
A Project-Based Embedded Systems Design Course
Using a Reconfigurable SoC Platform

Daniel Roggow, Paul Uhing, Phillip Jones, and Joseph Zambreno
Electrical and Computer Engineering

Iowa State University, Ames, IA, USA
{dlroggow, pfuhing, phjones, zambreno}@iastate.edu

Abstract—Embedded systems are becoming increasingly com-
plex, as typical system components, such as sensors and other
specialized processors, are blended together with more tradi-
tional microprocessors to form complex systems-on-chips (SoCs).
Teaching undergraduate students to understand concepts and
technologies behind embedded systems is important in order to
prepare these future engineers with the skills and expertise nec-
essary for designing such complex systems. This paper describes
an undergraduate course designed to introduce students to
embedded system design concepts and challenges in an engaging
and effective manner. Our course uses a combination of in-depth
laboratory assignments and topical lectures to provide a unique
hands-on education for students. Laboratory assignments utilize
Avnet’s ZedBoard platform, a development board built around
Xilinx’s Zynq-7000 SoC, and require students to solve a variety
of embedded system challenges from a range of application
domains. Overall, student feedback about the course has been
positive.

I. INTRODUCTION

Embedded systems are becoming more complex as a greater
number of constituent components are combined into systems-
on-chips (SoCs). Systems utilizing these devices often blend
traditional boundaries between hardware and software, re-
quiring system designers and engineers to be versed in a
variety of domains in order to have sufficient knowledge
of concepts and principles for creating adequate solutions.
To train such knowledgeable engineers, it is imperative that
electrical and computer engineering degree programs offer
challenging undergraduate courses to help prepare graduates
for the diverse and difficult domain of embedded systems
design.

This paper outlines an undergraduate course developed to
address the need for a hands-on embedded systems design
curriculum utilizing current technologies. Laboratory assign-
ments are coordinated with the lectures, and focus on solving
challenges associated with embedded systems design from a
variety of applications, ranging from small unmanned aerial
vehicle control to image processing. By using the Avnet
ZedBoard development platform containing a Xilinx Zynq-
7000 SoC, students are able to gain experience as the course
progresses with increasingly complex configurations of periph-
erals, without having to learn to use additional development
platforms designed for specific applications. The course is
an elective for juniors, seniors, and graduate students, and is
potentially a second or third course in an embedded systems
progression. Although geared towards electrical and computer
engineering students, enrollment is open for qualified students
from other engineering majors.

II. RELATED WORK

Field Programmable Gate Arrays (FPGAs) are an enabling
technology for application-specific systems, providing a means
for rapid system prototyping and evaluation, as well as algo-
rithm acceleration. Because of their flexibility, many under-
graduate programs are beginning to teach embedded system
design concepts using FPGAs, and some even provide a
sequence of courses to expose students to different aspects
of embedded system design. For example, the Institute of
Microelectronic Systems (Hannover, Germany) couples an
FPGA prototyping course with an ASIC design course to
provide a 2-semester introduction to embedded systems [1].
Each course focuses on building a single project by breaking
it down into different hardware units. Drexel University offers
a similar sequence, but uses a programmable SoC as the target
hardware platform [2].

The Rochester Institute of Technology has created a more
rigorous embedded systems sequence consisting of three
courses designed to advance the students’ proficiency in
embedded systems concepts [3]. The first course covers ad-
vanced computer organization topics, the second focuses on
creating custom intellectual property (IP) components and
implementing custom instructions, and the last course is a
capstone course. Each course utilizes FPGAs as the target plat-
form for laboratory and project assignments. At the Georgia
Institute of Technology, students in electrical and computer
engineering are exposed to embedded systems programming
in the first C/C++ course [4]. Other universities provide
embedded systems courses that use FPGAs to emphasize
particular applications, for example, embedded multiprocessor
systems [5] or graphics processing units [6]. The National
Chip Implementation Center (Hsinchu, Taiwan) offers three
short courses on embedded systems using different hardware
platforms targeted for different application areas [7]. The Rey
Juan Carlos University (Madrid, Spain) provides an in-depth
embedded systems course for students near the end of their
undergraduate education that covers topics relating to analog
electronics, digital electronics, and computer fundamentals [8].

Many of the above courses are project-based courses, as is
the course described in this work. This means students com-
plete in-depth laboratory projects with significant problem-
solving components designed to expose them to real-world
embedded system concepts and challenges. The course de-
scribed in this paper is one of several embedded systems
courses offered at Iowa State University and is a reworking
of the original CprE 488 course [9, 10].

978-1-4799-9915-6/15/$31.00 c© 2015 IEEE



Windows workstation

Linux Server
(Xilinx Tools)

USB JTAG

UART

Xilinx Hardware Server

Avnet 
Zedboard

VGAHDMI

USB
FMC

PMODs

UART

JTAG Ethernet

Zynq-7000 AP SoC

APU

Processing 
System

Programmable 
Logic

Fig. 1: The laboratory workstation configuration and ZedBoard block diagram.

III. LABORATORY RESOURCES

A. Workstation Setup
Fig. 1 shows the workstation setup for the course, and

the general workflow for a machine problem (MP) is as
follows: students log in to the Windows machines and start
the Xilinx hardware server, which communicates with the
Linux server and the ZedBoard through JTAG and UART
connections. In order to use the Xilinx toolchains, students
connect to departmental Linux servers using NoMachine’s NX
Client. Development takes place on the Linux servers through
the virtual desktop provided by NX Client. After designing
and writing the code to solve each MP’s particular problem,
students program the ZedBoard using the hardware server.
Students have the opportunity to interact with a variety of
peripherals using diverse communication mechanisms: JTAG,
UART, USB, VGA, HDMI, and Ethernet are all built-in to
the ZedBoard. Other peripherals can be attached through the
ZedBoard PMOD interfaces to allow additional communica-
tion using Bluetooth or Wi-Fi. The PMODs and the FPGA
Mezzanine Card (FMC) interface can also be used to connect
peripherals such as oscilloscopes and digital cameras. The
specific peripheral hardware utilized is described in Section
IV.

B. Laboratory Hardware
The computational core of the Avnet ZedBoard (call-out

of Fig. 1) consists of a Xilinx Zynq-7000 All-Programmable
SoC. The three major components of the Zynq core are: the
Application Processor Unit (APU), the Processing System
(PS), and the Programmable Logic (PL). The APU contains
a hard-IP dual ARM Cortex-A9 MPCore CPU using the
ARMv7 instruction set architecture (ISA). The APU also
provides support for the Thumb-2, Jazelle RCT, Jazelle DBX,
VFPv3, and NEON ARM ISA extensions. The PS contains the
interconnect logic to connect to the I/O peripherals, memory
interfaces, and PL. The PL is where third-party or custom IP
cores can be implemented as memory-mapped or streaming
peripherals.

C. Laboratory Software
Students use the Xilinx Embedded Development Kit (v14.7)

toolchain to develop the hardware and software portions of the
lab. The Xilinx Platform Studio (XPS) is the main hardware
development tool, and provides a GUI for editing Zynq con-
figuration settings, as well as adding and configuring custom

and third-party IP cores. Additionally, XPS can launch a user-
specified HDL simulator for HDL files. XPS also provides the
tools to synthesize and generate a bitfile for the Zynq SoC,
and constructs the necessary bootstrap firmware to configure
and start the SoC on power-up.

To write software for the Zynq, students use the Xilinx
Software Development Kit (SDK), an Eclipse-based IDE.
Software is written in C and cross-compiled for the ARM
architecture using the Xilinx-distributed GCC toolchain. The
SDK is also integrated with XPS to allow the low level board-
support package (BSP) for a project to be exported to the SDK,
providing the necessary software libraries to interact with the
Zynq hardware, IP cores, and other peripherals.

IV. LABORATORY ASSIGNMENTS

Each MP requires students to solve hardware and software
problems. At the same time, each MP allows students to expe-
rience the application of concepts discussed in recent lecture
modules. Students work together in groups of two or three, and
are given two weeks to complete each MP. After two weeks,
a portion of lecture is dedicated to video demonstrations of
each group’s accomplishments. Bonus points are also offered
for each MP to allow more driven or advanced students to
remain challenged. After the last MP, students spend the final
4 weeks working on projects they propose. The rest of the
section describes each MP in detail.

A. MP-0: NES Emulator
For the first MP, students are to finish an almost com-

plete implementation of a Nintendo Entertainment System
(NES) emulator. The primary challenge for this MP is the
construction of the VGA video output pipeline in hardware,
using third-party IP cores from Xilinx. Once the hardware
video pipeline is working, students can then add the necessary
lines to the NES emulator framework to display the graphical
output. Additionally, students are asked to provide support
for single-player input using the buttons and switches on the
ZedBoard. Bonus points are earned by adding support for
a menu, menu navigation, multiple games, alternative input
methods, or audio. This MP serves as a rapid introduction to
the Xilinx tools that are used for the rest of the semester, as
well as to the ZedBoard platform. Students are also exposed
to system prototyping using memory-mapped third-party IP
cores.



(a) (b) (c)

Fig. 2: Workstation setups for MP-1, MP-2, and MP-3.

B. MP-1: Quadcopter Interface
This MP introduces students to quadcopter concepts of

operation, particularly, control by pulse position modulation
(PPM). Students must design and implement in an HDL a
memory-mapped hardware module that connects a Hobby
King radio controller in trainer mode to a second controller,
acting as the instructor, through the ZedBoard PMOD interface
(Fig. 2a). The instructor controller is linked to a quadcopter
and transmits input from the trainer controller, the software
on the ZedBoard, or itself. Once the PPM-capture module is
written, students must also write software that can read and
write to the peripheral, and include functionality for simple
pass-through of PPM frames, recording of PPM frames to
memory, playback of stored PPM frames, and a filtering
function to attempt to detect if a given PPM frame will put
the quadcopter into an unstable position. Bonus points are
earned by demonstrating autonomous flight longevity or by
creating better diagnostic software on the ZedBoard and/or
host workstation. This MP provides students with exposure to
PPM interfaces, custom memory-mapped IP core design and
integration, as well as finite state machine hardware design.

C. MP-2: Digital Camera
MP-2 requires students to create a digital camera using

the Avnet FMC-IMAGEON FMC card coupled with an ON
Semiconductor VITA grayscale image sensor. The challenge
for this MP is to create a hardware video pipeline using third-
party IP cores (similar to MP-0), but instead of simply drawing
the camera output on a display, the final pipeline must also
process the image data to convert the grayscale values to
color values in the YCrCb color space (for HDMI output).
However, before implementing the conversion in hardware,
students must implement the conversion in a software Bayer
filter, in order to compare the performance between the two
implementations. The final task is to add primitive digital
camera functionality: image capture, image storage, and im-
age recall and display. Bonus points are earned by adding
additional camera functionality, such as recording and playing
back up to 5 seconds of video, implementing digital zoom, or
adding support for manipulating other common settings, such
as gain and exposure. Fig. 2b shows a working video pipeline.
This MP provides students with more experience in integrating
third-party IP cores, and introduces basic concepts of digital
image processing and performance analysis between hardware

and software implementations.

D. MP-3: Target Acquisition
MP-3 builds on MP-2 by requiring students to integrate the

digital imaging system with embedded Linux to detect targets
and automatically aim and fire a Dream Cheeky Thunder USB
Missile Launcher (Fig. 2c). The first step is to configure and
build an Open Source Linux (OSL) kernel, and construct a
boot image for the ZedBoard. Students then gain experience
with accessing peripherals through the operating system by
writing a script that polls the switches and buttons on the
ZedBoard and activates LEDs based on their current states.
Next, Linux device driver development is introduced in the
main challenge of this MP: extending a USB driver framework
to create a device driver for the USB missile launcher. Once
the driver is implemented, students add the MP-2 infrastructure
to the boot image and write a Linux application to detect
targets and control the USB turret. Bonus points are earned
by improving the detection accuracy beyond the required 3
feet, or improving the precision of the missile launcher to
reliably hit a target at a 3-foot distance. This MP focuses on
embedded Linux deployment, driver development, and system
programming.

E. MP-4: UAV Control
For the final MP of the course, students leverage the MP-1

infrastructure to create a proportional-integral-derivative (PID)
controller to control the yaw for the quadcopter from MP-1.
The PPM pass-through module is used to capture input from
the Hobby King controller as before, but now the commands
are sent to the quadcopter through a Bluetooth module attached
to the ZedBoard PMOD interface. Additionally, the software
must send throttle ARM and DISARM commands to the
quadcopter, as well as request and receive telemetry from the
quadcopter. To simulate GPS coordinates for the quadcopter
position, the instructors developed an OpenCV application that
detects three red balls attached to the quadcopter by using
a camera suspended above the quadcopter pedestal (Fig. 3b)
and interpreting their positions as coordinates. The application
streams the coordinates to any machines running a client
application. Once the software infrastructure is built, students
use the data as input to their PID controller to control the
yaw of the quadcopter. The goal of the PID controller is to
provide stability, so when the quadcopter yaw deviates from
the set point, the PID provides commands to the quadcopter



(a) (b)

Fig. 3: MP-4 quadcopter pedestal.

motors over the Bluetooth connection to return the yaw to the
set point. Bonus points are earned by implementing additional
controllers for pitch and roll, as well as implementing full
autopilot hover or full autopilot with a short flight plan. This
MP introduces students to control theory and its applications
in embedded systems, as well as using a Bluetooth peripheral
to collect data and interpret it in software.
1) Quadcopter Platform

In order for students to be able to test the effectiveness of
their PID controllers, as well as to receive telemetry from the
quadcopter, it was necessary to use a live quadcopter. However,
since the lab is indoors, there are significant restrictions on
flying the quadcopter, especially with in-development PID
controllers. Therefore, a platform was developed specifically
for this course that would secure the quadcopter, but would
rotate, allowing yaw to change as the motors responded to
throttle commands. A schematic and a photo of the completed
device in action are shown in Fig. 3.

F. Final Project
The final project allows teams of students to investigate an

in-depth topic that interests them, by either building off of a
previous MP, or creating something new. Students write project
proposals, consisting of a project description and rubric,
midway through the semester. The proposals are presented to
the class and the rubric is reviewed by the instructor to ensure
it has reasonable scope to be challenging, but not so much as to
cause students to struggle earning points. Any feedback from
the instructor is used to revise the rubric until it is satisfactory.
During the last class meeting, students present their projects
and evaluate themselves against their rubric. Their classmates
and the instructor also evaluate them based on their rubric.
All the evaluations factor into the final project grade. Past
projects have included extensions to MP-0, image processing
applications, audio processing applications, signal processing
applications, embedded software systems using Linux, and
even emulation of other microprocessors.

V. STUDENT RESPONSE

The overall student response for the two semesters the
course has been offered has been favorable. Data collected
from end-of-semester surveys revealed that the first semester
the course was offered, 23 of 27 students responded to the
course evaluation survey and rated the overall effectiveness
of the course 4.52/5.00. The same 23 students also rated
their inspiration to learn more about the course material at
4.09/5.00. The second semester the course was offered, all
19 students in the class responded, and they rated the overall

effectiveness of the course at 4.68/5.00. These same students
rated their inspiration to learn more about the material at
4.53/5.00.

VI. CONCLUSION

The course presented in this paper offers students a chal-
lenging and hands-on introduction to embedded systems de-
sign using an SoC development platform. Undergraduate stu-
dents who complete this course have a unique experience that
covers many of the concepts and challenges present when
designing real embedded systems. We intend on continuing
to offer the course in both fall and spring semesters to
keep up with a growing undergraduate student population.
All of the lecture and laboratory materials, and the technical
documentation, for CprE 488 are publicly available on the
course website [11].

ACKNOWLEDGMENTS

This work was supported in part by the National Science
Foundation (NSF) under awards CNS-1116810 and CCF-
1149539.

REFERENCES

[1] I. Schmädecke, C. Leibold, H.-P. Brückner, and H. Blume,
“Project-organized education: From FPGA prototyping to
ASIC design: Consecutive microelectronic education in de-
signing application-specific hardware,” in Proceedings of the
International Conference on Microelectronic Systems Educa-
tion (MSE), 2013, pp. 9–12.

[2] C. Sitik, P. Nagvajara, and B. Taskin, “A microcontroller-based
embedded system design course with PSoC3,” in Proceedings
of the International Conference on Microelectronic Systems
Education (MSE), 2013, pp. 28–31.

[3] A. Mondragon-Torres and J. Christman, “A comprehensive
embedded systems design course and laboratory,” in Pro-
ceedings of the International Conference on Microelectronic
Systems Education (MSE), 2013, pp. 56–59.

[4] J. Hamblen, Z. Smith, and W. Woo, “Introducing embedded
systems in the first C/C++ programming class,” in Proceedings
of the International Conference on Microelectronic Systems
Education (MSE), 2013, pp. 1–4.

[5] X. Wang, “Using FPGA-based configurable processors in
teaching hardware/software co-design of embedded multipro-
cessor systems,” in Proceedings of the International Con-
ference on Microelectronic Systems Education (MSE), 2011,
pp. 114–117.

[6] M. Steffen, P. Jones, and J. Zambreno, “Teaching graphics
processing and architecture using a hardware prototyping
approach,” in Proceedings of the International Conference on
Microelectronic Systems Education (MSE), 2011, pp. 13–16.

[7] K.-C. Yang, Y.-T. Chang, C.-M. Wu, C.-M. Huang, and H.-H.
Luo, “Application-oriented teaching of embedded systems,”
in Proceedings of the International Conference on Microelec-
tronic Systems Education (MSE), 2011, pp. 118–121.

[8] F. Machado, S. Borromeo, and N. Malpica, “Project based
learning experience in VHDL digital electronic circuit design,”
in Proceedings of the International Conference on Microelec-
tronic Systems Education (MSE), 2009, pp. 49–52.

[9] J. Schneider, M. Bezdek, Z. Zhang, Z. Zhang, and D. Rover,
“A platform fpga-based hardware-software undergraduate lab-
oratory,” in Proceedings of the International Conference on
Microelectronic Systems Education (MSE), 2005, pp. 53–54.

[10] D. Rover, R. Mercado, Z. Zhang, M. Shelley, and D. Helvick,
“Reflections on teaching and learning in an advanced under-
graduate course in embedded systems,” IEEE Transactions on
Education, vol. 51, no. 3, pp. 400–412, 2008.

[11] CprE 488 - Embedded Systems Design homepage,
http://class.ece.iastate.edu/cpre488, 2015.


