
Journal of Signal Processing Systems
https://doi.org/10.1007/s11265-020-01546-x

CyNAPSE: A Low-power Reconfigurable Neural Inference
Accelerator for Spiking Neural Networks

Saunak Saha1 ·Henry Duwe1 · Joseph Zambreno1

Received: 30 November 2019 / Revised: 17 March 2020 / Accepted: 5 May 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
While neural network models keep scaling in depth and computational requirements, biologically accurate models are
becoming more interesting for low-cost inference. Coupled with the need to bring more computation to the edge in resource-
constrained embedded and IoT devices, specialized ultra-low power accelerators for spiking neural networks are being
developed. Having a large variance in the models employed in these networks, these accelerators need to be flexible, user-
configurable, performant and energy efficient. In this paper, we describe CyNAPSE, a fully digital accelerator designed
to emulate neural dynamics of diverse spiking networks. Since the use case of our implementation is primarily concerned
with energy efficiency, we take a closer look at the factors that could improve its energy consumption. We observe that
while majority of its dynamic power consumption can be credited to memory traffic, its on-chip components suffer greatly
from static leakage. Given that the event-driven spike processing algorithm is naturally memory-intensive and has a large
number of idle processing elements, it makes sense to tackle each of these problems towards a more efficient hardware
implementation. With a diverse set of network benchmarks, we incorporate a detailed study of memory patterns that
ultimately informs our choice of an application-specific network-adaptive memory management strategy to reduce dynamic
power consumption of the chip. Subsequently, we also propose and evaluate a leakage mitigation strategy for runtime control
of idle power. Using both the RTL implementation and a software simulation of CyNAPSE, we measure the relative benefits
of these undertakings. Results show that our adaptive memory management policy results in up to 22% more reduction in
dynamic power consumption compared to conventional policies. The runtime leakage mitigation techniques show that up to
99.92% and at least 14% savings in leakage energy consumption is achievable in CyNAPSE hardware modules.

Keywords Neuromorphic · Spiking neural networks · Reconfigurable · Accelerator · Memory · Caching · Leakage ·
Energy efficiency

1 Introduction

While deep neural networks provide state-of-the-art per-
formance in classification, regression and even generative

� Saunak Saha
saha@iastate.edu

Henry Duwe
duwe@iastate.edu

Joseph Zambreno
zambreno@iastate.edu

1 Department of Electrical and Computer Engineering,
Iowa State University, Ames, IA, USA

tasks, they have to pay steep dividends when deployed on
conventional architectures [8]. Recently, there has been an
unprecedented increase in the depth of neural networks
owing to their application in extremely complicated tasks
of perception and generation [45]. As these networks grow
wider and deeper, the number of processing elements (i.e.,
neurons) grow substantially and the number of learnable
parameters can grow up to quadratically with respect to the
number of processing elements. This makes them extremely
demanding in terms of silicon real estate, especially mem-
ory, as well as compute performance and power. To bring
this computation closer to the edge in resource-constrained
devices, recently there has been considerable interest in
building special-purpose hardware accelerators to support
inference [12, 35, 52, 60], training [44, 63] as well as com-
pilers to bridge the gap between software simulation and

http://crossmark.crossref.org/dialog/?doi=10.1007/s11265-020-01546-x&domain=pdf
http://orcid.org/0000-0002-7515-3525
mailto: saha@iastate.edu
mailto: duwe@iastate.edu
mailto: zambreno@iastate.edu

J Sign Process Syst

hardware acceleration [62]. However, while microarchitec-
tural techniques have been able to improve on the efficiency
of neural network processing, it is nowhere near the biolog-
ical neocortex, which is not only substantially deeper and
wider but is also significantly more efficient in terms of
energy and data [3].

The major inefficiency of these networks result from
continuous and expensive computational primitives at every
discrete timestep of the simulation. Spiking neural networks
(SNNs) attempt to marry the approaches of computational
neuroscience and deep learning by using more biologically
accurate processing elements, spiking neurons. SNNs are
extremely energy efficient, fast, noise-invariant and give
great insight into neuroscientific understanding. However,
the processing substrate for SNNs in common use today,
which can both accelerate their applications as well as
exploit their advantages, is completely different from
artificial neural network accelerators.

Introduced by Carver Mead in 1990 [47], neuromorphic
engineering has concerned itself with computing fabric
that is able to emulate biologically plausible dynamics so
as to perform efficient processing of neural information.
Neuromorphic hardware acceleration has been achieved
by both mixed-signal and digital hardware [57]. While
analog hardware can emulate biological realism and energy
efficiency to a much greater extent [49, 54, 61], they
are plagued by process, voltage and temperature (PVT)
variations and is especially difficult to scale to today’s
technology nodes [40]. Digital implementations provide
these advantages and are suitable for integration to
embedded systems and software ecosystems [1, 13, 50].
Neural response latency in digital circuits is orders of
magnitude lower than the diffusion time of ions across the
biological membrane. Hence, neural ensembles in silicon
can achieve faster-than-real-time performance. However,
the usefulness of a digital neural accelerator is strongly
dependent on its energy efficiency. A common approach
is to trade-off some inference latency if that can lead
to improved energy consumption. To that end, this paper
makes the following contributions:

1. We present CyNAPSE: a digital SNN accelerator
with reconfigurable network topology and flexible
generalized neural dynamics.

2. We study the memory access patterns of several
SNN workloads and observe that spike processing is
predominantly memory-intensive with respect to power
consumption.

3. We propose a memory management strategy to reduce
the power consumption resulting from redundant
memory accesses in the baseline. Results range from
13-44% power savings over the baseline and 8-23%
over best conventional replacement policies.

4. We observe that large amounts of on-chip power
consumption is accounted for by static leakage owing
to the predominantly idle resources typical of an SNN
inference fabric.

5. Accordingly, we implement simple runtime leakage
control techniques to arrest up to 98% of leakage energy
in CyNAPSE modules that could be especially relevant
in multicore manifestations of the accelerator.

The rest of the paper is organized as follows. Section 2
covers a motivational account for SNNs in general,
describes our generalized neuron model and lists the
benchmaks used in the study. Section 3 describes the
CyNAPSE system, its working in brief and other related
IP developed and used in this work. Section 4 attempts
to explain the problem at hand and presents the proposed
efficient memory management scheme in detail. Section 5
describes our implementation of runtime leakage control
techniques to arrest on-chip energy consumption and
prescribes the experimental approach to arrive at the results.
We evaluate our work and present the results in Section 7
and conclude in Section 8

2 Spiking Neural Networks

Classical Artificial Neural Network (ANN) models can
be defined as topological variations of the Multilayer
Perceptron (MLP) where a large number of perceptrons
or artificial neurons are connected in different ways.
Depending on connectivity, these networks can have dense
fully connected layers or convolutional sparsely connected
layers. The flow of information can be unidirectional as in
feed-forward layers or bidirectional as in recurrent layers.
For computer vision applications, some specialized layers of
computation are commonly employed between these layers,
such as pooling, normalization etc. However, the basic unit
of computation in these networks are these artificial neurons
employed to encode and compute data in a collective
fashion. Figure 1 shows the basic computation of such a
neuron. In ANNs, a neuron j in layer L receives N floating-
point inputs xi

L−1 and a single floating-point bias bL. Each
connection into this neuron is weighted by a floating-point
weight wi,j

L. The total input to this neuron is therefore a
weighted sum of all inputs on which it applies an activation
fact

L or nonliearity to compute its output and propagates
the same to the subsequent layer. This output φj

L can be
given by:

φj
L(x) = fact

L

(N∑
i=1

xi
L−1wi,j

L + bL

)
(1)

Therefore, to compute the input to all neurons of
layer L, a floating-point General Matrix Vector (GEMV)

J Sign Process Syst

Figure 1 Schematic descriptions of a typical perceptron or artificial neuron (left) compared to the working of a spiking neuron (right) in their
respective networks.

product is computed between the input vector x and the
weight matrix W before the respective nonlinearities can be
applied. This is followed by a floating-point computation
to apply the activation. These inputs are communicated
continuously at every discrete timestep of the inference
and therefore require large synchronous floating point
GEMV operations for the entirety of the simulation
period. Furthermore, the inherent nature of computation in
these neurons is spatial and therefore, without the added
complexities of recurrent connections, fail to capture any
temporal variance in the data distribution. ANNs learn
using backpropagation of classification errors and tuning
of weights using gradient descent. Not only is gradient
descent difficult to implement in hardware emulation [48],
but requires labeled data, the dearth of which is well
acknowledged [24].

However, these ANNs are only high-level abstractions of
neural inference as it is believed to occur in their biolog-
ical counterparts. For example, biological neural cultures
have shown to have very inexpensive, error-tolerant and
sustainable computation [3]. Contrary to perceptrons, bio-
logical neurons encode and process real-world information
through spikes. Spikes or action potentials are transient
excursions of a neuron’s membrane voltage above its usual
range of operation [25, 26]. Information is communicated
amongst neurons in the precise timing of these spikes rather
than the morphology of the signal itself. Therefore, these
communications can be represented in a temporal distri-
bution of binary all-or-nothing signals. These signals flow
through synapses or connections between neurons with a
synaptic weight that determines the efficacy of signal trans-
fer [58]. A population of neurons and synapses form Spiking
Neural Networks (SNNs). These are biologically plausi-
ble networks that use low-level mathematical abstractions
of real neurons to develop energy-efficient alternatives to
classical network architectures. Figure 1 shows a single
spiking neuron in an SNN topology. Temporal distribution
of spikes

∑
n δi

L−1
(t−tn) from the previous layer arrive as a

weighted sum via synaptic weightswi,j
L into a spiking neu-

ron j of the layerL. At a given timestep of the simulation tn,
all incoming spike inputs will contribute to the membrane
voltage of the neuron ν(t) according to the spiking neuron
model function hL as:

νj
L(x, tn) = hL

[N∑
i=1

(∑
n

δi
L−1(t − tn)

)
wi,j

L

]
(2)

where hL is mathematical model of the neuron that
describes the integration of inputs into the membrane
voltage and conditional generation of action potential
typically following a trend as shown in the figure (inset).
Note that computation using binary spikes alleviate the
need for large expensive GEMV operations. In a single
timestep, now the processing is reduced to conditional
floating-point adds. There is no need for computation at
every timestep, rather only when there is a spike from the
preceding layer. Since spikes are sparse events depending
on the input intensity and neuron parameters, this not
only relieves the computation requirements but also brings
an inherent temporal nature in the computation, even
without explicit recurrent connections. It should also be
emphasized that SNNs are more amenable to unsupervised
learning using variants of Spike Timing Dependent Plasticity
or STDP where the synaptic weights are dynamically
tuned according to the difference in timing of post-
synaptic and pre-synaptic action potentials [7]. Although
this paper is concerned primarily with inference, reducing
the dependence on labeled data should be highlighted
as one of the driving forces behind emerging interest in
SNNs [15, 36].

2.1 NeuronModel

Spiking neurons can be described in varying levels of detail
ranging from biophysically accurate and computationally

J Sign Process Syst

expensive models [25] to simpler phenomenological models
that trade off some biological detail for tractable simulation
of large SNNs [19, 30]. One popular example of the
latter is the Leaky Integrate and Fire (LIF) model [19,
41]. It empirically reproduces the generation of neuron
action potential via imperfect (or leaky) integration of
synaptic inputs into a thresholded membrane voltage. It
is a point neuron model in that it accounts for temporal
integration of spikes without attention to spatial variation
in these integrations within a single simulated neuron.
This simple abstraction provides an excellent balance
between biological plausibility and large scale tractability
for application in SNNs for object recognition [15, 16, 51].
Further, to agree with various neuroscientific observations,
the LIF model has been equipped with different application-
specific parameters to produce mathematical variants [9,
20, 34]. Since our approach is to cater to a wide range
of applications without losing generality, we have adopted
a generalized and hardware reconfigurable model of the
LIF [33]. This model can be mathematically described as
follows:

RmCm

dVm

dt
= −gl(Vm(t)−Vrest)−gNa(t)(Vm(t)−VrNa)

−gk(t)(Vm(t) − VrK) (3)

where RmCm can be collectively denoted as τm which signi-
fies the time constant of exponential leak of the membrane
voltage. The voltage leaks through a constant conductance
of gl with a tendency to return to its resting potential
Vrest . Any synaptic input from connected neurons arrive
either as Excitatory Post Synaptic Current (EPSC) through
a time-varying sodium conductance gNa or as Inhibitory
Post Synaptic Current (IPSC) through a potassium conduc-
tance gK . These terms mimic the sodium and potassium
ion channels of a biological neuron having reversal poten-
tials VrNa and VrK respectively, upon reaching which, the
respective currents cease to integrate. The dynamic behav-
ior of these ion channel conductances themselves follow the
equations:

τion

dgion(t)

dt
= −giont (4)

that describes the decay of conductances similarly as Eq. 3.
The action potential is generated by a simple thresholding
and reset behavior:

Si(t) =
{
0, Vm(t) < Vth

1, Vm(t) ≥ Vth

(5)

Vm(t) =
{

Vreset , tn ≤ t ≤ tn + tref

Vm(t), otherwise
(6)

where Si(t) is the binary spike signal as a result of
thresholding and tn is the time whenever the neuron
membrane voltage reaches the threshold potential Vth going
into a refractory period tref during which it exhibits a
state of hyperpolarization and sits at a reset potential Vreset

thereby ignoring any synaptic effects during such a time.
For a detailed discussion on neuron model parameters, their
origin and significance, we point the readers to [19]

The generalized LIF model affords, among other factors,
conductance-based synapses and voltage-dependent current
integration, two widely accepted ingredients for biological
plausibility in real neurons [36]. As a testimonial, we
show membrane voltage characteristics of our model with
test stimulus in Figure 2 using the Brian2 simulation
environment [21] to concur with observations in real neural
cultures [30]. The main advantage of the generalized LIF
model is its flexibility. For example, it can be easily
configured into a simpler and less plausible perfect Integrate
and Fire (IF) model by fixing τm to unity and disabling gl .
This can be useful in very deep network of spiking neurons
on account of a great performance boost. If the simple LIF
model with constant current integration is desired, varying
degrees of simulation gains can be achieved by gradually
diminishing the τNa and τK values modelling the effect of
directly integrating into the membrane voltage more and
more closely. Vth of neurons are independent parameters
that can be set as desired in order to model the homeostatic
effect after competitive learning by incorporating variable
thresholds during inference.

2.2 Benchmarks

We have selected three different SNNs as our benchmarks
for this work. They bring significant diversity to our case
study by using different neural dynamics and training
algorithms to solve the standard task of MNIST digit
recognition [42].

The first network is a winner-take-all network with
lateral inhibition trained using STDP [7]. It is built from
LIF neurons with conductance based synapses and voltage-
dependent current integration. This network achieves a
maximum accuracy of 95% on MNIST as shown in [15].
Hereafter, we call it a Spiking Competitive Winner-take-
all Network (SCWN). The second network is a feed-
forward restricted boltzmann machine that has been trained
using contrastive divergence [23], an unsupervised learning
technique, and has been converted to an event-based
network post-training, achieving a maximum accuracy of
92% [51]. This network has no recurrent connections, is
built from simple LIF neurons and is referred to as the

J Sign Process Syst

Figure 2 Simulation characteristics of the LIF neuron showing membrane potential traces in a regular spiking, b tonic bursting and c fast spiking
behaviors.

Spiking Deep Belief Network (SDBN). The third network
follows a convolutional topology and has been trained
using standard error backpropagation [56]. Thereafter, it
has been converted into the spiking domain following the
methodology advised by [16]. It achieves a maximum
accuracy of 97%, although the loss of accuracy from
the equivalent analog network is negligible. This network
is built from integrate and fire (IF) neurons that are
perfect integrators with no leak or ion-channel conductance
modelling. This network is significantly larger than the
others but the connectivity is much sparser. Hereafter, we
refer to it as the Spiking Convolutional Neural Network
(SCNN).

The activity of each of these networks along with their
internal connectivity will determine the energy footprint of
these networks. Activity of a network depends on a large
number of tunable hyperparameters. As discussed before,
SNNs have an inherent temporal nature to them which
is tunable by controlling the maximum input frequency
and/or exposure time of a single stimulus. The network
architect may want to select a high frequency that might
lead to fast inference or a low frequency which can mean
consolidation of energy by compromising on the inference
latency and/or accuracy. The minimum discrete timestep
for processing the exposure time is called the resolution.
Other such hyperparameters include the range of weights,
individual neuron thresholds, refractory periods, membrane
time constants etc. As we discuss further in the following
sections, the layer-wise spiking activities and spike fractions
of the three networks show the variety of spike signatures
that we can expect. It shows that network activity can
attenuate as we go deeper, but it might also grow (for

the SDBN). There may (for the SCNN) or may not (for
the SCWN) be a good ratio between input-generated and
internally-generated events. Table 1 lists succinct details of
the benchmarks.

3 The CyNAPSE Neural Accelerator

3.1 Chip Microarchitecture

Figure 3 shows the overall design of the CyNAPSE accel-
erator excluding the memory hierarchy. This accelerator
works in a coprocessor configuration with a host CPU or
interfaces with dedicated sensory processing hardware like
a spiking retina [46], cochlea [59] or a dynamic vision sen-
sor [14]. CyNAPSE is an accelerator for SNN inference
simulation and is assisted by the CPU and/or embedded
spike generation/consumption circuits to complete the end
to end application in question.

Each network simulated by the system consists of
its own biological timeframe (different from the system
clock domains). Any given simulation time is expressed
in Biological Time (BT) which has a network-specified
granularity of δt . The accelerator communicates with
external interrupts through the I/O FIFO queues. All
communications take place using the Address Event
Representation (AER) protocol. Under this protocol, each
spike is expressed as a packet consisting of the BT and a
unique ID of the neuron that produced it. All spike inputs
to the network are queued into the input FIFO. Internally
generated spikes are queued into the auxiliary FIFO for
rerouting and if produced by an output layer, they are

J Sign Process Syst

Ta
bl
e
1

Sp
ik
in
g
ne
ur
al
ne
tw
or
k
be
nc
hm

ar
ks

us
ed

fo
r
th
is
st
ud
y.

Sp
ik
in
g
C
om

pe
tit
iv
e
W
in
ne
r-
Ta
ke
-A

ll
N
et
w
or
k
(S
C
W
N
)

L
ay
er
s

N
eu
ro
ns

Sy
na
ps
es

N
eu
ro
n
M
od
el

M
ax
.I
np
ut

Fr
eq
.

E
xp
os
ur
e

R
es
ol
ut
io
n

T
ra
in
in
g

M
ax
.A

cc
ur
ac
y

3
15
84

47
36
00

L
IF

63
.7
5
H
z

50
0
m
s

0.
5
m
s

ST
D
P
-
W
TA

95
%

L
ay
er

In
pu
tL

ay
er

E
xc
ita
to
ry

L
ay
er

(f
or
w
ar
d
si
ng
le
)

In
hi
bi
to
ry

L
ay
er

(r
ec
ur
re
nt

de
ns
e)

Sp
ke

Fr
ac
tio

n
97
.8
%

1.
1%

1.
1%

Sp
ik
in
g
D
ee
p
B
el
ie
f
N
et
w
or
k
(S
D
B
N
)

L
ay
er
s

N
eu
ro
ns

Sy
na
ps
es

N
eu
ro
n
M
od
el

M
ax
.I
np
ut

Fr
eq
.

E
xp
os
ur
e

R
es
ol
ut
io
n

T
ra
in
in
g

M
ax
.A

cc
ur
ac
y

4
17
94

64
70
00

L
IF

6
H
z

10
00

m
s

1
m
s

C
D

92
%

L
ay
er

In
pu
tL

ay
er

L
ay
er

2
(d
en
se
)

L
ay
er

3
(d
en
se
)

O
ut
pu
tL

ay
er

(d
en
se
)

Sp
ke

Fr
ac
tio

n
15
.6
%

23
.7
%

59
.0
%

1.
7%

Sp
ik
in
g
C
on
vo
lu
tio

na
lN

eu
ra
lN

et
w
or
k
(S
C
N
N
)

L
ay
er
s

N
eu
ro
ns

Sy
na
ps
es

N
eu
ro
n
M
od
el

M
ax
.I
np
ut

Fr
eq
.

E
xp
os
ur
e

R
es
ol
ut
io
n

T
ra
in
in
g

M
ax
.A

cc
ur
ac
y

6
13
59
4

65
28
00

IF
10
00

H
z

10
0
m
s

1
m
s

B
ac
kp
ro
pa
ga
tio

n
97
%

L
ay
er

In
pu
tL

ay
er

L
ay
er

2
(c
on
v2
D
)

L
ay
er

3
(s
ub
sa
m
pl
in
g)

L
ay
er

4
(c
on
v2
D
)

L
ay
er
5
(s
ub
sa
m
pl
in
g)

O
ut
pu
tL

ay
er

(d
en
se
)

Sp
ik
e
Fr
ac
tio

n
47
.2
%

35
.7
%

7.
6%

7.
7%

1.
7%

0.
1%

listed into the output FIFO waiting to get dequeued by an
external interrupt for inference. It consists of two routing
state machines for handling the input spikes (input router)
and to reroute internally generated spikes (internal router).
The neuron unit in CyNAPSE supports a maximum of N

logical neurons (i.e. neurons in the network). To support
deep network kernels within constrained chip resources,
all logical neurons are not provisioned with dedicated
circuits. Instead, a fewer number X of physical neurons
(i.e. neuron circuits in the hardware) are used that support
time-multiplexed access to a subset of logical neurons.
This requires persistent storage of neuron states of all N

neurons across X dendritic SRAM stacks that contain the
current membrane, threshold, conductance and refractory
states of each logical neuron. A memory controller handles
all outgoing queries from the routing state machine to
supply network weights for simulation to proceed. A
system controller maintains the timeline of simulation,
synchronizes control at the BT barriers and switches
simulation phases at appropriate times to ensure correctness.

3.2 Neuron Design

Figure 4 shows the design of a single physical neuron
circuit used in the CyNAPSE accelerator. This circuit
emulates a discrete-time model of the generalized LIF
neuron membrane dynamics as well as supports synaptic
integration through nonlinear ion-channel dynamics as
given by Eqs. 3 and 4. The neuron circuit shows three
distinct channels in operation. The Na+ and K+ ion-
channels integrate synaptic weights from spikes that arrive
into this neuron depending on whether they arrive from
excitatory or inhibitory pre-synaptic neurons respectively.
This updates the current conductance values of the logical
neuron. The leak-channel dynamics update the membrane
voltage of the current logical neuron by using current
conductance values. There is a comparator circuit that
checks for membrane thresholding and accordingly releases
a spike AER packet into the buffer. Updated status of each
logical neuron are written back to the respective dendritic
SRAM stacks.

3.3 Scheduling and core control

The CyNAPSE system is initialized by copying all trained
weights into the device memory (similar to a memcpy)
and configuring the CyNAPSE parameters to match the
appropriate network architecture and neuron model desired
for the particular network we want to run. Figure 6a
shows a graphical depiction of how CyNAPSE schedules
the various phases of inference. First, the top event of
the Input FIFO is checked. If it is in the current BT,
it is dequeued for routing. The Input-to-Dendrite route

J Sign Process Syst

Figure 3 The overall chip microarchitecture of the CyNAPSE neural accelerator.

pipeline fetches all post-synaptic weights from the memory
hierarchy and updates the appropriate post-synaptic neuron
dendritic statuses on the SRAM stacks. All events of the
current BT are similarly dequeued for routing from the input
FIFO and then from the auxiliary FIFO as well until the
top events in both queues belong to a future timestep. This

shifts control to the Neuron Unit for the update pipeline.
Here, all valid status words in an SRAM stack use the
corresponding physical neuron ALU to update itself in a
pipelined manner and any spikes produced are filtered out.
When it is completed, any spike produced are rerouted to the
auxiliary and, if required, to the output queues for further

Figure 4 The full-custom digital generalized integrate and fire neuron.

J Sign Process Syst

Figure 5 a Control flow of SNN emulation in the CyNAPSE Core and b Control flow of a single synaptic weight lookup by the input router.

handling. This marks the completion of one BT. The system
synchronizes at this barrier, ticks the timer to the next BT
and simulation resumes.

3.4 Memory Control

To support N logical neurons, maximum synaptic storage
required would be O(N2). The closest physical implemen-
tation of the max. would be a fully interconnected Hopfield

pool of neurons [27]. However, all modern applications have
deeper and sparser topologies leading to much lower num-
ber of synapses. This makes a fixedN×N table storage very
inefficient. Instead, we add a layer of indirection in the pri-
mary read path to tradeoff some performance for excellent
gains in storage efficiency. This is done by storing synaptic
weights in pages corresponding to each pre-synaptic neu-
ron. This adds a second layer of indirection via a translation
table that directs the router to the relevant page that belongs

Figure 6 The CyNAPSE
Simulator architecture.

J Sign Process Syst

to the post-synaptic weights of the relevant neuron. This
scheme is most effective when pages are of variable sizes
(so as to reserve only as much memory as the actual fanout
of a certain neuron) and, thus, are marked by the starting
address of the page, or a page pointer. The number of entries
in a single page is determined by one row of a topology
matrix which defines every logical neuron’s connections
and instructs the router state machine to access the next D
page offsets only when a connection exists, where D is the
data-width of the current network. So each event induces the
access of three data items (in chronological order) as shown
in Figure 5b i.e. a topology vector, a page address, and all
the weights in that page, all via a simple bitwise arithmetic
scheme.

3.5 The CyNAPSE Simulator

While we depend on our synthesized and verified RTL
implementation to collect low level statistics and diagnos-
tics about the system’s behavior (see Section 6), for large
design space explorations of the system, we have devel-
oped a CyNAPSE simulator that efficiently implements
the execution model of the hardware accelerator. Figure 6
describes the architecture of the simulation tool. It collects
the kernel parameters (model hyperparameters, architec-
ture, layer definitions etc.), trained parameters (weights,
thresholds etc.) and input/output AER packets to get started
with the desired SNN benchmark. Additionally, it takes
some hardware configuration options that correspond to the
design-time configurable parameters of the CyNAPSE chip.
As we will see later, the simulator is also capable of run-
ning explorations on the off-chip memory system as well
as mitigation of on-chip static leakage. Accordingly, some
configs on the L1 Cache/Main memory system as well as
leakage power management are also accepted. The process-
ing is divided into three software routines: Caching/Memory

management, Network simulation management and Leak-
age power management. The simulator is not inherently
cycle accurate in nature but for static power mitigation, it
adds a global cycle and synchronization layer for timing
purposes. For consumption of the user, we provide scripts
to mention benchmark details, leakage management details
and caching or memory management details.

4 Adaptive MemoryManagement

Since the amount of storage required for weights in large
networks is infeasible for realization on chip, off-chip,
flexible, high-density storage is used to store synaptic
weights of reconfigurable network kernels simulated by
CyNAPSE. This has serious implications on both network
performance as well as energy consumption because
performance of SNN kernels is largely memory-limited and
a large amount of energy is consumed in bringing weights
back into the computation engine to fuel SNN inference. For
each input or internal spike processed by the network, all
post-synaptic weights are loaded by the memory controller
and atomically added to the relevant dendritic SRAM bank.
Depending on the average connectivity of a network, the
amount of time spent in the dendritic routing phase is
variable but it is consistently seen to be a majority of
network simulation time. We show a roofline analysis of
the dendritic routing cycle of CyNAPSE in Figure 7a. We
have tallied the peak Mega Dendritic (atomic) Operations
per second (MDOPS/s) possible in CyNAPSE with a peak
reported bandwidth of commodity DDR3 DRAM as well
as with a lower steady state bandwidth that is expected
in simulation with CyNAPSE. X denotes the number of
physical on-chip neurons in the chosen configuration while
W denotes the precision of synaptic weights. We can see
that with lower peak memory bandwidth, a larger region of

Figure 7 a Roofline analysis of CyNAPSE routing performance and b compute-bound performance requirements for CyNAPSE routing cycle.

J Sign Process Syst

the operational space is memory bound. Figure 7a confirms
this hypothesis. Under steady-state bandwidth and 64 on-
chip physical neurons, greater than half-precision synaptic
weights will result in memory-limited performance.

When compared with the activity factor of a representa-
tive CPU workload, SNN inference has very little switching
computation on-chip because spiking is essentially a sparse
event. In Figure 8, we show the full power consumption
profile of the CyNAPSE system (see Section 6 for details).
It can be noted that for all the benchmarks, with negli-
gible differences, the off-chip memory accesses makes up
for a large share of the total system power consumption.
More physical neurons on chip allow more performance
and according to the use case, may be an energy-dominated
or performance-dominated choice [10]. Regardless, the
opportunity and importance of saving simulation time and
power consumption in off-chip memory traffic is clear
and calls for architectural investigation to explore possible
solutions.

While algorithmic optimizations like pruning and quanti-
zation of weights [22, 29] provide some viable approaches
to relax the memory traffic, their effectiveness is limited by
the allowable degradation in accuracy. We attempt to make
microarchitectural optimizations that do not affect accu-
racy while maintaining compatibility with all algorithmic
changes. We carefully investigate domain-specific access
patterns and make recommendations to cleverly mitigate
large redundant losses.

4.1 CacheManagement Policy

Conventional Cache policies like Least Recently Used
(LRU) and Random can capture, to a great extent, the
data localities in general purpose programs. However, their
ability to model unique references to the same block
is limited by associativity [17]. While Belady’s optimal

replacement policy [5] requires an infeasible view of the
future, policies like DIP [55], RRIP [38] and LIRS [32] have
looked at speculative techniques to predict re-reference of a
cache block in general purpose processors by collecting past
information. However, unlike general purpose programs, we
already have some knowledge about the upcoming accesses,
courtesy of the event-queue. Furthermore, for inference, we
do not have to deal with writes. In other words, it is similar
to an instruction cache in nature. Therefore, we attempt to
design a newmanagement policy that can efficiently capture
subtle behavior particular to our applications and pattern
of memory accesses that conventional policies like LRU or
Random fail to account for.

In CyNAPSE, initially the events are stacked up into
the input FIFO queue until it is full. Thereafter, an event
is enqueued at the write pointer only when another is
dequeued from the read pointer. The input spike router
routes an event that is dequeued and looks into the
memory hierarchy for the relevant neuron’s connectivity
and weights. However, since the queue already contains
up to <queue length> events, the hardware can always
look ahead of the actual execution in terms of events that
are to come. As such, we define two different times for
each event, namely the ‘read-time’ i.e. when a certain
event is read (but not dequeued) from the FIFO queue
and the ‘route-time’ i.e. when this event is eventually
dequeued. Before simulation starts, the cache is warmed
up with events up to a certain lookahead distance. This
distance is selected carefully to maintain sufficient reuse
information from the future without letting these events
thrash the ones that are required sooner. After the initial
warm-up, each event dequed from the top of the FIFO
at its route-time means one event from the bottom is
added to the cache at its read-time. We explain this policy
in detail as follows using each type of cache access
scenario:

Figure 8 System power
consumption of CyNAPSE
broken down for each
benchmark shows significant
DRAM percentage.

J Sign Process Syst

4.1.1 Compulsory Miss at Warm-Up and Read-Time

An “event reader” circuit reads the neuron ID of the first
event that is on the queue. The CyNAPSE simulator (see
Section 3.5) provides computation to generate all addresses
associated with any particular ID of a given network. So, the
circuit will now reserve an unallocated way in the requested
index and start bringing in the data from the main memory
(i.e., DRAM). At warm-up, there is no contending process
inside the cache but queue requests can also be processed
while routing occurs. The cache is configured with two
independent read-write ports for processing simultaneous
requests. Depending on the DRAM steady-state bandwidth
and the latency of a single-route cycle, a cache with
exclusive read-write ports can complete multiple read
requests within the regime of one route request. However,
we consider one read request per route request post warm-
up to keep our study simple and our solution sufficiently
easy to achieve. A compulsory miss means this neuron ID
is encountered by CyNAPSE for the first time since the
cache was last flushed. Therefore, all blocks tagged by the
corresponding addresses are marked with a reuse score of 1,
which essentially means 1 guaranteed route accesses to this
block in the future.

4.1.2 Hit at Read-Time

At some point, the event circuit will come across a neuron
that it had already encountered before in the queue. If this
information still resides in the cache, it is a hit. On a hit, the
circuit will simply increment the reuse score value by 1 and
move on to the next event in the queue issuing no further
request to the next level cache or main memory.

4.1.3 Capacity or Conflict Miss at Read-Time

At a certain point down the queue, the cache is bound to fill
up considerably. This leads to a possible capacity/conflict
miss at read-time. In this case, the naive approach is
to consider evicting the way which has the least reuse
score value. However, replacement at read-time is not
compulsory. There are certain potential concerns that can
occur with replacements at read-time. Accordingly, we
consider three different approaches to handle read-time
replacements:

– Conservative approach: Multiple-reuse blocks can be
easily thrashed by blocks that end up not being reused
much and will lead to severe thrashing of blocks
resulting in unnecessary memory traffic and energy
expense. Hence, no replacements are allowed at read-
time.

– Aggressive approach: Not allowing replacements at
read-time will lead the cache to lose out on potential
opportunities to reuse blocks that could have been
loaded into the cache. Hence, this approach always
replaces the minimum reuse score block at read-time.

– Intelligent approach: Replace at read-time only when
the minimum reuse score in a set is below a specific,
reconfigurable reuse threshold.

If a read-time replacement occurs, the new import will be
marked with a reuse score of 1.

4.1.4 Compulsory Miss at Route-Time

There are no compulsory misses at route-time in this policy.
Misses happen only when the policy opts out of read-time
replacements for all read-time references of a particular
block before its route-time arrives.

4.1.5 Hit at route-time

Hit at route-time means one promised reuse has been
realized. This is, therefore, accompanied by a decrement of
the reuse score of the corresponding cache block by 1.

4.1.6 Policy Miss at Route-Time

As mentioned above, there is a finite probability of
encountering misses at route-time if the particular read-time
replacement policy that is employed fails to warrant the
(pre)fetching of a certain block. This requires the router
to request an import from the next level cache or main
memory. The route-time policy simply asks the router to
replace the block with the lowest reuse score in the cache
set by the new block since it is compulsory to bring the new
cache block into the cache at route-time (unless there is a
bypass mechanism). This time we put a zero into the reuse
score field of the block on a fresh import since there are no
guaranteed reuses after this point for this particular block.
Figure 9 summarizes the baseline memory control scheme.

4.2 Network-Adaptive Enhancements

Our domain-specific cache policy only accounts for events
in the event queue that are generated at a much higher
throughput than the expected compute-latency of processing
a single event and are visible to the event reader prior to
their individual route-time. While input events necessarily
satisfy this criterion, all internal events generated within the
network are routed in the biological timestep immediately
following the one in which they are generated, making them
unsuitable for our scheme. As our benchmarks show, input

J Sign Process Syst

Figure 9 Baseline read-time
and route-time memory control
schemes.

activity can have different relative importance to internal
activity and, hence, could affect our scheme to varying
degrees. It is clear that we need flexible and dynamic
network-specific enhancements that help make our scheme
robust to these variances.

The CyNAPSE core requires compile-time information
about network layer types (dense, conv2d, subsampling,
etc.) as well as neuron ID ranges corresponding to these
layers. Some of this static information can help us adap-
tively extend our scheme to perform better. We attempt to
extend this static kernel information to include dynamic
behavioral data. Simulation statistics can dynamically pro-
vide information like heightened areas of activity as well as
dormant regions in the network. This can be collected from
the auxiliary queue over time which contains all internal
activity of the network. We dump queue statistics dur-
ing simulation of a batch of example stimuli and use this
information to dynamically improve our policy. Figure 10
shows the simulation statistics collected by our simulator
for each benchmark in terms of spiking activity fraction
of a layer relative to the whole network. We use statistics
at a layer granularity to consolidate storage and computa-
tion required on-chip for this purpose. A higher granularity

would provide better results, but incur more storage and
computational overhead. Static or compile-time informa-
tion is a functional requirement for network simulation in
CyNAPSE. Therefore, it poses no extraneous computational
cost to generate and store static kernel data. We just set up
masked loads to ensure our adaptive techniques are applied
to relevant layers and ranges. Next, for dynamic adap-
tivity, we have set up low-granularity layer-wise counters
attached to the auxiliary queue that use fixed-point arith-
metic once after every batch of examples. Given the average
number of spikes per example and the average number of
routes per spike, this presents little logical (power/area)
overhead and performance cost relative to the amount of
performance savings resulting from freeing up the cache
for high reuse neurons taking advantage of our manage-
ment policy. We propose two techniques to extend our
scheme:

4.2.1 Cache Bypassing

Consider the SCWN benchmark. All LIF (internal) neurons
in the network demonstrate extremely little activity relative
to the input spike frequencies. CyNAPSE routes all internal

J Sign Process Syst

Figure 10 Spike statistics
generated dynamically by the
CyNAPSE simulator to
adaptively configure cache
requests.(a), (b) and (c) show
layer-wise activity fractions for
the SCWN, SDBN and SCNN
respectively with time.

events into the auxiliary queue for further processing,
including output events, since this is a hard requirement for
recurrent topologies like the SCWN. Statically, therefore,
we have no information that can benefit our scheme.
However, as we will see experimentally, the distribution of
network activity is highly skewed in favor of the input layer
when compared to the processing neurons. Not only does
this help our basic strategy, but also gives us a clear path to
an adaptive extension that we can apply. For feed forward
benchmarks like the SDBN and SCNN, the distribution is
not so obviously favorable. There is considerable activity
in the deeper layers and these neurons usually pollute
cache blocks by occupying them at the cost of high reuse
conflicting neurons which could otherwise save energy.
Therefore, we propose a mechanism to bypass all memory
accesses pertaining to sparse activity neurons by collecting
information on a layer-by-layer granularity. Information can
be statically provided to the cache at compile-time (for e.g.
output neurons for feed forward networks can be bypassed
etc.) or dynamically generated (for e.g. low activity layers in
any network can be bypassed etc.). For dynamically arriving
information to the controller, we maintain an activity bypass
threshold (ABT), which is the minimum activity fraction a
layer needs to maintain on average for its neurons to allocate
data in the cache. On a bypassed request at route-time,
the memory controller does not allocate a cache block and

directly retrieves the requested data from the main memory
or next level.

4.2.2 Line protection

As opposed to low activity LIF neurons in SCWN, Layers
2 and 3 of SDBN and Layer 2 of SCNN show very
high activity among processing neurons (see Figure 10).
These layers can hurt our management scheme greatly if
not accounted for. To that end, we propose a protection
scheme for processing neurons in high-activity layers by
dynamically providing them with a probable reuse score
based on network activity statistics collected over time.
Figure 11 shows the mean reuse distances of neurons in
each layer for each benchmark. We put a probable reuse
score which is inversely proportional to the reuse distance
of a neuron so as to account for all reuses expected within a
certain window of time.

5 Leakage Power Mitigation

Although we established in Figure 8 that the on-chip power
consumption in its entirety (including Logic, SRAM and
FIFO) is a small percentage of the system, it multiplies
when we scale the system up to multiple logical cores to take

J Sign Process Syst

Figure 11 Layer-wise mean
reuse distances of neurons in
each benchmark.

advantage of parallel updates to a layer’s inference. Since
multiple such systems end up sharing higher level memory
hierarchies, core power consumption becomes more and
more accountable vis-a-vis off-chip power consumption.

Figure 12 shows the distribution of power consumption
among the system’s on-chip resources including the routing
systems, memory controller, L1 cache, physical neuron
array and dendritic SRAM stacks besides the control
circuitry associated with each. The key takeaway is that
as we scale up each core’s individual inference capacity
and boost performance (by affording more physical neurons
in the array), more of its energy is consumed in the idle
phase. This is not surprising since the dataflow of SNN
inference is essentially event-driven in nature. Therefore,
a large amount of hardware resources spend most of their
time dissipating leakage power while doing no meaningful
work. Therefore, we propose to employ microarchitectural
techniques to control runtime leakage in sparsely active
circuits and regions.

5.1 Gated VDD and Starved VDD

Power gating is a technique that shuts off power supply
to an execution unit dynamically when the onset of a long
idle period is detected [31, 53]. [28] prescribes a time-based
finite state machine for gating execution units using activity

cycle counters. While gated VDD techniques have produced
some success for cache lines [37, 64], it depends entirely
on the detection of data with sparse temporal reuse. The
same cannot be used for SRAM cells in the dendritic stacks
because they carry their state throughout the simulation
and have complicated temporal reuse as we have already
discussed. [2, 18] introduced a starved VDD technique
to put lines of a cache sub-bank into a drowsy state by
dynamically increasing threshold voltage of devices for
predicted idle periods. The dendritic stacks in CyNAPSE
have large well-defined idle periods that can take advantage
of a starved VDD leakage control strategy.

We start by setting up the parameters required by the
Runtime Leakage Mitigation (RLM) controller module (see
Figure 6) that controls the header devices to every module
to gate or starve power supply to these hardware regions
by monitoring their switching activity over time. Following
from [28] and using technology-specific attributes from the
65nm CMOS library, we set the parameters accordingly.
The user-configurable parameter TidleDetect represents the
number of idle cycles that the controller waits for before
declaring a certain module to be idle. A conservative
management policy uses a sufficiently high TidleDetect

value to avoid large number of sleep/starve and wake-up
cycles each of which is associated with an overhead energy
Eoverhead which is directly proportional to the width of the

Figure 12 Core power
consumption of CyNAPSE
broken down for each
bench-mark shows significant
leakage percentage.

J Sign Process Syst

header device and internal gate capacitance of the block
in question [28]. While the latency of sleep cycles Tsleep

can be hidden behind the actual execution timeline, the
latency of waking up a module on an access during its idle
period incurs a performance penalty TwakeUp. Therefore,
low overhead and low performance impact from unwanted
wake-up cycles is also expected from more conservative
approaches. On the other hand, gradually lowering the
TidleDetect threshold will ideally result in greater percentage
of idle cycles %idleCycles but at the cost of higher
switching overhead and percentage performance penalty
%perf Penalty.

We classify the CyNAPSE hardware macros in a coarse-
grained manner and sweep the TidleDetect values across each
of them to study this effect and derive experimental optimal
values. For each benchmark, module and TidleDetect , we
first calculate the average number of cycles elapsed per
example inference with LPM settings CLPM and without
it Cleak . From our PrimeTime reports, we collect the
average leakage power consumption Pleak over an example
inference and derive the required leakage energy Eleak as:

Eleak = Pleak ∗ Cleak ∗ Tcyc (7)

where Tcyc is the cycle time. In presence of LPM, we count
idle cycles only at the end of a Tsleep latency and until the
start of the next TwakeUp cycle. We calculate the leakage
energy consumption ELPM as:

ELPM = (Pleak ∗ CLPM ∗ Tcyc) ∗
(
1 − %idleCycles

100

)

+2
∑
W

Eoverhead (8)

where W is the total number of wakeUp or sleep cycles
incurred on average. Accordingly the net leakage savings is
calculated as:

Esave(%) = (Eleak − ELPM) ∗ 100

Eleak

(9)

5.2 Application-specific RLM

As mentioned earlier, SNN benchmarks are different from
general purpose CPU or GPU benchmarks because of a
fixed dataflow and well-defined phases in the simulation
where a particular module might be active. Using the
timeline of SNN inference, we make further optimizations
in the RLM strategy. For instance, simulation of every BT
in CyNAPSE begins with a routing cycle during which the
input router interfaces with the memory hierarchy through
the controller and requires atomic operations on SRAM
dendritic stacks. Therefore, for the entirety of this phase,
the neuron array and internal router can be force-gated.
Using similar reasoning, the input router and memory
controller can be force-gated during the update and internal

routing phases. Lastly, the dendritic SRAM stacks can be
collectively force-starved during the internal routing phase
only.

Further, unlike the memory controller and input router,
the activity of the neuron array and internal router are
limited to conspicuous periods within the simulation during
which their operation is not intermittently shared with the
operation of another module. This means they can have the
lowest possible TidleDetect value without significant penalty
in performance or overhead energy. The only exception to
this is when the neuron array accesses an SRAM bank that is
idle. Therefore, we configure the lowest possible TidleDetect

to be only as long as required to tolerate the latency of
waking up SRAM banks.

5.3 Pre-activated SRAM banks

SRAM bank accesses happen in a pipelined way through
either the input router (routing phase) or the neuron array
(update phase). Therefore, each bank can be pre-activated
before the actual access takes place. As a result, we can
hide the latency of waking up the subsequent bank within
the latency of accessing the current active bank. This allows
us to reduce the T iidleDetect value of the SRAM banks to
the lowest possible value. However, while the %idleCycles

are expected to increase steadily with this reduction, it
drives up the overhead energy of redundant sleep/starve and
wakeup cycles. Therefore, we implement the pre-activation
of SRAM banks and sweep TidleDetect towards very low
latencies to study the effect of this recommendation.

6 Experimental Infrastructure

6.1 Low-Level Design

Figure 13 shows our experimental infrastructure and tool
flow. The CyNAPSE core was designed in synthesizable
Verilog HDL and functionally verified against all bench-
marks1. The logic portion (excluding the on-chip dendritic
SRAMs and FIFOs) was synthesized to a commercial 65nm
TSMC library using a nominal supply voltage of 0.9V. Syn-
thesis was done using the Cadence SOC Encounter RTL
Compiler while pre and post-synthesis simulation were car-
ried out in ModelSim. We then used the synthesized netlists
to dump representative activities to VCD files. Synopsys
PrimeTime was used to estimate power using a compat-
ible SAIF format, easily convertible from the VCD for
power estimation over each of our benchmark test-benches.

1Source code for the RTL implementation of the CyNAPSE neu-
romorphic accelerator is available at: https://github.com/saunak1994/
CyNAPSEv11

https://github.com/saunak1994/CyNAPSEv11
https://github.com/saunak1994/CyNAPSEv11

J Sign Process Syst

Figure 13 Experimental
Infrastructure and flow.

All our on-chip SRAM structures were bypassed from the
CAD process and modeled only for functional verifica-
tion. For estimating timing and power of SRAMs we used
CACTI-P [43].

6.2 High-Level Exploration

For high-level architectural exploration of the memory
subsystem, our software simulator generates high-level
statistics like memory accesses per spike, tag array and data
array accesses per spike, hit rate, miss profile, etc. while
maintaining a deterministic one-one equivalence with the
hardware model thereby confirming accurate simulations.
Additionally, the simulator’s memory controller module
also generates DRAM address traces for all synaptic
lookups that go to main memory. These address traces
are used by Ramulator [39] in appropriate organization,
speed and timing configurations to dump JEDEC standard
command traces in DRAMPower [11] format. We route
these commands to DRAMPower 3.1 with consistent
configurations to estimate the energy consumption of
these traces. We use a 256MB DDR3 x8 configuration
with a 1600MHz pin bandwidth which is more than
sufficient to store all synaptic and meta data for our
benchmarks. Although each network has varying tolerance

to error and, thereby, have different precision requirements,
we fix all synaptic data-widths to 8-bytes to have a
fair comparison of memory footprint independent of any
algorithmic optimization on top of them. Using the memory
consumption of traces and CyNAPSE’s timing information,
we calculate the power consumption of the system. In
a cached configuration, we use the same infrastructure
to estimate energy consumption from the main memory.
Additionally, we use high-level statistics like tag and data
array read and write accesses to the cache and plug
them into CACTI’s UCA cache energy estimates to model
net power consumption of the system for each of our
benchmarks. Owing to very long simulation times, we
simulate the MNIST dataset for a representative set of 100
examples containing a uniform distribution of all digits. For
our experiments with dynamic-adaptive schemes, we use
intermediately generated statistics from our simulator by
dumping the contents of the FIFO queues after each batch
of examples. We provide a simple routine to calculate these
statistics, feed them into the simulator and restart simulation
from the checkpoint with forwarded cache contents.

For exploring and evaluating the leakage power mit-
igation strategy, we use the RLM and global cycle and
synchronization layer on our simulator to dump statistics
representing elapsed clock cycles in presence and absence

J Sign Process Syst

of various degrees of runtime leakage control. The simulator
also dumps module-wise idle cycle percentage and over-
head energy incurred. We use the average leakage power
obtained from PrimeTime reports and timing statistics from
our simulator to calculate average savings in leakage energy
by varying parameters and control strategy as desired.

7 Results

7.1 Adaptive MemoryManagement

After a binary search through three degrees of freedom
in cache design: block size, associativity and number of
cache blocks, we have selected a 256 KB 4-way set-
associative cache with 64 byte blocks as our operating
point. With conventional cache management policies, we
found that this configuration gives us the best return-
on-investment, on average, over our benchmarks within
constrained memory and power budgets. In this section,
all reported results use the same configuration as above to
ensure fair comparison of similarly provisioned alternatives.
We first validate our proposal for the correct read-time
replacement philosophy by presenting experimental results
and our interpretation of the same. Using the above verdict,
we evaluate the effectiveness of simple conventional cache
management policies vis-a-vis our proposed policy for the
same configuration in reducing the power consumption of
the system. We then evaluate the relative benefit of applying
adaptive extensions to our policy. With these results, we
attempt to explain the behavior of each benchmark with
intuitive understanding and spike statistics obtained from
our simulator.

7.1.1 Read-Time Replacement

In Section 4, we described the potential concerns with
read-time replacement of neuron data. Our simulator
provides hooks to dump and visualize cache contents at
any given time in the simulation. Further, it can provide
information on which block was replaced and the reuse
score it was carrying at the time of replacement. Using

these statistics, we fixed a minimum reuse threshold
according to the frequency of reuse scores seen in replaced
blocks for each benchmark to validate our intelligent
approach towards the handling of read-time replacements.
In Figure 14, we show the result of exploring all
three read-time replacement policies. For all benchmarks,
the intelligent approach outperforms conservative and
aggressive approaches. Aggressive replacement defeats the
purpose of generating maximum reuse by ignoring reuse
scores at read-time. Conservative replacement has a similar
effect by leading to unnecessary route-misses that could
have been avoided. However, it does not lead to multiple
unnecessary memory accesses at read-time which makes it
better than the aggressive scheme. With benchmarks having
short reuse distances (e.g., SCWN), there is a bigger loss
while for benchmarks having larger reuse distances (e.g.,
SCNN), little difference is observed. All results declared
hereafter in this paper use the intelligent approach for our
policies.

7.1.2 LRU vs Random vs Our Policy

Figure 15 shows the power consumption of the CyNAPSE
system as a function of test example batch for each
benchmark. It covers our selected cache configuration
running on LRU and Random replacement policies and
draws a comparison with our policy.

The SCWN network is a relatively low activity network.
It produces an average of 2.144 spikes every biological
timestep or 2144 spikes per example. Each input neuron
needs to produce multiple spikes in order to induce robust
inference which makes it ideal for exploiting temporal
locality of neuron data. LRU exploits reuse in short
timescales, for instance, within the span of an example.
For each example, some winner neurons will demonstrate
heightened activity while inhibiting others. 85-90% of cache
misses remain classified as capacity misses, so we know
that it is not limited by associativity. Random replacement
fails to fully capture the essence of intra-stimulus reuse
but in a cache that has sufficient associativity to handle
conflicts, it reaches close to LRU. SCWN is also an input-
dominated network. As mentioned before, we have 97.8%

Figure 14 Comparative analysis
of the various read-time
replacement handling
approaches.

J Sign Process Syst

Figure 15 Comparative analysis
of energy savings using our
policy over conventional policies
for the a SCWN, b SDBN and c
SCNN benchmarks.

x

of the spiking activity in the input layer of the network. This
means we have a good view of majority of the future events
in the queue. Besides, neurons in the generally excited
areas of the input field share activity across many stimuli.
They also share locality in meta-data, especially in the page
address meta data.

The SDBN network has a different activity profile. Its
synaptic weights are unnormalized, which means that the
input events, although moderate in activity, induce higher

spike frequency in subsequent layers. Particularly high
activity is observed in the third layer. With low input
activity, most extra-stimulus reuse is arrested by LRU, so
not much benefit comes from switching to our policy.

The SCNN network is a very high activity convolutional
neural network. On an average, it produces 219 spikes per
timestep. Since by definition of a biological timestep, a
neuron cannot spike more than once in a single timestep,
this network has a relatively much higher mean reuse

Figure 16 Reduction in off-chip
memory traffic for our policy
relative to LRU.

J Sign Process Syst

Table 2 Relative energy savings achieved using different policies.

Benchmark LRU v/s
baseline

Random v/s
baseline

Our policy
(static adap-
tive) v/s
baseline

Our policy
(dynamic
adaptive)
v/s baseline

Our policy
v/s LRU

SCWN 28.13% 25.99% 44.13% 44.45% 22.71%

SDBN 5.46% 2.88% 7.65% 15.55% 10.67%

SCNN 5.12% 4.59% 7.4% 12.61% 7.9%

distance than other networks. With limited capacity, it is
difficult to exploit any reuse for conventional cache policies.
However, there is a good fraction of input activity which is
effectively targeted by our policy. We were able to collect
some reuse scores over the course of the simulation, enough
to outperform both conventional policies.

7.1.3 Applying Network-Adaptive Enhancements

Our policy collects reuse scores in SCWN neurons
from both intra- and extra-stimulus reuse distances and
significantly outperforms conventional policies. We have
set an activity bypasss threshold of 2% and added dynamic
adaptation schemes on a layer granularity as mentioned
before. This means that any layer having a mean spiking
activity less than 2% switches to a bypass mode. However,
our results show that this does not lead to much difference
for SCWN because the network is dominated by input
spikes and bypassing only affects 1.1% of spiking activity.

However, when we apply dynamically generated protect-
ing schemes in SDBN, we notice great reduction in memory
traffic. We repeatedly apply protecting reuse scores to pro-
cessing neuron data inversely proportional to the mean reuse
distances in that particular layer as discussed before. The
smaller the mean reuse distance, the higher protection score
we need to apply on importing the data. Most neurons
in Layer 3 benefit from the scheme and we see marked

reduction in weight access misses which brings down power
consumption for this benchmark.

In SCNN, dynamically generated protection schemes
provide us with a lot more energy savings than statically
generated topological bypass requests. However, in the
processing convolutional and subsampling layers, most
neurons are dormant in nature, irrespective of the stimulus.
With a few number of neurons requesting allocation under
a protection scheme, SCNN benefits little from an adaptive
extension relative to the SDBN benchmark.

Figure 16 shows the reduction in filtered off-chip
memory requests for our dynamic adaptive policy relative to
an LRU L1 cache. At least 42%, 36% and 29% reduction in
off-chip memory traffic is observed for SCWN, SDBN and
SCNN kernel respectively. With all cache configurations
constant, this is directly in correlation with the mean
reuse distances of neurons in each of these networks. The
summary of results for our adaptive memory management
strategy are listed in Table 2.

7.2 Runtime LeakageMitigation

Figure 17 shows the variation of net savings in average
leakage energy Esave as a percentage of baseline average
leakage energy consumption for each hardware module with
the respective average performance penalty incurred as a
percentage of baseline single example inference cycles,

Figure 17 Net savings in leakage energy against net performance penalty incurred as TidleDetect is varied for each benchmark and hardware macro.

J Sign Process Syst

Figure 18 Improvement in net leakage savings in every module using its optimal TidleDetect for each benchmark.

swept across TidleDetect = 2n with n ranging from 9 to
3 (from left to right). Note that the general trend is that
as TidleDetect is gradually lowered, greater net savings is
observed but at the cost of higher performance penalty. With
lower TidleDetect values, greater idleCycles percentage
is attained. This contributes to more savings. However,
depending on the size of the module as well as of the
header device, Eoverhead resulting from the module can
offset this contribution. Whenever we see a dip in the
slope of these curves, this is because the Eoverhead from
redundant sleep and wakeUp cycles overshoot the modest
amount of savings gained from higher idleCycles. We use

the experimental observations from this section to determine
an optimal TidleDetect value per module per benchmark to
ascertain the amount of net savings achievable in CyNAPSE
for each benchmark. For this, we set a 5% upper limit on
the %perf Penalty and select the highest TidleDetect value
that gives us the best leakage savings. For instance, in the
memory controller for SCNN, we use optimal TidleDetect as
128 and not 64 even though both are below the prescribed
limit since 128 provides practically the same amount of
savings with lower performance loss. For all our subsequent
experiments, we use these optimal values to measure the
incremental benefits of each recommendation.

Figure 19 Average leakage
energy savings in dendritic
SRAM banks for very low
T iidleDetect values using
pre-activation with no additional
performance loss.

J Sign Process Syst

Table 3 Relative energy savings achieved using different policies.

Benchmarks Esave for modules (%)

Input router Internal router Neuron array Memory controller Dendritic
SRAM bank
(avg.)

SCWN 46.84 69.43 99.45 31.04 98.18

SDBN 39.4 81.21 99.48 14.47 98.59

SCNN 40.12 99.81 99.92 41.64 99.82

Bold indicates best network

7.2.1 Application-specific RLM

Figure 18 shows the effect of application-specific enhance-
ments on different modules for each benchmark. Each mod-
ule improves leakage savings by either force-gating during
large periods of idleness or by lowering TidleDetect to the
lowest possible values as discussed in Section 5.2. However,
force-starving the VDD into a drowsy mode for dendritic
SRAM banks generates the least amount of improvements.
This is precisely because the period of time they can be
force-starved is a short portion of the entire simulation
period of a BT (the internal spike handling stage). There-
fore, we propose the preactivation of banks to improve
leakage savings in this region.

7.2.2 Pre-activated SRAM banks

Figure 19 shows the average leakage savings in SRAM
banks obtained in each benchmark for a single example
inference using pre-activated banks by sweeping TidleDetect

to the lowest possible value. For reference, it shows the
relative benefit over no pre-activation in each case. Note
that the curves saturate at a point because further reducing
TidleDetect increases the Eoverhead by orders of magnitude
thereby reducing total attained savings. However, except
for the SCWN, we can settle for the lowest possible
value because unlike the initial situation in Figure 17, zero
additional performance loss is now incurred for waking up
the SRAM banks. For the SCWN, although, we notice a
slight decay in savings with extremely aggressive leakage
control. Therefore, we settle for the intermediate value.

The RLM results are summarized in Table 3 showing
the final net leakage savings obtainable using our strategy
for each benchmark. Note that since SCNN has the sparsest
connectvity and topology, it is the most idle SNN out of
the three and naturally, reaps the most benefit out of our
strategy. The only exception is the input router module
whose activity is skewed towards input intensity (average
number of input spikes per BT) which is highest in SCNN
and least in SCWN.

8 Conclusion

We have presented CyNAPSE, a reconfigurable architecture
for accelerating SNNs. We showed that power dissipation
in this system is dominated by off-chip memory. By
using an application-specific caching strategy, we have
achieved up to 44% power savings over the baseline and
outperformed LRU by up to 22%. To further reduce the
system’s energy consumption, we attempt to conserve the
on-chip static leakage energy dissipation. By progressively
recommending general and application-specific strategies,
we achieve over 99% leakage energy savings in sparsely
active circuits or at least over 14% savings in busier
modules. We strongly feel that a combination of these two
approaches will greatly enhance the efficiency of massively
multicore inference architectures sharing common off-
chip main memories. Among possible avenues of future
work, compiler driven optimizations could be valuable
in trading off some performance for greater energy
savings especially for benchmarks with reuse on larger
timescales. Besides, our policy can be considered for any
execution model that has a queue-based event processing
in its front end. Any event-driven simulation platform
such as embedded performance and energy counters [6],
general purpose emulators [4] and others can possibly
benefit from the adaptive scheme, if allocation latency
at read time can be tolerated by individual instruction
latency.

References

1. Akopyan, F., Sawada, J., Cassidy, A., Alvarez-Icaza, R., Arthur,
J., Merolla, P., Imam, N., Nakamura, Y., Datta, P., Nam, G.J.,
et al. (2015). Truenorth: Design and tool flow of a 65 mw 1
million neuron programmable neurosynaptic chip. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and
Systems, 34(10), 1537–1557.

2. Allu, B., & Zhang, W. (2004). Static next sub-bank prediction
for drowsy instruction cache. In Proceedings of the 2004
international conference on Compilers, architecture, and synthesis
for embedded systems (pp. 124–131): ACM.

J Sign Process Syst

3. Attwell, D., & Laughlin, S.B. (2001). An energy budget for
signaling in the grey matter of the brain. Journal of Cerebral Blood
Flow & Metabolism, 21(10), 1133–1145.

4. Bauer, J., Bershteyn, M., Kaplan, I., Vyedin, P. (1998). A
reconfigurable logic machine for fast event-driven simulation.
In Proceedings 1998 Design and Automation Conference. 35th
DAC.(Cat. No. 98CH36175) (pp. 668–671): IEEE.

5. Belady, L.A. (1966). A study of replacement algorithms for a
virtual-storage computer. IBM Systems Journal, 5(2), 78–101.

6. Bellosa, F. (2000). The benefits of event: driven energy accounting
in power-sensitive systems. In Proceedings of the 9th workshop
on ACM SIGOPS European workshop: beyond the PC: new
challenges for the operating system (pp. 37–42): ACM.

7. Bi, G.q., & Poo, M.m. (1998). Synaptic modifications in cultured
hippocampal neurons: dependence on spike timing, synaptic
strength, and postsynaptic cell type. Journal of Neuroscience,
18(24), 10464–10472.

8. Boahen, K. (2017). A neuromorph’s prospectus. Computing in
Science & Engineering, 19, 14–28.

9. Brette, R., & Gerstner, W. (2005). Adaptive exponential integrate-
and-fire model as an effective description of neuronal activity.
Journal of Neurophysiology, 94(5), 3637–3642.

10. Cassidy, A., Andreou, A.G., Georgiou, J. (2011). Design of a
one million neuron single fpga neuromorphic system for real-time
multimodal scene analysis. In 2011 45Th annual conference on
information sciences and systems (pp. 1–6): IEEE.

11. Chandrasekar, K., Weis, C., Li, Y., Akesson, B., Wehn, N.,
Goossens, K. (2012). Drampower: Open-source dram power &
energy estimation tool. http://www.drampower.info, 22.

12. Chen, Y.H., Krishna, T., Emer, J.S., Sze, V. (2016). Eyeriss: an
energy-efficient reconfigurable accelerator for deep convolutional
neural networks. IEEE Journal of Solid-State Circuits, 52(1),
127–138.

13. Davies, M., Srinivasa, N., Lin, T.H., Chinya, G., Cao, Y., Choday,
S.H., Dimou, G., Joshi, P., Imam, N., Jain, S., et al. (2018). Loihi:
a neuromorphic manycore processor with on-chip learning. IEEE
Micro, 38(1), 82–99.

14. Delbruck, T. (2016). Neuromorophic vision sensing and process-
ing. In 2016 46Th european solid-state device research conference
(ESSDERC) (pp. 7–14): IEEE.

15. Diehl, P.U., & Cook, M. (2015). Unsupervised learning of digit
recognition using spike-timing-dependent plasticity. Frontiers in
Computational Neuroscience, 9, 99.

16. Diehl, P.U., Neil, D., Binas, J., Cook, M., Liu, S.C., Pfeif-
fer, M. (2015). Fast-classifying, high-accuracy spiking deep net-
works through weight and threshold balancing. In 2015 Interna-
tional joint conference on neural networks (IJCNN) (pp. 1–8):
IEEE.

17. Duong, N., Zhao, D., Kim, T., Cammarota, R., Valero, M.,
Veidenbaum, A.V. (2012). Improving cache management policies
using dynamic reuse distances. In 2012 45Th annual IEEE/ACM
international symposium on microarchitecture (pp. 389–400):
IEEE.

18. Flautner, K., Kim, N.S., Martin, S., Blaauw, D., Mudge, T. (2002).
Drowsy caches: simple techniques for reducing leakage power.
In ACM SIGARCH Computer architecture news (vol. 30, pp.
148–157): IEEE computer society.

19. Gerstner, W., & Kistler, W.M. (2002). Spiking neuron models:
Single neurons, populations, plasticity. Cambridge: Cambridge
University Press.

20. Gerstner, W., & Naud, R. (2009). How good are neuron models?
Science, 326(5951), 379–380.

21. Goodman, D.F., & Brette, R. (2009). The brian simulator.
Frontiers in Neuroscience, 3, 26.

22. Han, S., Mao, H., Dally, W.J. (2015). Deep compression: Com-
pressing deep neural network with pruning, trained quantization
and huffman coding coRR. arXiv:1510.00149.

23. Hinton, G.E., Osindero, S., Teh, Y.W. (2006). A fast learning
algorithm for deep belief nets. Neural Computation, 18(7), 1527–
1554.

24. Hinton, G.E., Sejnowski, T.J., Poggio, T.A. (1999). Unsupervised
learning: foundations of neural computation. Cambrdige: MIT
press.

25. Hodgkin, A.L., & Huxley, A.F. (1952). A quantitative description
of membrane current and its application to conduction and
excitation in nerve. The Journal of Physiology, 117(4), 500–544.

26. Hodgkin, A.L., Huxley, A.F., Katz, B. (1952). Measurement of
current-voltage relations in the membrane of the giant axon of
loligo. The Journal of Physiology, 116(4), 424–448.

27. Hopfield, J.J. (2007). Hopfield network. Scholarpedia, 2(5), 1977.
28. Hu, Z., Buyuktosunoglu, A., Srinivasan, V., Zyuban, V., Jacobson,

H., Bose, P. (2004). Microarchitectural techniques for power
gating of execution units. In Proceedings of the 2004 international
symposium on Low power electronics and design (pp. 32–37):
ACM.

29. Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., Bengio, Y.
(2017). Quantized neural networks: Training neural networks with
low precision weights and activations. The Journal of Machine
Learning Research, 18(1), 6869–6898.

30. Izhikevich, E.M. (2004). Which model to use for cortical spiking
neurons? IEEE Transactions on Neural networks, 15(5), 1063–
1070.

31. Jiang, H., Marek-Sadowska, M., Nassif, S.R. (2005). Benefits and
costs of power-gating technique. In 2005 International conference
on computer design (pp. 559–566): IEEE.

32. Jiang, S., & Zhang, X. (2002). Lirs: an efficient low inter-
reference recency set replacement policy to improve buffer
cache performance. ACM SIGMETRICS Performance Evaluation
Review, 30(1), 31–42.

33. Jolivet, R., Lewis, T.J., Gerstner, W. (2004). Generalized integrate-
and-fire models of neuronal activity approximate spike trains
of a detailed model to a high degree of accuracy. Journal of
Neurophysiology, 92(2), 959–976.

34. Jolivet, R., Rauch, A., Lüscher, H.R., Gerstner, W. (2006).
Integrate-and-fire models with adaptation are good enough. In
Advances in neural information processing systems (pp. 595–602).

35. Jouppi, N.P., Young, C., Patil, N., Patterson, D., Agrawal, G.,
Bajwa, R., Bates, S., Bhatia, S., Boden, N., Borchers, A., et al.
(2017). In-datacenter performance analysis of a tensor processing
unit. In 2017 ACM/IEEE 44Th annual international symposium on
computer architecture (ISCA) (pp. 1–12): IEEE.

36. Jug, F. (2012). On competition and learning in cortical structures.
Ph.D. thesis, ETH Zurich.

37. Kaxiras, S., Hu, Z., Martonosi, M. (2001). Cache decay:
exploiting generational behavior to reduce cache leakage power.
In Proceedings 28th annual international symposium on computer
architecture (pp. 240–251): IEEE.

38. Khan, S.M., Tian, Y., Jimenez, D.A. (2010). Sampling dead
block prediction for last-level caches. In Proceedings of the
2010 43rd Annual IEEE/ACM International Symposium on
Microarchitecture (pp. 175–186): IEEE Computer Society.

39. Kim, Y., Yang, W., Mutlu, O. (2015). Ramulator: a fast and
extensible dram simulator. IEEE Computer Architecture Letters,
15(1), 45–49.

40. Kim, Y., Zhang, Y., Li, P. (2015). A reconfigurable digital
neuromorphic processor with memristive synaptic crossbar for
cognitive computing. ACM Journal on Emerging Technologies in
Computing Systems (JETC), 11(4), 38.

http://www.drampower.info
http://arxiv.org/abs/1510.00149

J Sign Process Syst

41. Koch, C., & Segev, I. (1998).Methods in neuronal modeling: from
ions to networks. Cambridge: MIT press.

42. LeCun, Y., Cortes, C., Burges, C. (2010). Mnist handwritten digit
database at&t labs.

43. Li, S., Chen, K., Ahn, J.H., Brockman, J.B., Jouppi, N.P. (2011).
Cacti-p: Architecture-level modeling for sram-based structures
with advanced leakage reduction techniques. In Proceedings
of the International Conference on Computer-Aided Design
(pp. 694–701): IEEE Press.

44. Li, Y., & Pedram, A. (2017). Caterpillar: Coarse grain recon-
figurable architecture for accelerating the training of deep neu-
ral networks. In 2017 IEEE 28Th international conference on
application-specific systems, architectures and processors (ASAP)
(pp. 1–10): IEEE.

45. Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y., Alsaadi, F.E.
(2017). A survey of deep neural network architectures and their
applications. Neurocomputing, 234, 11–26.

46. Mahowald, M.A., &Mead, C. (1991). The silicon retina. Scientific
American, 264, 76–82.

47. Mead, C. (1990). Neuromorphic electronic systems. Proceedings
of the IEEE, 78(10), 1629–1636.

48. Moerland, P., & Fiesler, E. (1996). Hardware-friendly learning
algorithms for neural networks: an overview. In Proceedings of
Fifth International Conference on Microelectronics for neural
networks (pp. 117–124): IEEE.

49. Neckar, A., Fok, S., Benjamin, B.V., Stewart, T.C., Oza, N.N.,
Voelker, A.R., Eliasmith, C., Manohar, R., Boahen, K. (2019).
Braindrop: a mixed-signal neuromorphic architecture with a
dynamical systems-based programming model. Proceedings of the
IEEE, 107(1), 144–164.

50. Neil, D., & Liu, S.C. (2014). Minitaur, an event-driven fpga-based
spiking network accelerator. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 22(12), 2621–2628.

51. O’Connor, P., Neil, D., Liu, S.C., Delbruck, T., Pfeiffer, M.
(2013). Real-time classification and sensor fusion with a spiking
deep belief network. Frontiers in Neuroscience, 7, 178.

52. Podili, A., Zhang, C., Prasanna, V. (2017). Fast and efficient
implementation of convolutional neural networks on fpga. In
2017 IEEE 28Th international conference on application-specific
systems, architectures and processors (ASAP) (pp. 11–18): IEEE.

53. Powell, M., Yang, S.H., Falsafi, B., Roy, K., Vijaykumar, T.
(2000). Gated-v dd: a circuit technique to reduce leakage in
deep-submicron cache memories. In Proceedings of the 2000
international symposium on Low power electronics and design
(pp. 90–95): ACM.

54. Qiao, N., Mostafa, H., Corradi, F., Osswald, M., Stefanini, F.,
Sumislawska, D., Indiveri, G. (2015). A reconfigurable on-line
learning spiking neuromorphic processor comprising 256 neurons
and 128k synapses. Frontiers in Neuroscience, 9, 141.

55. Qureshi, M.K., Jaleel, A., Patt, Y.N., Steely, S.C., Emer, J. (2007).
Adaptive insertion policies for high performance caching. ACM
SIGARCH Computer Architecture News, 35(2), 381–391.

56. Rumelhart, D.E., Hinton, G.E., Williams, R.J. (1985). Learning
internal representations by error propagation. Technical report.
California Univ San Diego La Jolla Inst for Cognitive Science.

57. Schuman, C.D., Potok, T.E., Patton, R.M., Birdwell, J.D., Dean,
M.E., Rose, G.S., Plank, J.S. (2017). A survey of neuromorphic
computing and neural networks in hardware. arXiv:1705.06963.

58. Shepherd, G.M. (2003). The synaptic organization of the brain.
Oxford: Oxford University Press.

59. Wen, B., & Boahen, K. (2009). A silicon cochlea with active
coupling. IEEE Transactions on Biomedical Circuits and Systems,
3(6), 444–455.

60. Wijeratne, S., Jayaweera, S., Dananjaya, M., Pasqual, A. (2018).
Reconfigurable co-processor architecture with limited numerical
precision to accelerate deep convolutiosnal neural networks. In
2018 IEEE 29Th international conference on application-specific
systems, architectures and processors (ASAP) (pp. 1–7): IEEE.

61. Yu, T., Park, J., Joshi, S., Maier, C. (2012). Cauwenberghs, g.:
65k-neuron integrate-and-fire array transceiver with address-event
reconfigurable synaptic routing. In 2012 IEEE Biomedical circuits
and systems conference (bioCAS) (pp. 21–24): IEEE.

62. Zhao, R., Liu, S., Ng, H.C., Wang, E., Davis, J.J., Niu, X., Wang,
X., Shi, H., Constantinides, G.A., Cheung, P.Y., et al. (2018).
Hardware compilation of deep neural networks: an overview. In
2018 IEEE 29Th international conference on application-specific
systems, architectures and processors (ASAP) (pp. 1–8): IEEE.

63. Zhao, W., Fu, H., Luk, W., Yu, T., Wang, S., Feng, B., Ma, Y.,
Yang, G. (2016). F-cnn: an fpga-based framework for training
convolutional neural networks. In 2016 IEEE 27Th international
conference on application-specific systems, architectures and
processors (ASAP) (pp. 107–114): IEEE.

64. Zhou, H., Toburen, M.C., Rotenberg, E., Conte, T.M. (2003).
Adaptive mode control: a static-power-efficient cache design.
ACM Transactions on Embedded Computing Systems (TECS),
2(3), 347–372.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/1705.06963

	CyNAPSE: Neural Inference Accelerator
	Abstract
	Introduction
	Spiking Neural Networks
	Neuron Model
	Benchmarks

	The CyNAPSE Neural Accelerator
	Chip Microarchitecture
	Neuron Design
	Scheduling and core control
	Memory Control
	The CyNAPSE Simulator

	Adaptive Memory Management
	Cache Management Policy
	Compulsory Miss at Warm-Up and Read-Time
	Hit at Read-Time
	Capacity or Conflict Miss at Read-Time
	Compulsory Miss at Route-Time
	Hit at route-time
	Policy Miss at Route-Time

	Network-Adaptive Enhancements
	Cache Bypassing
	Line protection

	Leakage Power Mitigation
	Gated VDD and Starved VDD
	Application-specific RLM
	Pre-activated SRAM banks

	Experimental Infrastructure
	Low-Level Design
	High-Level Exploration

	Results
	Adaptive Memory Management
	Read-Time Replacement
	LRU vs Random vs Our Policy
	Applying Network-Adaptive Enhancements

	Runtime Leakage Mitigation
	Application-specific RLM
	Pre-activated SRAM banks

	Conclusion
	References

