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Abstract—Deep convolutional neural networks (CNNs) have
shown remarkable success in many computer vision tasks.
However, their intensive storage, bandwidth and computational
requirements limit their deployment to embedded platforms.
Although several research efforts have shown that pruning
redundant weights could significantly reduce storage and com-
putations, working with sparse weights remains challenging.
The irregular computation of sparse weights and the overhead
of managing their representation limit the efficiency of the
underlaying hardware. To address these issues, we propose a
hardware-friendly pruning algorithm that generates structured
sparse weights. In this algorithm, locations of non-zero weights
are derived on-chip in real-time using Linear Feedback Shift
Registers (LFSRs) to eliminate the overhead of managing sparse
weight representations. In this paper, we also propose a hardware
inference engine for sparse convolution on FPGAs. It uses LFSRs
to localize non-zero weights within weights tensors and avoids
copying sparse weights indices by generating them on-chip.
Experimental results show that the proposed pruning method
can reduce the size of VGG16, ResNet50, and InceptionV3
models by 80%, 76% and 65% with less than 2% accuracy loss.
Experiments also demonstrate that our accelerator can achieve
456-534 effective GOP/s for the modern CNNs on Xilinx ZCU102,
which provides a 1.2-2.7× speedup over previous sparse CNN
accelerators on FPGAs.

Index Terms—DNNs, Sparsity, FPGA, Pruning, Convolution.

I. INTRODUCTION

Deep neural networks (DNNs) have achieved remarkable

success in many challenging tasks including image classifi-

cation, object detection, and image segmentation [1] [2], [3].

Although DNNs provide state-of-the-art accuracy, they require

considerable storage, memory bandwidth and computational

resources, which limit their deployment to embedded envi-

ronments. A major challenge in deploying DNNs to resource

limited platforms is the large amounts of energy consumed

when accessing model parameters from external DRAMs.

For example, in 45nm CMOS technology, accessing a 32bit

DRAM memory requires 640pJ, which is 3 order of magni-

tudes higher than a 32-bit floating point add operation (0.9 pJ)

[4]. Therefore, deploying DNNs with large memory bandwidth

requirements on battery constrained embedded platforms re-

mains a challenging task.

One promising approach is model compression by pruning

redundant and less important weights. Recent researche works

show that significant redundancy exists in DNN models that

can be pruned without sacrificing accuracy [4], [5]. However,

despite the significant reduction in a models’ parameters (up

to 90%), these methods have hardly sped up inference time.

The irregular distribution of weights in pruned models poorly

fit current computing platforms such as CPUs and GPUs. The

speedup can be negative compared to dense convolution when

the sparsity ratio is low [6]. Another challenge with sparse con-

volution is the overhead of managing sparse representations.

The amount of data used to record non-zero weight locations

can be high with low sparsity ratios. In summary, mapping

irregular sparse convolution to hardware is challenging and

could require twice the memory of the dense model.

The irregularity of sparse weights could be reduced by

applying constraints on the locations of weights during the

pruning process. In unstructured pruning methods, only the

magnitude of weights are used to decide whether to prune

or retain a weight. All weights below a specific threshold

are pruned from the network (converting a dense model into

a sparse model). The remaining weights are re-trained to

recover accuracy losses. Since in unstructured pruning no

location constraints are placed on the non-zero weights, the

generated sparse weights have an irregular distribution within

the weight tensor. In structured pruning methods, constraints

on locations of pruned weights are applied (e.g. channel-wise,

filter-wise, shape-wise, etc.). For example, in channel-wise

pruning methods, all weights in a channel will be pruned

or retained. A general advantage of structured pruning is

the retainment of hardware friendly regularity that can be

leveraged to simplify sparse convolution operations. However,

strict pruning constraints can negatively impact accuracy.

In this paper, we propose a hardware-friendly pruning

algorithm that generates structured sparse weight patterns.

We also propose an FPGA-based inference engine for sparse

convolution, which uses pruned models generated by our

prunning approach to speed up convolution computation. We

avoid copying sparse weight indices from off-chip memory by

computing these indices on-chip in real-time. The contribution

of this work can be summarized as follows:

• We propose a structured pruning methods that uses

pseudo random sequences generated by LFSRs with

known seeds, to regularize and prune CNN models.

• We explore several pruning methods and evaluate their

accuracy across multiple sparsity ratios on ImageNet.

• We design an FPGA-based accelerator by leveraging our

proposed pruning method to create an architecture that

efficiently performs sparse convolution operations.

The remainder of this paper is organized as follows. Section

II provides background on CNNs, pruning, sparse representa-

tions, and LFSRs. Section III reviews related work. In Section

IV, the proposed structured pruning algorithm is presented.

Section V explains the implementation details of our hardware
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architecture. In Section VI, we discuss the experimental setup

and results. Finally, Section VII concludes the paper with

outlooks for future work.

II. BACKGROUND AND MOTIVATIONS

In this section, we give an overviw of convolution opera-

tions, weight pruning algorithms, and common sparse repre-

sentitions. We then review the concept of linear feedback shift

registers (LFSRs), and how they can be used to generate pesdo

random sequences.

A. Convolution Operations in CNNs

The convolution operation takes two inputs: an image tensor

(I), and a list of filters (F). It outputs a map of extracted

features also called a feature map (O). The operation can

be represented by 6-nested loops as shown in Algorithm (1),

where H is the height of output feature map, W is the width

of output feature map, C is the number of input channels

and equals number of filters channels, N is the number of

output channels and equals number of filters. R, S are the

filter dimensions. Figure (1) shows a convolution layer with

H=4, W=4, C=3, R=3, S=3 and N=2.

B. DNN Weight Pruning

Weight pruning is the process of removing unimportant

and redundant weights from DNN models without scarifying

accuracy. It is an efficient way to compress dense models by

reducing the number of parameters, and operations. During the

pruning process, the importance of weights is defined based on

a given metric, and less important weights are pruned first. The

most commonly used metric is the absolute value of weights,

first presented by [5]. If a weight’s absolute value is less than

a certain threshold, it is zeroed out. Other criteria focus on

Algorithm 1: Convolution Operation

1 for h = 0; h < H; h+ = 1 do
2 for w = 0; w < W ; w+ = 1 do
3 for n = 0; n < N ; n+ = 1 do
4 for c = 0; c < C; c+ = 1 do
5 for r = 0; r < R; r+ = 1 do
6 for s = 0; s < S; s+ = 1 do
7 O(n, h, w) += F(n, c, r, s) ×

I(c, h+r, w+s)
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Fig. 1: Convolution Layer with Two Filters
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Fig. 2: Linear Feedback Shift Register (LFSR)

the energy consumption of a CNN layer to guide the pruning

process [7]. The geometrical location of weights is also used to

reduce the irregularity of sparse weights [8] [9], such pruning

schemes are referred to as structured pruning algorithms.

C. Sparse Matrix Representation

One solution to work with sparse weights efficiently is to

use an alternative data structure to represent sparse data. The

three most common sparse representations are : (1) Coordinate

List (COO) where non-zero weights are stored as a list of

tuples with each tuple containing: filter’s row and colum

indices, channel number, filter’s number and non zero value.

(2) Compressed Sparse Row (CSR) or Yale, format represents

a matrix by three arrays containing nonzero values, column

indices, and the extents of rows. It is similar to COO, but

compresses the row indices. (3) Compressed Sparse Column

(CSC) representation is similar to CSR except that a row index

for each non-zero weight, and column pointers are stored.

Table (I) shows the encoding overhead and the minimum

sparsity (SP) required for these representations to be smaller

than the dense representition.

TABLE I: Sparse Representition Overhead

Representition Encoding Overhead Required Sparsity

COO 3×(R×S×C×N)×(1-SP) SP≥0.667
CSR (R×S×C×N)×(1-SP) + N×C SP≥0.5(1/(R×S) +1)
CSC (R×S×C×N)×(1-SP) + R×S SP≥0.5(1/(C×N) +1)

D. Linear Feedback Shift Register (LFSR)

Figure 2 shows an example of a 5 bits, LFSR and its

sequence. An n-bit LFSR consists of n cells, each of which

holds a state variable si ∈ {0, 1}, and a coefficient (tap)

ci ∈ {0, 1}, for i = 0, 1, ..., n-1. The feedback function (XOR

function) computes the new state sn using the coefficients

and the state values as shown in Equation 1. The period of a

LSFR is a function of its coefficients and initial state values.

The maximal sequence period generated by an n bit LFSR

is 2n − 1 unique states, since the all-zero state is excluded.

The maximal period is generated when the coefficients form

a primitive polynomial (irreducible). Table (II) lists primitive

polynomials for LFSRs of order n= (2-9).

sn = c0 · s0 ⊕ c1 · s1...⊕ cn−1 · sn−1 (1)

TABLE II: Primitive Polynomials

n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9

Taps (0,1) (0,1) (0,1) (0,2) (0,1) (0,1) (0,2,3,4) (0,4)
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Fig. 3: Four Different Pattern Configurations for Prunning Weights.

III. RELATED WORK

Designing custom hardware architectures has been explored

to efficiently support sparse convolution on both ASICs and

FPGAs: (1) ASIC-based accelerators. In [10], a CNN ac-

celerator (EIE) is proposed, which exploits the sparsity of

both input feature maps and filters. EIE focuses on fully

connected (FC) layers and performs optimized sparse matrix

vector multiplications to improve computation efficiency. The

work in [11] proposed an SCNN accelerator that supports

processing convolutional layers in a compressed format. It uses

pixel-oriented dataflow, where the innermost computation is a

Cartesian product. Zhang et al. [12] present the Cambricon-X

accelerator, which applies step indexing techniques, and uses

wide (256×16-bit width) memory and (256-to-1) multiplexers

(MUXs) in convolution layers to gather sparse weights into

a vector, which needs to dynamically select the input vector.

(2) FPGA-based accelerators. In [13], a tile look-up table and

a channel multiplexer is used to match the index between

unstructured sparse weights, and input pixels. A large tile look-

up table is used to locate sub-input tiles and avoid indexing.

The work in [14] uses a vector generator module to match

the index between sparse weights and input activations, and

uses shape-wise pruning to allow sharing the same indexes of

weights between processing units. A more detailed comparison

between our work and FPGA-based accelerators is presented

in Section (VI).

IV. PROPOSED PRUNING METHOD

Our pruning method takes a pre-trained model and a desired

sparsity ratio as an input, and generates sparse weights and

a list of LFSRs seeds. The method consists of four steps.

First, we choose a suitable LFSR pattern configuration for our

model. Second, for that configuration, we find the best seeds

for each LFSR registers. Third, we train our models with a

customized regularization. Finally, we prune and re-train our

model. The following sub-sections explain each step in more

detail:

A. LFSR Pattern Configurations

In this step, we explore four different pattern configurations

for prunning weights in convolution layers. Some of these

configurations add strict constraints on the location of non-

zero weights within filters, while others use looser constraints

at the expense of adding complexity to the pruning process,

and inference engine. Figure (3) shows these configurations

for a convolution layer composed of 3 filters of size (R=3,

S=3, C=3). The configurations are described as follows:

1) PerLayer: one pattern is used to prune weights in all

filters. For example, pattern (0-2) is used in all filters to

represent non-zero weights indices. This configuration

uses only one LFSR to generate one sequence, which

generates the most strictly constrainted pattern.

2) PerFilter: one pattern is used to prune weights for each

filter. For example, sequences (1-2), (0-2) and (0-1) are

used in filter (n=0), (n=1) and (n=2), respectively to

represent non-zero weights indices. A total of N (number

of filters) LFSRs are required for this configuration.

3) PerCoordinate: A total of R×S patterns are required for

this configuration. The same patterns is shared between

different filters at the same coordinate (r, s).

4) PerCoordFilter: A total of R×S×N patterns (i.e. LFSR)

are used in this configuration. In this configuration, the

number of non-zero weights in the sub-tensor (r, s, :) is

the same for (r= 0, 1, ..., R) and (s= 0, 1, ..., S).

B. Finding Best Seeds

In this step, we use a ranking algorithm to find the best

initial seeds for each LFSR. We use the magnitude of weights

in pre-trained models to indicate how important each weight

is. We evaluate if the sequence generated by a seed keeps most

of the important weights, and prunes unimportant weights at

multiple sparsity levels. In this way, we can guarantee using

the best starting sequence for our model. The proposed ranking

algorithm explores all possible sequences, and returns the best

LFSR seeds. Pseudo code of the method is shown in Algorithm

(2). The input is a dense weight (F) of size (N×C×R×S) and

a desired sparsity level (Sd). The output is a list of seeds;

one seed for each LFSR. For tge PerCoordinate pattern, for

each coordinate (r, s) we evaluate the sequence generated by

the (2C) different seed combinations. We compute a score for

each seed by multipling the filters weight by a linear significant

values sig(idx) as in line 10 . The method returns the seeds

with the highest scores.

Figure (4) shows an example for a sequence of length 10

and three filters in perCoordinate configuration (i.e. the same

pattern is shared across filters). Based on the sparsity level

(Sd), we use the first C×Sd indices from the pattern as shown

in the white cells in Figure (4), where C is number of channels.

We also add a significance for each weights value. Weights
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Algorithm 2: Choosing Best Seeds (PerCoordinate)

Input : Filters (F ) of size (N × C ×R× S),
Sparsity (Sd).

Output: List of LFSR seeds (ListSeeds).

1 Size← �log2(C)�
2 ListSeeds← 0

3 for r = 0; r < R; r+ = 1 do
4 for s = 0; s < S; s+ = 1 do
5 bestSeed← 0

6 foreach (seedi) ∈ set(2Size) do
7 LFSRseq ← generateLFSRseq(seedi)
8 for i = 0; i < (C × Sd); i+ = 1 do
9 F (idx)← abs(F (r, s, LFSRseq[i]))

10 sig(idx)← (1− i/C)
11 score(seedi)+ = F (i) ∗ sig(idx)
12 if score(seedi) > bestSeed then
13 bestSeed← score(seedi)
14 ListSeeds← append(bestSeed)
15 Return ListSeeds

that will be pruned first have lower significance compared to

the weights pruned at a higher sparsity level. For example:

W8 has the lowest significance value of 0.1 and W7 has the

highest significance value of 1. The input to this step are filter

weights and the desired sparsity level (Sd). The output is a list

of best seeds bestSeed. For each possible seed value seedi,
we generate its sequence of length C (# of channels), and use

it to compute seed rank score(seedi).

C. Training with Regularization

In the third step, we change the distribution of weights

to follow the selected LFSR sequence generated by the best

seeds. We use customized L1 regularization during the training

process to force weights in specific locations to have low

values or to be zeroed-out without degrading accuracy. We

add a regularizer term to the cost function (J), as shown in

Equation (2), where n is the number of training samples. λ
is the regularization parameter; note, increasing λ adds more

penalty on weight values making them closer to zero. Fl is the

weight tensor of layer l. Sl is the signficance tensor of layer

l with the same shape as Fl. Each value in Sl falls between

[0-1] based on the importance of each corresponding weight.

Sparsity (Sd)

W0 W1 W2 W3 W4 W5 W6 W7 W8 W9

W0 W1 W2 W3 W4 W5 W6 W7 W8 W9

W0 W1 W2 W3 W4 W5 W6 W7 W8 W9

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1Significance (sig)

7 6 3 0 9 1 4 2 5 8LFSR Seq

abs(weights))

R
=3

S=3

C=10

n=0

n=1

n=2

Filters

Fig. 4: Example of Pruning Filters in perCoord Configuration.

Finally, the regularization term is computed by a dot product

of the weight tensor and the signficance tensor. This way, we

force the optimization algorithm to re-distribute weights within

each tensor to follow our LFSR patterns.

J =
1

n

n∑

i=1

L(yi − ŷi) + λ
L∑

l=1

‖Fl · Sl‖ (2)

D. Pruning and Re-training

In this step, we use an iterative pruning and re-training

process to prune weights in dense models to follow LFSR

patterns. We start with a dense model (current sparsity level

(Sc)= 0), and then increase (Sc) from [0 - desired sparsity

level (Sd)] gradually over number of training iterations. Every

weight below the Sc threshold is zeroed out, and the rest

remain the same. After each pruning steps, we re-train our

model to compesnate for accuracy loss. After a number of

training iterations, our model will have Sd×R×S×C×N×L

non-zero weights, where L is number of layers.

V. HARDWARE ACCELERATOR

In this section, we describe the hardware optimizations and

implementation details of our sparse CNN accelerator, and its

sparse dataflow. We also provide a quantitative analysis of the

computing throughput, and required memory bandwidth of our

accelerator.

A. Hardware Architecture and Dataflow

An FPGA-based CNN accelerator design consists of

four major components: processing elements (PEs), on-chip

buffers, external memory, and on-chip interconnect [15]. Be-

fore computing, all data including the input image and model

weights are stored in external memory. Due to limitations in

Algorithm 3: Pseudo Code of the Dataflow

1 for h = 0; h < H; h+ = Th do
2 for w = 0; w < W ; w+ = Tw do
3 for n = 0; n < N ; n+ = Tn do
4 for c = 0; c < NNZ; c+ = Tc do

/* Load Input Tile */
5 get(I[Th′ ][Tw′ ][Tc])

/* Load Weight Tile */
6 get(F [Tr][Ts][Tc][Tn])

/* Clear Output Tile */
7 O[Th][Tw][Tn] = 0;
8 for r = 0; r < R; r ++ do
9 for s = 0; s < S; s++ do

10 for ni = 0; ni < Tn; ni ++ do
11 seed = readLFSRSeed();
12 for ci = 0; ci < Tc; ci ++ do
13 cx = generateNext(seed);
14 for hi = 0; hi < Th; hi ++ do
15 for wi = 0; wi < Tw; wi ++ do
16 O[hi][wi][ni]+ = F [r][s][ci][ni]×
17 I[hi + r][wi + s][cx];

/* Store Output Tile */
18 store(O[Th][Tw][Tn]);
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the size of on-chip memory, we cannot copy all data from the

external memory to on-chip buffers at once. First, we divide

the input data into small portions (Tiles) and cache them into

on-chip buffers a tile at a time for feeding the PEs. On-chip

buffers are used to store tiles of the input image, model fil-

ters, and output (partial sums). Data communication channels

between PEs, and on-chip buffer banks are provided through

the on-chip interconnect. Finally, the PEs are responsible for

all computations.

To achieve high performance, we start our optimization from

Algorithm 1 (see Section II). We transform the convolution

computation from window-based to element-matrix multipli-

cation. Using this approach, we can process each weight

individually, which is more efficient when computing sparse

convolution. Then, we apply loop tiling to keep a small portion

of data stored on-chip, increasing data reuse and reducing

external memory access. External memory access happens

only when we finish all computations on the current tile, and

a new tile is needed. Loop tiling and ordering decide the

dataflow from/to our accelerator.

In our dataflow (shown in Algorithm 3), lines 1-4 show

the order in which we process tiles. In lines 5 and 6, we

copy a tile of input pixels and weights from external memory

into on-chip buffers. The size of an input tile is [Th′ , Tw′ , Tc],

where Th′ = Th + R − 1, Tw′ = Tw + C − 1. The size of

a weight tile is [Tr, Ts, Tc, Tn]. We also clear an output tile

of size [Th, Tw, Tn] in line 7. In this section, we explain the

dataflow for the perCoordFiler configuration. As discussed in

Section IV.B, for the perCoordFiler configuration, we generate

a unique pseudo random sequence at each filter’s coordinates

(r, s, ni). We achieve this by loading a unique LFSR seed in

line 11 and generating a sequence of indices of length Tc as

shown in line 13. The sparse weight at index ci matches the

input pixel at index cx. In order to increase parallelism in

our architecture, the nested loops in lines 10, 14, and 15 are

unrolled and mapped to a parallel hardware. We choose tile

and unrolling sizes such that we fully utilize of all computation

resources provided by the FPGA hardware platform.

Figure (5) shows our hardware architecture when input tile

size equals [T ′h = 5, T ′w = 5, Tn = 1, Tc = 1]. In this

architecture, we use 5×5 BRAMs to stores input pixels. Each

BRAM stores pixels at the same coordinates over all channels

i.e. I(h,w, :). This way, we can read multiple pixels at the

same time. To match sparse weights with their corresponding

input pixels, we connect Tn LFSRs to the address port of

BRAMs (broadcast). LFSRs are used to generate a sequence

of sparse weight indices. Thus, every time a new index is

generated by a LFSR, a new data will be read from all BRAMs

at the same channel. Then, the output ports of BRAMs are

multiplied with the same weight value to perform element-

matrix multiplication as shown in Figure (6). The partial

sums from the multiplication operation are accumulated in

[Th = 3, Tw = 3] registers. Multiplxers of size (R × S) are

used to select the correct input for each accumulator. After

(R×S×C×SP ) clock cycles, the results in the accumulator

registers become valid and can be streamed out to external

memory, where SP refers to sparsity ratio.

The attainable system throughput is constrained by ei-

ther computation (computation-bounded) or communication

(memory-bounded). In [16], a roofline performance model

is proposed to relate system performance to the peak per-

formance provided by the hardware platform, and off-chip

memory traffic. The actual performance of an algorithm on a

hardware platform is the minimum of two terms. The first term

is the peak throughput (GOP/s) provided by all computation

resources in the platform assuming all data is available on-

chip. The second term is the maximum performance that the

memory system can provide. It depends on the algorithm’s

computation to communication (CTC) ratio and platform

bandwidth. In the next two sections, we provide a quantitative

analysis of the computation throughput, and required memory

bandwidth of our accelerator.

B. Computation Optimization

The peak computational performance (also called computa-

tional roof) is the maximum number of operations per second

provided by hardware when all required data is available

on-chip. Given a specific output tile size [Th, Tw, Tn, Tc],

the peak computational performance can be computed by

Equations (3 and 4). It is a function of loop unrolling factors

in the Th, Tw, Tn, Tc dimensions. Loop unrolling increases

peak performance but also increases the resource utilization

in FPGA devices. Our architecture needs (C × SP ×R× S)
clock cycles to finish the execution of each output tile.

P (GOP/s) =
total number of operations

number of execution cycles
× f (3)

P =
2×H ×W ×N × (C ×R× S × SP )⌈

H
Th

⌉
×

⌈
W
Tw

⌉
×

⌈
N
Tn

⌉
×

⌈
C×SP

Tc

⌉
× (C × SP ×R× S)

× f

(4)

Fig. 5: Hardware architecture of sparse convolution engine for a
input Tile of size= [T ′

h = 5, T ′
w = 5, Tn = 1, Tc = 1]
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C. Memory Access Optimization

In this subsection, we show how reducing communication

volume can increase attainable performance. We reduce mem-

ory traffic volume by generating sparse weight indices on-

chip using LFSRs, and applying efficient data reuse. Thus,

increasing the computation to communication (CTC) ratio

of our architecture. This ratio describes the total number

of computations per memory access. Equations (5 and 6)

show the CTC ratio calculation for our accelerator, where

αin, αweight, αout and Bin, Bweight, Bout refer to memory

access counts and on-chip buffer sizes for input, weights and

output feature maps, respectively. SP is the sparsity ratio,

and SPEn is the buffer size used for storing the sparse weight

representation overhead (in our implementation SPEn =0).

CTC =
total number of operations

total amount of external data access
(5)

CTC =
2×H ×W ×N × (C ×R× S × SP )

αin ×Bin + αweight ×Bweight + αout ×Bout
(6)

where:

Bin = Tc × (Th +R− 1)× (Tw + S − 1) (7)

Bweight = (R× S × C ×N)× SP + SPEn (8)

Bout = Th × Tw × Tn (9)

αin =

⌈
H

Th

⌉
×

⌈
W

Tw

⌉
×

⌈
N

Tn

⌉
×

⌈
C

Tc

⌉
(10)

αweight =

⌈
H

Th

⌉
×

⌈
W

Tw

⌉
×

⌈
N

Tn

⌉
×

⌈
C × SP

Tc

⌉
(11)

αout =

⌈
H

Th

⌉
×

⌈
W

Tn

⌉
×

⌈
N

Tn

⌉
(12)

VI. EXPERIEMNT

In this section, we first evaluate the performance of our

pruning algorithm. We measure the accuracy of its four dif-

ferent configurations at multiple sparsity levels. We compare

our algorithm’s accuracy with dense, and unstructured pruning

models. Then, we evaluate the performance of our sparse

convolution engine on three modern DNNs, and compare its

performance with previous dense, and sparse accelerators.
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Weights 0 0 0 40 3 0
0 1 0 00 2 2
9 0 4 00 0 0
5 0 0 71 0 0
0 8 0 00 3 0
0 2 1 06 1 0
3 0 0 00 0 3
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0 0 0 40 3 0
0 1 0 00 2 2
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0 2 1 06 1 0
3 0 0 00 0 3

Input

1

Fig. 6: Element-Matrix Convolution Operation

TABLE III: DNN Models

Model Top1 Top5 #OP (GOP) Size (MBs) # Parameters

VGG16 0.713 0.901 30.92 528 MB 138,357,544
ResNet50 0.749 0.921 6.65 98 MB 25,636,712
InceptionV3 0.779 0.937 11.25 92 MB 23,851,784

A. Pruning Algorithm Evaluation

To evaluate the performance of our pruning algorithm, we

measure the classification accuracy of three modern DNNs

models: VGG16, ResNet50, and InceptionV3 on the ImageNet

dataset (ILSVRC2012) [17]. A summary of the character-

istics, and Top1 (Top5) accuracies of the used models are

shown in Table (III). The number of operations is computed

at 224×224, 224×224 and 229×229 image resolution for

VGG16, ResNet50 and InceptionV3, respectively. In our im-

plementation, we extend the TensorFlow framework [18] by

associating masks with weight tensors. We update these masks

based on the generated LFSRs patterns. During the pruning

process, we start with weights from pre-trained models [19].

Then, we apply our pruning algorithm gradually increasing

sparsity from an initial sparsity ratio si (usually 0) to a final

sparsity ratio sf over a span of n pruning steps. We re-train our

models between each pruning for 10 epochs. We carried out

the experiments using TensorFlow 1.14 on an Nvidia GeForce

GTX TITAN X.

The Top1 (Top-5) classification accuracy of VGG16,

ResNet50, and InceptionV3 models at [0,0.1,...,0.9] sparsity

levels is shown in Figure (7). We use dense models and

unstructured pruning models as our references. Figure (7) also

shows the accuracy of our algorithm for four different configu-

rations: perLayer, perFilter, perCoordinate, and perCoordFilter.

It can be seen that the perLayer and perFilter configurations

have the lowest accuracies. Their accuracy also drops quickly

as sparsity increases. This is due to the strict constraints

inherent in these configurations, and the complexity of the

ImageNet classification problem. The perLayer and perFilter

configurations could be useful when applied to simpler prob-

lems. While the perCoordinate configuration has an acceptable

accuracy, the perCoordFilter configuration achieves the best

results. The perCoordFilter configuration was able to increase

the sparsity of the VGG16, ResNet50 and InceptionV3 models

to 80%, 76%, and 65% respectively with an accuracy (Top1)

loss of less than 2%. This configuration was also able to

achieve around a 54%, 52%, and 46% sparsity ratio with no

accuracy degradation.

B. Hardware Architecture Evaluation

1) Experiments Setup: We evaluate our design on the

Xilinx ZCU102 platform. It consists of an UltraScale FPGA,

quad ARM CortexA53 processors, 4GB PS DDR4 and 512MB

PL DDR4 (14.9GB/s). In our experiments, we use the Xilinx

Vivado HLS (v2019.1) tool chain to transform optimized C

code into an RTL implementation. Our synthesized design runs

at 200MHz on this platform. In this work, we evaluate the

performance of our accelerator on the VGG-16, Resnet50 and

InceptionV3 benchmarks at a model sparsity of 80%, 76%,

65% respectively

C. Resource Utilization

We evaluated the resource utilization of our accelerator for

a number of parallelism options [Th, Tw, Tn] (see Figure (8)).

The utilization of BRAMs is determined by the input tile
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Fig. 7: An accuracy comparison between our pruning algorithm vs. dense and unstructed pruning algorithms for multiple sparsity ratio for
VGG16, Resnet50 and InceptionV3 models.

size (Th′ , Tw′ ), and the number of filters in the weight tile

Tn. We use BRAMs to store the input and weight tiles on-

chip. The parameters Th′ , Tw′ determine the size of input

buffers and Tn determines the number of weight buffers.

LUT and FF utilization increases as the parallelism factors

Th, Tw, Tn increase because the number and size of MUXs

in our design increase, as shown in Section V.B. We use FF

registers to implement Th × Tw × Tn accumulators, because

we need to access all registers at the same clock cycle. We

also observe that the LUT and FF utilization is almost linear

to tile size. The number of DSPs used in our architecture can

be calculated as Th×Tw×Tn. Each DSP can perform a 16-bit

× 16-bit multiplication operation. Our accelerator configured

with [Th = 8, Tw = 8, Tn = 24] almost fully utilizes the

FPGA’s hardware resources, and achieves the hightest peak

computational performance. Table (V) reports the available

resources in the Xilinx Zynq ZCU102 platform.

1) Performance Analysis: We evaluate the performance of

our accelerator using three modern CNNs: VGG16, ResNet50

and InceptionV3 at 54%, 52% and 46% sparsity levels. We

configure our accelerator to [Th, Tw, Tn] = [8, 8, 24]. In this

configuration, we utilize most of the FPGA resources, and

obtain a peak performance of 2 × 0.2GHz × 24 × 8 × 8 =
614.4 GOP/s when the width of operand is 16-bits.

Our accelerator achieves 534.2 GOP/s effective performance

on sparse VGG16 which shows 1.7× and 1.4× speedup

compared with [13] and [14], respectively. For Resnet50

and InceptionV3, our architecture achieves 456.0 GOP/s and

and 458.0 GOP/s which is 1.56× and 1.8× higher than the

effective performance of [13]. In terms of image per second,

our accelerator has 1.2× and 2.7× speedup compared with

[13]. The work in [14] was optimized to target VGG-16

TABLE IV: Performance Comparison with Related Work. In our work, [Th = 8, Tw = 8, Tn = 24] is used.

(2019)[13] (2019)[13] (2019)[13] (2020)[14] Ours Ours Ours

CNN type VGG16 ResNet50 GoogLeNet VGG16 VGG16 ResNet50 InceptionV3

Device ZCU102 ZCU102 ZCU102 ZCU102 ZCU102 ZCU102 ZCU102

Frequency (MHz) 200 200 200 200 200 200 200

Precision 16 bit fixed 16 bit fixed 16 bit fixed 16 bit fixed 16 bit fixed 16 bit fixed 16 bit fixed

DSPs 1144 (45%) 1144 (45%) 1144 (45%) 1350 (53%) 1564 (62%) 1564 (62%) 1564 (62%)

BRAMs 912 (48%) 912 (48%) 912 (48%) 1460 (80%) 840 (46%) 840 (46%) 840 (46%)

LUTs 132K (48%) 132K (48%) 132K (48%) 390K (65%) 203K (74%) 203K (74%) 203K (74%)

FFs 68K (12%) 68K (12%) 68K (12%) 278K (51%) 433K (79%) 433K (79%) 433K (79%)

Sparsity(%) 67.5% 58.7% 65.8% 65.4% 54% / 80% 52% / 76% 46% / 65%

Accuracy loss(%) 0% 0% 0% 0 % 0% / 2% 0% / 2% 0% / 2%

Performance (GOP/s) 309.0 291.4 257.4 495.4 534.2 456.0 458.0

Images/sec 31 104 65 46 38 / 86 154 / 285 75 / 114
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Fig. 8: Resource utilization for configuration (Th, Tw, Tn), where Th, Tw, Tn are the output tile dimensions.

TABLE V: Available Resource in the ZCU102 Platform

BRAMs DSPs FFs LUTs

ZCU102 1,824 2,520 548,160 274,780

giving a throughput of 46 image/sec compared to our 38 im-

age/sec. However, our more generalized architecture supports

efficient compuation over a wide range of models. Compared

to previous works, we do not need to transfer sparsity index

information from off-chip to on-chip. This allows imporved

I/O usage and less BRAM requirements. A given configuration

of cour architecture performs most optimally when the output

feature map dimensions (H, W, N) divide evenly by our output

tile dimensions (Th, Tw, Tn).

VII. CONCLUSION

In this paper, we proposed a pruning algorithm that gener-

ates hardware-friendly structured sparse weights. The locations

of non-zero weights are generated in real-time using Linear

Feedback Shift Registers (LFSRs). The advantage of using

this approach is two-folds: First, eliminating the overhead

of managing sparse representations; second, avoiding copying

extra data from external memory to on-chip buffers. We also

proposed a hardware inference engine that leverages the struc-

ture of our pruning algorithm imposes to efficiency perform

sparse convolution on FPGAs. It uses LFSRs to compute

the positions of non-zero weights within weight tensors on-

chip. Experimental results demonstrate that our accelerator can

achieve 456-534 GOP/s for the modern CNNs on the Xilinx

ZCU102, which provides a 1.5-1.8× speedup over previous

sparse CNN FPGA accelerators.
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