
Improving SIMT Efficiency of Global Rendering Algorithms with

Architectural Support for Dynamic Micro-Kernels

Michael Steffen and Joseph Zambreno

Electrical and Computer Engineering

Iowa State University

Ames, IA, USA

{steffma, zambreno}@iastate.edu

Abstract—Wide Single Instruction, Multiple Thread (SIMT)
architectures often require a static allocation of thread groups
that are executed in lockstep throughout the entire application
kernel. Individual thread branching is supported by executing
all control flow paths for threads in a thread group and only
committing the results of threads on the current control path.
While convergence algorithms are used to maximize processor
efficiency during branching operations, applications requiring
complex control flow often result in low processor efficiency due
to the length and quantity of control paths. Global rendering
algorithms are an example of a class of application that can
be accelerated using a large number of independent parallel
threads that each require complex control flow, resulting in
comparatively low efficiency on SIMT processors. To improve
processor utilization for global rendering algorithms, we in-
troduce a SIMT architecture that allows for threads to be
created dynamically at runtime. Large application kernels are
broken down into smaller code blocks we call µ-kernels that
dynamically created threads can execute. These runtime µ-
kernels allow for the removal of branching statements that
would cause divergence within a thread group, and result in
new threads being created and grouped with threads beginning
execution of the same µ-kernel. In our evaluation of SIMT
processor efficiency for a global rendering algorithms, dynamic
µ-kernels improved processor performance by an average of
1.4×.

I. INTRODUCTION

Single Instruction, Multiple Thread (SIMT) processors

offer an attractive alternative platform for parallel computing

by supporting a large number of on-chip processor cores

and even larger numbers of parallel threads. To support

these high core counts, SIMT architectures impose addi-

tional structure on multi-threaded applications and introduce

some simplifications to conventional processor datapaths

that can negatively impact performance. These limitations

on program structure often require new algorithms to be

developed for improving SIMT performance; making the

porting process for existing algorithms to SIMT difficult.

Similarly, while many algorithms have been developed

for SIMT processors, performance is often less than the

expected Amdahl’s speedup [1], mainly for architectural

reasons.

Consider, for example, physically-based global rendering

algorithms, that seek to produce highly realistic images

through the modeling of the physics of light transport [2].

Conceptually, these global rendering algorithms map nicely

to wide SIMT hardware, since individual pixels can be

represented by a single thread, resulting in thousands of indi-

vidual threads with no inter-thread data dependencies. These

threads can then be mapped to one of the many parallel cores

that can switch between threads at minimal cost [3], [4]. In

practice, however, global rendering algorithms require large

amounts of memory bandwidth as well as complex scalar

thread flow (i.e. branching). Results from SIMT execution on

NVIDIA GPUs show that performance is typically limited

by the complex control flow and not the memory bandwidth

requirements [5].

Performance degradation from SIMT branching is a con-

sequence of multiple cores being required to execute the

same instruction in lock-step. As will be further explained

in Section II, threads running on processors that execute the

same instruction are part of a group (referred to as a warp)

that is defined at application launch. In our observations of

branching performance, scalar thread branching alone is not

the cause of performance loss, but scalar threads executing

in SIMT as a warp can affect performance when control

flow diverges amongst the threads. Our initial experiments

indicate that for global rendering algorithms, the loss in

efficiency due to branch divergence is as high as 65% (see

Section VII).

These rendering algorithms are complex by nature;

whether or not the kernels are written for a conven-

tional graphics pipeline or entirely as compute applications,

branching is a critical operation that allows for additional

realistic image effects. As rendering algorithms continue

to evolve by implementing more realistic physically-based

methods, the efficiency of data-dependent looping operations

will determine the performance for rendering an entire im-

age. As a result, additional overhead in optimizing complex

rendering algorithms for SIMT will be required to achieve

high performance [5], [6].

In this paper, we propose to allow threads that do not

require any explicit synchronization to dynamically spawn

new threads at runtime. The locations in a kernel where a

branching statement can lead to a significant code diver-

gence is where what we call a µ-kernel can be potentially

spawned with dynamically created threads. Dynamically

created threads can then execute any µ-kernel, which are

essentially subsections of the original application kernel.

The advantage for creating new threads is simply that the

performance loss from branching can be avoided.

Our main contributions include:

• A new branching SIMT architecture that supports

dynamic thread creation during runtime for parallel

threads.

• A hardware component design that schedules dynam-

ically created threads for improved SIMT processing

efficiency.

• A software implementation utilizing dynamic µ-kernels

for increasing processor utilization of a global render-

ing algorithm.

Our initial simulation results using dynamic µ-kernel exe-

cution indicates that processor efficiency increases by 1.9×
for a global rendering algorithm. This increase in efficiency

results in the application being able to compute an average

of 67 million rays per second compared to 47 million rays

per second using traditional SIMT hardware. The theoretical

performance of dynamic µ-kernels also lowers the gap

between SIMT and the Multiple Instruction, Multiple Data

(MIMD) theoretical ideal to 0.6×.
The remainder of this paper is organized as follows: Sec-

tion II provides an overview of the SIMT architecture used in

this paper. Section III discusses global rendering algorithms.

Section IV describes in detail our hardware architecture

for creating and scheduling new threads. A software im-

plementation using dynamic threads for global rendering

is in Section V. Section VI details our experimental setup

and Section VII presents experimental results. Section VIII

discusses previous related research and Section IX concludes

the paper with a discussion of planned future work.

II. SIMT ARCHITECTURE

SIMT processors are designed for executing large num-

bers of parallel threads that are defined at the start of

execution and run the same application kernel [7]. The

overall runtime for all threads (from the first thread launch to

the last thread completion) is the critical performance metric,

rather than individual thread runtime. With this metric in

mind, these architectures are tailored to high-throughput

parallel processing with scheduling polices that focus on

keeping processor ALUs active. Parallel processing is ac-

complished by having a large number of lightweight cores

that lack branch prediction, out-of-order scheduling, and

other scalar thread acceleration hardware. Individual cores

are kept from stalling by constantly switching between all

available threads. While switching between threads increases

the individual runtime for a thread, it allows for high latency

instructions that would stall a processor to be tolerated by

executing instructions from other active threads.

Instruction
Fetch

w
a
r
p

Active Warp Pool

w
a
r
p

w
a
r
p

D
e
c
o
d
e

Register
File

SP

SP

SP

SP

SP

Write
Back…

w
a
r
p

w
a
r
p

w
a
r
p

…
High Latency

Warp Pool

Figure 1. Single streaming multiprocessor architecture composed of
multiple stream processors.

For area and energy efficiency, SIMT processors are

grouped together to share certain hardware components,

such as register files and instruction fetch units [8]. SIMT

architectures commonly define processors using a hierar-

chy. At the top level, the architecture is composed of an

array of processors referred to as Streaming Multiproces-

sor (SMs) [9]. All SMs have access to multiple memory

controllers through a networked interconnect to allow for

highly banked parallel memory operations. SMs operate in

isolation and communication is not supported amongst SMs.

As a result, two threads assigned to different SMs have

no synchronization support, whereas threads assigned to the

same SM have some limited synchronization capabilities.

The second level of the SIMT processor hierarchy is

inside each SM component. SMs are composed of multiple

Stream Processors (SPs) [9] that execute scalar threads. SPs

are primarily ALUs and do not have individual register files

or instruction fetch units; instead, SPs receive instructions

and data from a single shared instruction fetch unit and

register file. The SM register file is highly banked to allow

for multiple simultaneous accesses by SPs. Each SM also

contains two thread queues to manage the threads assigned

to it (see Figure 1).

For all SPs inside of an SM to share a instruction fetch

unit effectively, threads running within a processor group

must execute the same instruction, and register names are

manipulated to access different data on all the SPs. Individ-

ual threads are then grouped into warps [9] at application

launch and remain together throughout their lifetime. The

number of threads in a warp can be a multiple of the number

of SPs in a SM. All threads in a warp then execute in lock-

step, requiring only one instruction fetch for all threads.

Warps are the granularity used for scheduling inside an

SM, where the individual threads of a warp are assigned

an individual SP.

Unlike conventional scalar thread processing, SPs execute

one instruction from a warp and can then switch to another

warp on the next cycle. Fast switching is done by using a

scheduling thread queue (with each element organized as

warps) and a large register file. The register file is large

enough to accommodate all threads assigned to an SM. The

number of registers that can be used per thread is flexible,

A

for(i=0;

i<thread ID;
i++)

B

C

Exit Loop

a) Example Program

A
B
i=0

B
i=1

B
i=3 C

B
i=2

Time

b) PDOM Looping
efficiency for single warp

Active Thread
Idle Thread

Figure 2. PDOM branching efficiency for a single warp performing a
looping operation.

but can be the limiting factor in terms of the number of

threads assigned per SM (the size of the thread queue is

also another possible limiting factor). A warp is fetched

from the thread queue after execution of the current warp

instruction. Once a warp has finished data write-back for the

fetched instruction, the warp is placed back in the thread

queue. If the current executed instruction requires a high-

latency operation before write-back, the warp is placed into

another thread queue. Once the instruction finishes, the warp

is moved back into the scheduling thread queue.

To allow for branching instructions, threads within a warp

must be allowed to follow different control flow paths while

using a single instruction fetch unit. Consequently, all pos-

sible control paths in a warp are executed sequentially and

threads not requiring the current control path do not commit

the results of those instructions. To minimize the perfor-

mance loss of SPs sitting idle, reconvergence algorithms,

such as post-dominator (PDOM) [10], are implemented to

schedule all control paths with minimal processor idle time.

Figure 2 shows an example for a simple data dependent

looping operation (similar to the one presented by Fung et al.

in [11] for instruction branching), and how PDOM results in

multiple idle streaming processors. The example application

in Figure 2a only has two control paths for the loop (running

B again or executing C) and a single thread convergence

location (C). PDOM first executes the first control path

for B until there are no more threads requiring this path

(Figure 2b). The next control path is executing C, where

all threads would be enabled, since C is the convergence

location for all the threads in the warp. If the runtime for B

is much larger then for both A and C, the looping operation

would only be 50% efficient since only half of the SPs would

be used on average.

Consequently, applications that require complex control

flow or long-running diverging branches can have decreased

processor efficiency, due to the idle SPs that are completing

all control flow paths before the warp can converge from

Example 1 Traditional Ray Tracing Kernel

1: while ray is not finished do
2: while node is not a leaf do
3: if pass through multiple child nodes then
4: push nodes on stack
5: end if
6: traverse tree to next node
7: end while
8: while untested objects do
9: ray-object intersection test
10: end while
11: pop stack
12: end while

the diverging paths. Improving the under-utilization of SPs

can have a dramatic effect on the performance of an ap-

plication, without the need for additional processing power.

As previously mentioned, in our observation of branching

performance, scalar thread branching only decreases perfor-

mance when threads in a warp follow different control paths.

If all threads in a warp follow the same control flow, there

is no performance loss. Additionally, two different warps

can have diverging control flow with no performance loss,

presuming all threads in the warp follow the same path.

We propose that, instead of allowing threads in a warp

to diverge at a branching instruction, that new threads be

created to execute the required instructions for the control

path taken by those threads. Once the new threads have

been created, the current running threads can then exit to

prevent the warp from executing diverging control paths.

New threads that begin execution at the same µ-kernel

are then placed into the same warp. This process results

in multiple warps that are executing different instructions

(but have no performance loss); threads inside a warp are

collected to follow the same control path.

III. GLOBAL RENDERING ALGORITHMS

Global rendering is a class of algorithms that use entire

scene data to create an image. Typical implementations

model parts of the physical world to create a realistic

image. While physically-based computations require higher

computational power than local rendering algorithms, the

results are often more realistic and special effects are built

into the algorithm, resulting in improved user interaction

experiences and easier code development.

An important characteristic in the design of a rendering

algorithm is the runtime to generate a single image. Both

off-line and real-time algorithms will target a fixed amount

of time that can be tolerated for creating a single image.

For real-time interactive graphics, the tolerated time is based

on the human visual system, oftentimes targeting 1/30 of

a second. Off-line rendering has more tolerance in the

rendering time, and these implementations often target from

a few seconds to a few days to create a single image.

Once a time limit has been established, developers design

an algorithm for the highest image fidelity as possible.

In general, the more computational power available to the

algorithm, the higher the quality of the image, given the

same time constraints. Computational power is determined

by the computer hardware and the algorithm’s efficiency

on the hardware. By improving the efficiency of global

rendering algorithms on SIMT processors such as GPUs,

the system can improve image realism under the same time

constraints.

A. Ray Tracing

In this paper we focus on a specific technique used in

many global rendering algorithms called ray tracing [12].

Ray tracing is used to gather global data in the scene, and

rendering algorithms that use ray tracing typically result in

large rays per pixel ratios. Some example usages include:

• Determining if an object being drawn to the screen is

in a shadow of another object. A ray is created for

each pixel used to draw the object, with the origin set

to the object surface being drawn by the pixel and the

direction pointing to a light source. If the ray intersects

another object before the light source, the pixel drawing

that object should be drawn with a shadow.

• Rendering reflections off an object’s surface. A ray is

created for each pixel used to draw a reflective surface

to the screen. The origin of the ray is set to the object

surface and the direction of the ray is calculated using

the angle of reflection from the camera. The first object

that the ray intersects is then used to render the reflected

surface.

• Global illumination from light emitting off an object

surface. To determine which objects are lit by this

surface, multiple rays are created with origins set to the

object surface, with ray directions that can be randomly

generated. Objects that rays intersect are then lightened

by the illuminated surface.

Determining the first object that intersects a ray becomes

a searching problem among all scene objects. To accelerate

this search, tree data structures are used, such as a kd-

tree [13] or Bounding Volume Hierarchies [14]. Leaf nodes

of the tree represent a small portion of the total spatial

volume of the entire 3D scene and contain all the objects

within that space. The tree nodes are used to subdivide

a larger spatial representation into multiple smaller spatial

areas. Node subdivision is performed until leaf nodes contain

a specified number of objects. Rays are the input into the tree

and are traversed down from the root node to leaf nodes that

the ray passes through, visiting nodes in the order that the

ray moves through the 3D world. An example tree traversal

algorithm is shown in Example 1.

B. Ray Tracing on SIMT Architectures

Conceptually, the large number of rays required to render

a scene is well-suited to implementation on SIMT proces-

Clock Cycles

A
c
ti
v
e

 T
h

re
a

d
 W

a
rp

s

0 300,000
0

1,000
Traditional Branching Hardware

Figure 3. Divergence breakdown for warps using traditional SIMT
branching methods for the conference benchmark. Higher values in
the key represent more threads that are active within a warp. This figure
was created using AerialVision [15].

sors, since each ray can be processed in parallel and each

thread follows the same algorithm for traversing the tree

data structure. The complex control flow for global rendering

algorithms comes for the tree traversal algorithm. To traverse

the tree with a ray requires three loops. The first loop (line 1)

of Example 1 is used to guarantee that all relevant tree leaf

nodes are tested before the ray is finished being processed,

since a ray can pass through multiple leaf nodes. The middle

two loop statements are used to traverse down the tree from

node to node until it finds a leaf node (line 2), and to test

all objects inside the leaf node (line 5). Diverging control

flow accrues for this algorithm due to the different number

of loop iterations required by each ray for all three loop

instructions. While rays traversing different paths down the

tree do not cause any diverging control flow path since they

are running the same instructions, the tree depth for each

path is different. The number of objects stored in each leaf

node may be different and the number of leaf nodes that a

ray passes through also varies.

Since conventional SIMT hardware requires all threads in

a warp to run the same instruction, threads within a warp that

finish a loop run idle until all threads in the warp are finished

as well. The overall result is that the number of clock cycles

for any ray in a warp to complete is equal to the longest

ray in the warp. Figure 3, plotted using AerialVision [15],

illustrates how many streaming processors are running idle

per clock for executing these nested loop iterations. This

plot categorizes a warp into 10 different categories based on

the number of threads in a warps that are not idle. Category

W29:32 is the number of warps that have 29 to 32 active

threads in the warp. Category W1:4 indicates that there are

only 1 to 4 active warps and that the remanding are idle due

to branching.

To improve the efficiency and performance for this al-

gorithm (and others similar), we propose using dynamic

µ-kernels to remove the looping iterations that cause low

efficiency. µ-kernels are created for instructions in a loop and

new threads are created to perform the required instructions.

Threads that would require looping will create a thread that

calls the same µ-kernel. After a µ-kernel has finished exe-

cuting and has created additional threads, the current thread

will exit, since its child thread will continue the required

computations. To utilize SIMT technology, newly created

threads will then be placed into new warps with other threads

that will execute the same µ-kernel. The diverging control

flow that resulted from the looping operations is removed

since threads are no longer executing loop iterations, and are

instead creating new processing threads that are organized

for high processor efficiency.

IV. DYNAMIC µ-KERNEL ARCHITECTURE

Our dynamic µ-kernel implementation is broken down

into two components. The first part allows SPs to create

new processing threads. The second part takes new threads

and creates new warps that will not result in large divergent

control paths. The process of creating threads at runtime

and forming new warps is outlined in Figure 4. Threads are

able to initiate the creation of threads inside an SP using a

new instruction which we call spawn. The SM then groups

the new threads with previously created threads that share

the same targeted µ-kernel in the partial warp pool. Once

enough threads are grouped to form a new warp, the warp is

placed into a new warp FIFO and waits to be scheduled for

execution. When a currently scheduled warp finishes, a new

warp from the warp FIFO is issued using the same resources

as the finished warp and placed into the active warp pool.

In addition to the SM hardware for issuing new threads,

data must be passed from the parent thread to the newly

spawned child thread that is intended to continue the work

of the parent thread. Data required for the spawned threads

cannot be passed using registers, since the new thread

is likely to be assigned a different SP then its parent.

Since rendering algorithms typically require little persistent

memory to define the current state of a thread, register states

are instead saved to on-chip shared memory. When a thread

is created at runtime, a memory pointer is provided to the

thread allowing the thread to access its associated data.

A. Memory Organization

Similar to NVIDIA CUDA [9] supported architectures, the

available memory spaces for a thread consists of registers,

shared memory, local thread memory, global device memory,

constant memory, texture memory, and a new memory space

called spawn memory. Registers and shared memory are

located on-chip and are tied to an SM. Local thread memory

is stored in off-chip device memory, and is reserved for

register overflow to reduce register counts for kernels and

also for any intermediate data storage that is too large for

on-chip memory. Constant memory and texture memory also

use device memory and are used similar to local memory,

Warp

Warp

Warp

Active
Warp Pool

SPs
New
Threads

Partial Warp Pool

New Warp FIFO
Completed Warp

F
in

is
h

No

Yes

Figure 4. Dynamic thread creation hardware overview. New threads created
by the SPs are placed into new warps waiting in the partial warp pool. Once
enough threads have been created to complete a warp, the warp can replace
an existing warp that has finished.

except that they are read-only and can be cached. Global

device memory is off-chip and is shared across all SMs,

and can also be allocated and accessed by a host processor.

Spawn memory may be implemented in on-chip memory

inside an SM or device memory. The memory space is used

for two purposes: storing the data to be passed between

threads and storing partial warps during warp formation (see

Section IV-C). This memory space is allocated at kernel

launch time, since the size requirements can be computed

off-line and are constant throughout application execution.

1) Thread Usage of Spawn Memory: The first section of

this memory space is for storing data to be passed between

threads. The allocation size is computed by the size of

the data structure used for passed data between threads,

multiplied by the number of threads that can be assigned

to an SM. Since the size of the data structure may fluctuate

depending on what µ-kernel is being called, the largest data

structure is used for the computation. This also requires

that the µ-kernels be predefined before the application is

executed. Individual threads in an SM are then assigned a

region of this memory space.

The method that threads use to access their spawn

memory space depends on how a thread is created

and when it is scheduled. However, all threads use

a special register called spawnMemAddr to determine

the spawn memory address. Threads initially created

and scheduled at application launch have their spawn-

MemAddr set to a unique address inside the spawn mem-

ory using the equation SpawnMemoryBaseAddress +
threadID∗sizeof(DataToBePassedBetweenThreads).
Dynamically created threads are provided a memory pointer

in the spawnMemAddr when scheduled that is used to obtain

the appropriate spawn memory address (see Section IV-D).

Threads that were created at application launch but were

not able to be scheduled due to resource availability require

a spawn memory address that has been freed by a thread,

made available when a thread exits from the last µ-kernel.

Data in the spawn memory space is what is passed

between a parent and child thread. If a thread is creating

a child, the parent thread will store its current state in the

spawn memory before calling the spawn instruction. If the

thread is a child, the spawn memory space is used to retrieve

data from its parent thread. Child threads can reuse the same

spawn memory address to pass data to further children.

2) Partial Warp Formation: The second half of the spawn

memory space is for storing dynamic threads during warp

formation. The hardware components for creating new warps

require consecutive memory addresses to store the metadata

of individual threads belonging to a new warp. The number

of consecutive memory address is equal to the number of

threads in a warp. The minimal size required for this memory

is a function of the number of threads that can be assigned

to an SM, the number of threads per warp, and the number

of µ-kernels (size = NumThreads+(SpawnLocations−
1) ∗ WarpSize). The size allocated in memory is doubled

to prevent a new thread’s metadata from clobbering active

threads. The spawn memory used for passing data between

threads does not need to be doubled, since registers can be

used to save original data when reusing the memory space

for creating a child thread.

B. Spawn Instruction

Spawn instructions take two parameters: an assembly code

label (converted by the assembler to the Program Counter

(PC) value), used to indicate the new thread’s µ-kernel, and

a register that contains the memory pointer to the thread’s

spawn memory space. The spawn instruction performs two

key functions. First, it updates the warp creation hardware

used to assign the new threads into warps. Second, it

performs a memory write operation that is required by the

warp creation hardware to save the thread’s metadata.

C. Warp Formation

Figure 5 shows the architecture for the spawn instruction

for an SM. The first operation performed is thread classifica-

tion, where new threads are placed into warps. The PC value

of the spawn instruction will be the same value for all threads

executing the spawn instruction. The value is the same for all

instructions since the PC value is statically compiled into the

instruction and all instructions in a warp execute in lock-step.

The PC is used in a look-up table (LUT) to determine the

address in the spawn memory space where similar threads

are being grouped into new warps. The functionality of the

LUT is identical to the dynamic warp formation concept

presented in [11], and provides the mechanism for taking

a new thread’s PC and providing an index to start forming

new warps. The LUT is an on-chip memory organized as a

fully associated cache where the number of entries is equal

to the number of supported µ-kernels. The content of our

H

PC

PC

PC

Addr 1

Addr 1

Addr 1

PC-Warp���

Address Thread 0

Address Thread 1

Address Thread n

Addr 2

Addr 2

Addr 2

Cnt

Cnt

Cnt

New Addr. Register

Warp Spawn Instruction

Thread ID

Active Thread

(1 bit) PC

Memory

Pointer

0 1

0x01f250

0x5f230

1 0 0x60128

n 1 0x52b30

Summation

�

�

�

Write Data Thread 0

Write Data Thread 1

Write Data Thread n

Store Instruction CreationThread Classification

Figure 5. Architecture for the spawn instruction. Dynamically created
threads identify existing threads that will follow the same control path using
a look-up table. Once the warp has been identified for the new threads, the
pointers are stored in memory for later use.

LUT is different from that of [11]; two memory addresses

and one counter variable are stored for each line in the LUT.

The counter keeps track of the number of threads already

contained in the partially created warp. The first memory

address is the spawn memory address where the current warp

is being created. The second memory address is the overflow

address used for creating the next warp for the same PC. A

single spawn instruction may result in more threads being

created for a µ-kernel then the current warp being formed

has room for. In this case the second memory address is

required to create a second warp.

After the memory read from the LUT, the resulting first

memory address and counter are both incremented based

on the number of new threads (summation hardware). The

number of threads is the sum of all active threads in the

warp that executed the spawn instruction. Once incremented,

both results are stored back into the LUT. If the counter is

incremented over the size of a warp, the second memory

address is incremented based on the overflow from the first

memory address and replaces the first memory address. The

second memory address is then set to the next available free

memory address stored in a register. If the first memory

address does overflow, this signals that a new warp has been

created and is pushed into the new warp FIFO. The value

pushed into the FIFO is the first memory address from the

LUT that points to the spawn memory space containing the

last thread in the finished warp.

The second operation is creating a store instruction to save

the new thread’s metadata into memory. The two addresses

read from the LUT are used to compute a unique address

for all threads executing the spawn instruction. Since not

all threads of a warp are active, memory addresses used

for the store instruction are not computed for all threads.

The memory addresses from the LUT are pipelined to each

thread channel and incremented if that thread channel is

enabled. The result is that all active thread channels have a

memory address that is both unique and sequential. Threads

in the warp that are not executing the spawn instruction

result in a duplicated memory address, since the addition

operation was disabled and the value is pipelined through the

thread’s channel to feed additional thread channels. Since

the threads are not active, they will not perform the store

instruction and ignore the duplicated memory address. In

the event that a warp is filled before the end of all active

threads, the second memory address is used to start forming

a new warp. After a memory address has been computed

for each thread, a memory store transaction is generated for

storing the memory pointer to the new thread’s data being

passed by the parent thread to the second half of the spawn

memory.

D. Scheduling

Once a warp has been defined in memory, the scheduler

attempts to schedule the warp for execution. Similar to

scheduling threads defined at kernel launch, SM resources

(such as registers and the number of threads that can be

stored in the SM thread queue) need to be available before

beginning execution of a warp. To reduce the size of the

dynamic warp FIFO, dynamic threads are given priority

for scheduling over unscheduled threads defined at kernel

launch. If not all SM resources are used during kernel

launch, dynamically created threads can use the remaining

available resources to be scheduled for execution. When

currently executing warps exit, their resources are freed,

which makes scheduling possible for additional warps.

Since spawn instructions can invoke multiple µ-kernels,

dynamically created threads may require different amounts

of SM resources. To allow for easier scheduling, all threads

use the maximum resource per category required by each of

the µ-kernels. This allows for any warp to replace an existing

warp; the scheduler does not need to keep track of different

warp resources. The tradeoff for this method is a decrease

in the number of threads that can be actively executing if

µ-kernels are not balanced.

To give each thread in a warp access to its data stored in

spawn memory, the spawnMemAddr special register is set to

the memory address pointing to the data in spawn memory.

The spawn memory pointer is stored in memory by the

thread grouping hardware during the spawn instruction. The

memory address provided to new threads in spawnMemAddr

is computed from the memory address from the LUT. The

individual thread values are computed by taking the address

from the LUT that was used to store the last thread in a warp

metadata to memory, and subtracting the thread ID inside

Processor Cores 30
Warp Size 32

Stream Processors per Warp 8
Threads / Processor Core 1024

Thread Blocks / Processor Core 8
Registers / Processor Core 16384

On-chip Memory / Processor Core 64 KB
Spawn LUT Size / Processor Core 1024 Bytes

Memory Modules 8
Bandwidth per Memory Module 8 Bytes/Cycle
L1 and L2 Memory Caching None

Table I
CONFIGURATION USED FOR SIMULATION.

the warp. Using this method, the size of the on-chip FIFO

is reduced by a factor equal to the number of threads in a

warp, since the individual thread address can be computed

for a single value for the entire warp.

Scheduling new warps only when the warp is completely

filled can cause threads to stall during thread formation due

to a lack of remaining threads to finish the new warp. To

prevent this problem, partial warps can be forced out of the

thread pool and scheduled as incomplete warps. Threads are

forced out only when the scheduler runs out of available

warps to schedule. This happens only near the end of the

application when all warps defined at launch time have

finished and no new warps remain in the dynamic warp

FIFO. The warp that is forced out is selected by the PC

address of the µ-kernel, starting with the lowest PC address.

V. PROGRAMMING MODEL FOR DYNAMIC µ-KERNELS

Memory allocation for the spawn memory space occurs

before threads are scheduled onto the SMs. The size of this

memory depends on two parameters. The first parameter is

the total number of threads able to be launched given the

resource requirements. The second parameter is the amount

of memory required to be passed between threads. Off-line,

the compiler computes these two parameters, then uses them

to determine the size of the spawn memory. When the sum of

the spawn memory and shared memory (also computed off-

line) exceeds the amount of on-chip memory, the hardware

allocates the spawn memory to off-chip memory.

An assembly template for a µ-kernel is shown in Exam-

ple 2. Software instructions store and load the thread states.

Before spawning a new thread, threads must save active

data to memory (lines 14 and 15). Each thread has access

to its spawn memory space through the spawnMemAddr

special register created at thread launch (line 3). After the

software instructions save the state of the thread to memory,

the program calls the spawn instruction (line 17 or 19).

The spawn instruction requires two arguments, a program

counter for the µ-kernel to be executed and the spawn

memory pointer. While the parent thread is free to continue

executing application code, the thread must not modify the

spawn memory space, as the usage of the spawn memory

by the child thread cannot be determined by the parent

Warp Formation
Base Addr: 0x0400

Thread Usage

Size of data
structure for

passing data

between
threads

Data 0

Data 1

Data 2

Data 3

Data 4

…

Data n

warp 0

0x0100

0x0108

0x0110

0x0118

0x0120

0x0218

0x02A8

0x0310

0x02A0

0x0110

0x0120

0x02B8

0x01F0
…

Thread 0

Thread 1

Thread 2

Thread 3

Warp 1

spawnMemAddr

0x0410

0x0414

0x0418

0x041C

0x03F8

Figure 6. Spawn memory layout for threads accessing parent thread data
using 4 threads per warp and 8 bytes of storage between threads. Child
threads use their special register to access the warp formation data. The
warp formation data is a memory pointer to the parent thread data.

thread and modifications by the parent thread could result

in concurrency errors. To load the state for a dynamically

created thread, the spawn memory address must be retrieved.

Figure 6 shows the memory layout used by threads to

access spawn memory data. Dynamic threads are provided

a memory address in spawnMemAddr. This address points to

the warp formation section of the spawn memory space that

was being written to when the thread was first created. The

value stored in the warp formation memory is the memory

pointer used in the spawn instruction that created the thread

and points to the thread usage data (lines 3 through 5 in

Example 2). Once the spawn memory address is retrieved,

the state can be loaded into the thread’s registers (lines 7 and

8). The contents of the spawn memory space is accessible

for the lifetime of the thread. The spawn memory space is

reused to spawn a new thread by writing data back into the

memory space for the child thread (lines 14 and 15).

Requiring the current state of a thread to be saved to mem-

ory results in overhead for performing µ-kernel execution.

Performing multiple load/store operations at the beginning

and end of each µ-kernel results in additional instruction

execution and increased instruction latency. The number of

operations required is application-specific and determined

by the amount of memory required to save the state and

the memory data layout. Care must be taken in determining

the location in the application for creating dynamic threads,

since the overhead may be more than the branch instruction.

Converting current SIMT rendering algorithms to use µ-

kernels requires identifying critical branch statements that

decrease processor efficiency more than the overhead for

creating a dynamic thread. Branching statements can be ei-

ther looping conditions or conditional branching statements

that are typically data dependent and affect the runtime of

the thread. In our ray tracing example, the three looping

Example 2 Sample µ-Kernel Assembly Code

1: microKernel label:
2: # Get memory pointer to threads spawn memory
3: mov rd1, SREG.spawnMemAddr;
4: ld.spawnMem r1, [rd1+0];
5: mov rd1, r1;
6: # Load thread state from spawn memory
7: ld.spawnMem f1, [rd1+0];
8: ld.spawnMem f2, [rd1+4];
9:

10: # Run micro-kernel code
11: # Sets P0 to select between two micro-kernels
12:

13: # Save thread state back to spawn memory
14: st.spawnMem [rd1+0], f1;
15: st.spawnMem [rd1+4], f2;
16: # Create a new thread
17: @p0 spawn $microKernel option 1, rd1;
18: @p0 exit;
19: spawn $microKernel option 2, rd1;
20: exit;

operations have a dramatic effect on the runtime for each

thread and allows one long running thread to have a signif-

icant negative impact on the processor utilization.

VI. EXPERIMENTAL SETUP

We modified the GPGPU-SIM [16] simulator for evaluat-

ing the performance and accuracy of creating threads during

runtime for µ-kernels. Our spawn instruction and spawn

memory space were added to the simulator and configured

to use on-chip SM memory. The simulator was configured

to resemble an NVIDIA Quadro FX5800 GPU [17] with

additional on-chip memory for the spawn memory space.

Table I shows the specific configurations setup of our

simulator.

We performed simulations using two different thread

scheduling models. The block scheduling configuration rep-

resents the FX5800 thread scheduling hardware. Warps are

only scheduled via block scheduling if there are enough SM

resources for the entire thread block, where thread blocks are

composed of multiple programmer-defined warps. The block

scheduling method allows for synchronization between all

threads inside of a block. The thread scheduling configura-

tion ignores block resources and schedules as many warps to

an SM as other resources allow. Dynamic thread creation is

designed for thread scheduling since thread synchronization

is not required and allows for improved hardware usage.

A. Benchmark Kernels

We used two benchmark CUDA kernels for our exper-

imentation. The control algorithm is a ray tracing CUDA

application called Radius-CUDA [18], which we used for

performance measurements for the PDOM and MIMD con-

figurations. Radius-CUDA uses a kd-tree [13] acceleration

structure and Wald’s ray-triangle intersection algorithm [19].

Resource Traditional µ-kernel µ-kernel Minimum

Registers 22 20 16
Shared Memory 60 bytes 56 bytes 32 Bytes
Global Memory 388 bytes 384 bytes 0 Bytes
Constant Memory 128 bytes 24 bytes 8 Bytes
Spawn Memory 0 48 bytes 48 bytes

Table II
KERNEL PROCESSOR RESOURCE REQUIREMENTS PER THREAD.

The second benchmark kernel implements dynamic µ-

kernels. The Radius-CUDA program was modified by re-

moving the three looping operations and adding in state

load/store operations and thread spawning. Modifying the

Radius-CUDA application for dynamic µ-kernels is cur-

rently done at the Parallel Thread Execution (PTX) assem-

bly language [20] level. To generate initial PTX assembly

code and to determine the resources required for each µ-

kernel, the original kernel written in CUDA C is broken

up into multiple global function calls that are compiled

separately. Individual global PTX functions are then manu-

ally combined into one large application containing all µ-

kernels. For compilation of C code using NVIDIA’s NVCC

compiler [9], function arguments were used to emulate the

spawnMemAddr special register. During manual instrumen-

tation of the PTX assembly code, this memory operation is

modified to instead use spawnMemAddr as a register. The

implemented algorithm used by the µ-kernels is the same

for both benchmarks.

The per-thread kernel parameters are shown in Table II.

By using dynamic µ-kernels, the resources required per

thread are less than the original kernel. This is a result

of the µ-kernels using fewer instructions and the use of

spawn memory space for additional register storage. Using

µ-kernels results in 800 threads per SM. To achieve optimal

performance for the traditional algorithm implementation

using block scheduling, the block size is set to two warps,

resulting in 64 threads per block and 512 threads per SM.

The number of thread blocks that traditional hardware can

run is then the limiting factor for the total number of threads

that can run on a SM. While increasing the number of warps

per block allows for a higher number of threads per SM, the

additional un-coalesced memory operations resulting from

high thread divergence degrades the performance below the

performance of 64 threads per block.

384 bytes of the per-thread global memory is for main-

taining a stack data structure used for traversing the kd-

tree. The value is arbitrarily chosen, since different tree

structures represent different scenes which result in different

stack memory sizes. The value is large enough for the largest

scene in our benchmark dataset, however, the entire memory

space is not used and usage varies between scenes.

The memory required for storing the state and for creating

each dynamic thread uses the same data structure. This data

structure requires 48 bytes of data to be stored and three

Clock Cycles

Ac
tiv

e T
hr

ea
d

W
ar

ps
0 300,000

0

1,000
Micro-Kernels

Figure 7. Divergence breakdown for warps using µ-kernels for the
conference benchmark. Warps are able to keep more threads active
by creating new warps at critical branching points.

4-wide vector memory instructions are required for storing

or restoring the state. The total memory then required for

storing all possible thread states is less than the shared

memory size. We implemented a naı̈ve thread spawning

method, where the entire store and restore operations for

spawning a thread are performed for every loop iteration.

Performance could be improved by first checking if a branch

would cause divergence. If not, the branch could be taken

by the warp instead of spawning new threads.

B. Benchmark Scenes

Three benchmark scenes were used for testing the per-

formance and efficiency of our dynamic µ-kernels concept.

Table III shows the rendered image and scene properties

for each benchmark. Fairyforest tests ray traversal ef-

ficiency for large open spaces with areas of highly dense ob-

ject count. Atrium contains a uniform distribution of highly

dense objects through the entire scene. The conference

benchmark has a high number of objects that are not evenly

distributed throughout the scene.

VII. EXPERIMENTAL RESULTS

To reduce simulation time, only the first 300k cycles

were simulated at a resolution of 256x256. Simulation past

300k clock cycles results in similar behavior to the 150k

to 300k range. The first 300k cycles were simulated to

demonstrate the sharp drop in processor efficiency at the

start of the application. Performance numbers for MIMD

and PDOM were generated by running the original Radius-

CUDA application on our simulator.

We start our analysis with the assumption of no bank

conflicts for the spawn memory space. This assumption

allows for simulation of future programming models or

compiler optimization designed to eliminate a majority of

the bank conflicts. Figure 7 shows the number of threads

Benchmark fairyforest atrium conference

Triangles 172,561 559,992 987,552
kd-tree Depth 36 37 35

Table III
BENCHMARK SCENES WITH OBJECT COUNT AND TREE DATA STRUCTURE PARAMETERS.

�
��
��
��
��
��
��
��
	�

PDOM Block PDOM Warp Micro-Kernels

M
R

a
y
s
 /

 S
e
c
o

n
d

������ ����	
 ���
������

Figure 8. Performance results for all benchmarks using different branching
and scheduling methods.

participating in all warps over time for the conference

benchmark scene. The other two benchmarks have com-

parable plots. Similar to Figure 3, this plot categorizes a

warp into 10 different categories based on the number of

threads in a warp that are not idle. The SIMT processor

efficiency can be directly correlated to this plot. Using

dynamic thread creation allows for a much higher utilization

of all the processors on a chip. The average instructions per

cycle for the conference benchmark is 615, 1.9× higher
than current hardware’s 326 instructions per cycle. Using

dynamic thread creation still results in some processors

running idle due to branching within spawned functions and

pipeline stalls from memory operations.

Since dynamic thread creation introduces additional in-

structions, the instructions per cycle performance does not

directly correlate to the rendering performance. Figure 8

shows the rate at which rays are processed for all bench-

mark scenes and both scheduling models. Block scheduling

requires enough resources for the entire thread block before

all threads in the block are executed. Warp scheduling will

execute the maximum number of warps the hardware can

support, breaking up blocks if an entire block does not fit.

PDOM Warp achieves a higher performance than raditional

hardware (PDOM Block) by allowing more threads to be

Clock Cycles

Ac
tiv

e T
hr

ea
d

W
ar

ps
0 300,000

0

1,000
Micro-Kernels With Bank Conflict

Figure 9. Divergence breakdown for warps using dynamic thread creation
with bank conflicts for the conference benchmark. Warps still maintain
more active threads over traditional branching methods, however, additional
pipeline stalls are introduced by bank conflicts.

scheduled to an SM which allows for more memory latency

to be hidden. Our dynamic threads are able to achieve higher

performance, due to the reduction of critical branching

statements and improved memory coalescing.

The creation of dynamic threads requires additional mem-

ory operations. Table IV shows the required bandwidth

per image required to render a scene. Bandwidth values

were computed from the number of down traversals and

intersection tests required to render a single frame. The

values are computed without any caching or separation

between off-chip and on-chip memory spaces. The mem-

ory bandwidth required for dynamic thread creation is the

difference between the traditional and dynamic values. The

resulting overhead from creating dynamic threads results in

an average bandwidth increase of 4.4× for reading data.
The total increase in bandwidth for reading and writing is

an average of 7.3×.

Bank conflicts do affect our performance results by in-

troducing additional memory latency. Figure 9 shows the

active threads within a warp simulated with bank conflicts

Benchmark Reading Writing Total

fairyforest Traditional 62.1 MB 0.25 MB 62.35 MB
fairyforest Dynamic 296.5 MB 203.7 MB 500.2 MB

atrium Traditional 88.5 MB 0.25 MB 88.75 MB
atrium Dynamic 372.9 MB 258.1 MB 631.0 MB

conference Traditional 64.2 MB 0.25 MB 64.45 MB
conference Dynamic 263.3 MB 179.6 MB 442.9 MB

Table IV
MEMORY BANDWIDTH REQUIREMENTS FOR DRAWING A SINGLE IMAGE
WITHOUT CACHING. VALUES ARE CALCULATED FROM THE NUMBER OF

TREE TRAVERSAL OPERATIONS AND INTERSECTION TESTS.

for the spawned memory space. An increase in pipeline stalls

is introduced with bank conflicts due to serialization of all

conflicting bank memory operations to the spawn memory

space. While the number of pipeline stalls has increased,

processor efficiency is still superior to traditional branching

methods and maintains an average instructions per cycle of

429, 1.3× higher than current hardware.
Branching performance is shown in Figure 10 for the

conference benchmark scene. Ideal memory systems

were simulated (no memory latency) to determine the algo-

rithm’s theoretical performance. PDOM has no performance

increase when simulated with an ideal memory system, indi-

cating its performance is limited by the branching hardware.

Dynamic µ-kernel execution improves performance up to

45% of the MIMD Theoretical with the potential to achieve

60% of the MIMD Theoretical.

VIII. RELATED WORK

Improving wide SIMT processor efficiency for complex

control flow has been approached from both hardware and

software perspectives. Persistent threads [5] is a software

scheduling algorithm specifically for ray tracing applica-

tions. This approach uses just enough threads to keep

the machine full, and allows warps to focus on a single

section of the entire algorithm. The entire algorithm is

represented by multiple warps and uses memory arrays

called work queues to pass data between warps. Warps are

then executed in a loop operation for reading work from a

queue, performing computations, and then writing back to

another queue or device memory. Once the work queues are

all empty, the threads then exit. Divergent control flow is

reduced by allowing threads in a warp to write to different

work queues. Since this is entirely a software solution, this

algorithm can be applied to current and future hardware that

supports the required memory transaction instructions. To

prevent concurrency errors during work queue translations

from the large number of active parallel threads, atomic

instructions are required. Atomic instructions result in higher

instruction latencies to serialize the instructions operating

on the same data. Scheduling of warps is also left up to

the developer, resulting in complex scheduling code for

workload balancing, or simple methods that can result in

an unbalanced distribution.

0.0

0.2

0.4

0.6

0.8

1.0

PDOM �-Kernel PDOM
Theoretical

�-Kernel
Theoretical

MIMD
Theoretical

N
o

rm
a
li

z
e
d

 P
e
rf

o
rm

a
n

c
e

Figure 10. Branching performance for the conference benchmark.
Theoretical results were simulated with an ideal memory system.

Hardware support for SIMT branching has grown in

complexity as machines continue to advance to support

wider application scopes. Early SIMT machines supported

branching using mode bits [21] (also called predicated

masks). Mode bits would disable the results for specific

threads from being written back, effectively disabling the

processor. This method results in every instruction being

executed and processors are turned off accordingly. Modern

day processors still implement mode bits for short branching

instructions; however they do not support diverging control

flow.

Dynamic warp formation [11] allows for warps to be

modified to contain different threads during runtime. Pro-

cessor cores have multiple warps assigned at application

launch and only a few can be executed through the pipeline

at a given time. As warps exit the pipeline back into the

warp pool, threads are separated based on their next PC and

placed into new warps. Warp metadata is then expanded to

keep track of which threads are in a warp, so that register

translation methods can still function correctly. Threads can

be organized into warps using two different methods. The

first requires that threads cannot change the SP that they

have originally been assigned to. This method needs minimal

hardware support, but limits thread flexibility. The second

method adds a cross-bar network to all SPs to allow register

values to be passed. While this adds hardware complexity,

threads can be assigned to any warp that has a thread

opening. Modifying warps at this level has the advantage

of not requiring any code modifications.

Programming models for GPUs have focused on graphics

rendering [22] and general-purpose computations [9], [23].

Graphics rendering programming models use the concept

of a pipeline. While different pipeline stages can be pro-

grammable using custom kernels, additional pipeline stages

cannot be added and the data movement between stages is

fixed. Furthermore, implementation of the fixed logic hard-

ware components is proprietary and closed. Programmable

graphics pipelines is supported in GRAMPS [24], where

user-defined pipeline stages (implemented using kernels)

pass data between stages using queues. However, in [24],

underlying optimizations for wide SIMT control flow are

not addressed.

IX. CONCLUSIONS

In this paper, we proposed runtime thread creation to

execute µ-kernels in order to improve processor efficiency

for global rendering algorithms. In our scheme, new threads

are created to replace branching statements that cause low

processor efficiency. We have presented our hardware archi-

tecture for creating new threads and grouping similar control

flow threads into new warps. Our scheduler allows for

scheduling of new warps when enough processor resources

are available and can also schedule initial thread launches at

the warp level instead of at a thread block level. By replacing

critical branch statements with dynamic thread creation, we

are able to increase the performance of rays per second by

an average of 1.4x.
Our original algorithm implementation is naı̈ve in the

sense that every loop is performed by spawning a new

thread. Development of a more advanced algorithm can im-

prove performance by allowing branching instead of thread

creation when all threads in a warp follow the same branch.

Additional future work is aimed at expanding supported al-

gorithms beyond rendering algorithms and to support thread

block level restrictions, such as thread synchronization and

shared memory. By supporting a much larger set of applica-

tions, determining critical branches may not be as obvious

as in the presented graphics rendering example. We plan

to study the effects of selecting different code generation

methods and to create a compiler to ease implementation

from original code sources. While dynamic thread creation

has shown to be advantageous for performance, the µ-kernel

concept can also benefit the SIMT programming model.

To support such a model, we plan to further investigate

the memory system for allocating memory to support an

arbitrary number of thread creations per thread as well as

caching architectures.

ACKNOWLEDGMENT

This work has been supported in part by a National

Science Foundation (NSF) Graduate Research Fellowship.

REFERENCES

[1] M. Hill and M. Marty, “Amdahl’s law in the multicore era,”
Computer, vol. 41, no. 7, pp. 33–38, Jul. 2008.

[2] M. Pharr and G. Humphreys, Physically Based Rendering:
From Theory to Implementation. Morgan Kaufmann Pub-
lishers Inc., 2004.

[3] C. Benthin, I. Wald, M. Scherbaum, and H. Friedrich, “Ray
tracing on the Cell processor,” in IEEE Symposium on Inter-
active Ray Tracing, Sep. 2006, pp. 15 –23.

[4] T. J. Purcell, I. Buck, W. R. Mark, and P. Hanrahan, “Ray
tracing on programmable graphics hardware,” in ACM SIG-
GRAPH Courses, 2005.

[5] T. Aila and S. Laine, “Understanding the efficiency of ray
traversal on GPUs,” in Proceedings of High-Performance
Graphics, 2009, pp. 145–149.

[6] D. Cederman and P. Tsigas, “On dynamic load balancing on
graphics processors,” in Proceedings of Graphics Hardware,
2008, pp. 57–64.

[7] S. Rixner, W. Dally, U. Kapasi, B. Khailany, A. Lopez-
Lagunas, P. Mattson, and J. Owens, “A bandwidth-efficient
architecture for media processing,” in Proceedings of the Int’l
Symposium on Microarchitecture (MICRO), 1998, pp. 3–13.

[8] U. Kapasi, S. Rixner, W. Dally, B. Khailany, J. H. Ahn,
P. Mattson, and J. Owens, “Programmable stream processors,”
Computer, vol. 36, no. 8, pp. 54–62, 2003.

[9] NVIDIA, “NVIDIA CUDA Compute Unified Device Archi-
tecture Programming Guide,” 2010.

[10] M. Harman and S. Danicic, “A new algorithm for slicing
unstructured programs,” Journal of Software Maintenance,
vol. 10, no. 6, pp. 415–441, 1998.

[11] W. Fung, I. Sham, G. Yuan, and T. Aamodt, “Dynamic warp
formation and scheduling for efficient GPU control flow,”
in Proceedings of the Int’l Symposium on Microarchitecture
(MICRO), 2007, pp. 407–420.

[12] T. Whitted, “An improved illumination model for shaded
display,” Communications of the ACM, vol. 23, no. 6, pp.
343–349, 1980.

[13] J. Bentley, “Multidimensional binary search trees used for
associative searching,” Communications of the ACM, vol. 18,
no. 9, pp. 509–517, 1975.

[14] P. Shirley and R. Morley, Realistic Ray Tracing. AK Peters,
Ltd., 2003.

[15] A. Ariel, W. Fung, A. Turner, and T. Aamodt, “Visualizing
complex dynamics in many-core accelerator architectures,” in
Proceedings of the Int’l Symposium on Performance Analysis
of Systems and Software (ISPASS), 2010, pp. 164–174.

[16] A. Bakhoda, G. Yuan, W. Fung, H. Wong, and T. Aamodt,
“Analyzing CUDA workloads using a detailed GPU simula-
tor,” in Proceedings of the Int’l Symposium on Performance
Analysis of Systems and Software (ISPASS), 2009, pp. 163–
174.

[17] NVIDIA, “NVIDIA Quadro FX 5800,” http://www.nvidia.
com/object/product quadro fx 5800 us.html.

[18] Benjamin Segovia, “Radius-CUDA,” 2008, http://www710.
univ-lyon1.fr/∼bsegovia.

[19] I. Wald, “Realtime Ray Tracing and Interactive Global Il-
lumination,” Ph.D. dissertation, Computer Graphics Group,
Saarland University, 2004.

[20] NVIDIA, “NVIDIA Compute PTX: Parallel Thread Execu-
tion ISA 1.1,” 2007.

[21] W. Bouknight, S. Denenberg, D. McIntyre, J. Randall,
A. Sameh, and D. Slotnick, “The Illiac IV system,” Proceed-
ings of the IEEE, vol. 60, no. 4, pp. 369 – 388, Apr. 1972.

[22] M. Segal and K. Akeley, “The OpenGL Graphics System: A
Specification (Version 4.0),” 2010.

[23] ATI, “ATI Stream Computing, Compute Abstraction Layer
Programming Guide 2.0,” 2010.

[24] J. Sugerman, K. Fatahalian, S. Boulos, K. Akeley, and
P. Hanrahan, “GRAMPS: A programming model for graphics
pipelines,” ACM Transactions on Graphics, vol. 28, no. 1,
2009.

