FPGA chips. The
IPV generation time by software is . The time is measured in
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Fig. 8. Total running time comparison for ��� ���.

microseconds. For a sparse matrix, SparseLib++ reads the ma-
trix and vector from disk to the system memory before sending
them to the CPU for computation. Therefore, the preprocessing
time is . To use the SMVM engine in FPGAs, the data in the
system memory buffer along with the generated IPVs is sent to
the FPGA chips. The preprocessing time is .

To cope with the deficiency in input communication band-
width, a finite state machine (FSM) in the
module implemented in VHDL is used to feed data into the
SMVM engine. In each clock cycle, the FSM collects valid
input data from the bus and stores it into the
input buffer of SMVM engine. If the buffer is full (with
pairs of data and an IPV), the data in it is sent to the SMVM
engine. Otherwise, the inputs of SMVM engine are all zeros
and the FSM stays in the data collecting state. From Fig. 3,
the computation time is much smaller than the preprocessing
time in computing for . Fig. 8 compares the
total running time of CPU and FPGA increasing with (the
number of SMVM iterations) when to compute .
If is small, the CPU system is even faster than the FPGA
system because of the proprocessing overhead. Nevertheless,
the running time is dominated by the computation time when
SMVM is heavily used in practical computation.

It should be noted that assuming the input matrix is stored
continuously on-chip, the scale of the problem (the number of
nonzeros) is constrained by the available on-chip memory. For
example, in Altera Stratix III EP3SE260, two M144 K memory
blocks with 4 k 64 (depth width) are used to store the matrix
and vector. When , 40 M144 K blocks are combined to
serve as IO storage. Since there are in total 48 M144 K blocks,
the number of nonzeros in the matrix should be no more than .
Partitioning large matrices for iterative computation in FPGAs
is a planned aspect of our future work. In summary, the SMVM
architecture as implemented on XD2000i platform has an ad-
vantage over the traditional approach in system level when the
source data is stored in the on-chip memory of FPGAs or the
SMVM is iteratively used (such as the power method for com-
puting , for ).

V. CONCLUSION AND FUTURE WORK

An expendable and high performance sparse matrix-vector
multiplication architecture is proposed in this paper. The paths

Fig. 9. Example of sparse matrix representation format. (a) Matrix. (b) Matrix-
Market coordinate format.

in which the data flows through the architecture are dynami-
cally determined by the map table during runtime. The architec-
ture can deal with sparse matrices with arbitrary size and spar-
sity pattern. It eliminates zero-paddings and pipeline stalls with
the introduction of IPVs. With enough communication band-
width and hardware resources, the performance of the architec-
ture grows linearly with the number of multipliers, , which is a
configurable parameter in the architecture. We implemented the
architecture on the XtremeData2000i reconfigurable platform.
Compared with an existing optimized software implementation,
our design is significantly faster in computation. However, our
architecture is not limited by a specific platform. In our planned
future work, the SMVM architecture will be ported to a new
platform (the Convey HC-1 [11]), that is better capable of taking
advantage of multiple FPGAs and independent memory con-
trollers.

APPENDIX A
SPARSE MATRIX STORAGE FORMAT AND IPV GENERATION

Our architecture is independent of the matrix storage format
as long as the data is stored in row-major order. For the demon-
stration in Section IV-B, we use the MatrixMarket Coordinate
format which is used to represent general sparse matrices. The
coordinates and values are explicitly given for each nonzero el-
ement in a matrix. An example is shown in Fig. 9.

The generation of IPVs is straightforward according to the
definition. To send , , , to our architecture with in
the same clock cycle, the -bit IPV is 1010. Based on the sparse
matrix storage format, IPVs can be attached as meta-data if the
value of is known for the architecture to be used. Alternately,
IPVs can be generated during the computation which will intro-
duce some computation overhead.

APPENDIX B
ADDER NUMBER GENERATION ALGORITHM

Algorithm 1: Generating the Adder Number in Each Level

Input: the number of multipliers,

Output: the number of adders in each level,

;

for to do

;

;

end for

The adder tree has levels. The number of adders in
each level is determined when all the inputs are from the same
row in a particular clock cycle. In the case the inputs are from
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different rows, register arrays must be used in some level. Sup-
pose all the inputs are from the same row in a clock cycle.
After some clock cycles, there are outputs from the mul-
tipliers. These outputs serve as the inputs to the adders in
the first level of register-adder tree where they are sent to
adders. If is an odd integer, one of the outputs is sent to the
register array. After some clock cycles, the number of interme-
diate results sent to the register-adder tree in the next level is

. The same principle is applied to each level as shown
in Alg. 1.

APPENDIX C
MAP TABLE GENERATION ALGORITHM

Algorithm 2: Map Table Generation Algorithm

Input: the number of multipliers,

Output: the map table,

for to do

Convert to a binary vector ;

; ; ; ;

for to do

, ; ; ;

; ;

while do

if and then

;

; ;

, , , ;

else if or then

;

; ;

, , , ;

else

;

;

; ;

, ; , ;

end if

end while

;

; ; ;

end for

end for

The software algorithm of the map table generator is shown in
Alg. 2 which iterates on different values of the IPV. The number
of rows in the table is where each row corresponds to a
distinct IPV. For each given IPV, the algorithm produces the
entries of the map table level by level. In general, the number of
inputs in level are , where is the number of adders
in level . There are in total adders and levels,
while each level has register arrays. The last level which is
a register-AAC group always has inputs. By adding up the
number of inputs in each level, there are in total

inputs which is also the number of columns in
the map table.

For each level, is the IPV which is reduced in the current
level; is the IPV generated by reducing in the current
level. is the output index vector of the previous level while

is the output index vector of the current level. If the index
of the th output in the previous level is , then . The
indices are the numbers assigned to the adder outputs and reg-
ister arrays outputs in Fig. 1. Recall that the adders and register
arrays are numbered sequentially. However, the register arrays
are possibly used ahead of the adders during the reduction of
IPVs. Hence, we need to record the output index sequence.
Obviously, the value of of the first level is the same as the se-
rial number assigned to the multipliers, i.e., .

and are the index counters of those numbers assigned
to the outputs of the adders and register arrays respectively.

is the index counter for and . In Fig. 1, a unique number
is assigned to each input of the adders and register arrays in a
level. and are the input index counters of those numbers
for the adders and register arrays respectively. is the index
of the map table for each . is the number of adders in
level .

An IPV is reduced in a loop as shown in Alg. 2. As
byproducts of the loop, a reduced IPV and output
index vector of the current level are generated. There are
three scenarios while reducing IPVs. In the first scenario, the
current index is the last input of the last level. The last output in
previous level is sent to ,
i.e., the input of the right AAC. Otherwise, if the current bit
in can not be reduced or is the last bit, the current indexed
output of previous level is sent to the current indexed register,
i.e., . If the current bit should be reduced

with the next bit in , as shown in the last scenario, the corre-
sponding two outputs in the previous level should be sent to the
two inputs of an adder in the current level. Meanwhile, the two
bits and in the current IPV are reduced

into in the next IPV. The value of the newly reduced

bit is equal to since is equal to 0.
The maximum value of an entry is which is the

number of outputs of the first level in the register-adder tree.
Therefore, bits are employed to store each
entry. The number of bits to store a map table is

. The number of
inputs in each level is always no less than the number of outputs
in the previous level.
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