
ParaHist: FPGA Implementation of Parallel
Event-Based Histogram for Optical Flow Calculation

Mohammad Pivezhandi, Phillip H. Jones, Joseph Zambreno
Electrical and Computer Engineering, Iowa State University

Ames, Iowa 50011
{mpvzhndi, phjones, zambreno}@iastate.edu

Abstract—In this paper, we present an FPGA-based
architecture for histogram generation to support event-
based camera optical flow calculation. Our proposed
histogram generation mechanism reduces memory and
logic resources by storing the time difference between
consecutive events, instead of the absolute time of each
event. Additionally, we explore the trade-off between sys-
tem resource usage and histogram accuracy as a function
of the precision at which time is encoded. Our results
show that across three event-based camera benchmarks
we can reduce the encoding of time from 32 to 7 bits with
a loss of only approximately 3% in histogram accuracy. In
comparison to a software implementation, our architecture
shows a significant speedup.

Keywords-Event-based camera sensors; FPGA-based ar-
chitecture; Histogram generation

I. INTRODUCTION

Event-based cameras use biologically inspired sen-
sors, which only transmit information of pixels that
have changed, to overcome throughput limitations of
traditional frame-based cameras. This behavior has the
potential to allow event-based cameras to achieve much
lower latency, and greater effective frame update rates
than frame-based cameras. This has made them at-
tractive for use in applications such as blurred video
reconstruction, high-speed object tracking, and real-
time collision avoidance for autonomous vehicles or
unmanned air vehicles [1], [2]. However, to fully realize
the potential of event-based cameras, the architecture of
a computer vision system must address new challenges
related to both processing asynchronous sparse events
and managing meta-data associated with each pixel.

In this paper, we present an FPGA-based architecture
for histogram generation to support event-based camera
optical flow. A key feature of our design is the compres-
sion of time information. By storing the time difference
between consecutive events, instead of the absolute time
of each event, we significantly reduce memory and
logic resources. This design further supports resource
savings by flexibly allowing the trade-off between the

precision at which time is recorded, and histogram
accuracy. Our architecture can process over 200 million
events/sec, and shows promise for being integrated as
part of a larger event-based camera-driven computer
vision system for optical flow or object tracking.

II. ARCHITECTURE OF EVENT-BASED HISTOGRAM
GENERATOR

Figure 1 illustrates our pipelined architecture for
generating event-based histograms. In summary, data
flows through the pipeline stages as follows: 1) the
Event Mapping stage streams events into an input FIFO,
compresses, and then stores them into a two dimensional
array of Block RAMs, 2) the Noise Removal stage
removes events that are outside of a threshold, 3) the
Timestamp Decompression stage decompresses events
to remove outliers, 4) the Histogram Update stage up-
dates the histogram based on the decompressed events,
5) the Write Back stage updates the previous timestamp
of the compressed events in the Event Mapping stage
with the current timestamp from the Histogram Update
stage, and 6) the updated histograms are placed into
FIFOs for an application to use for gradient calculations.

This section next provides details for each of the six
stages of the architecture.

A. Event Memory Mapping

This stage of the pipeline assumes that events are
streamed from an event-based camera into an input
FIFO formatted using an address-event representation
(AER). AEDAT 2.0 is the specific AER format assumed
in this paper, shown in Fig. 2. These events are then read
from the FIFO, are compressed, and are then stored in
an array of RAMs. Our compression approach concate-
nates consecutive timestamps for a pixel, allowing us
to store the difference between timestamps, instead of
the absolute time for each event. For the case where
we maintain full time precision, the size of timestamps



+

FIFO
Inp

EPCNT

1

NAM

RAM
(1)

RAM
(0)

RAM
(63)

PA
(-r,-r)

DU
(-r,-r)

CS
(-r,-r)

RAM
(1)

RAM 
(0)

RAM
(63)

HS
(-r,-r)

FIFO
(-r,-r)

Stage 2: noise removal Stage 3: timestamp 
decompression

Stage 4: Histogram Update

NDM
RAM
ADM

CU DU
(0, 0)

DU
(r, r)

PA
(0, 0)

FIFO
(0, 0)

FIFO
(r, r)

Stage 5: URAM/BRAM 
write back

Stage 6: toward 
gradient calculation

Stage 1: event mapping

M
U

X

CS
(0, 0)

HS
(0, 0)

CS
(r, r)

HS
(r, r)

EP event packet

CNT
event packet 

counter

RAM
UltraRAM/

BRAM NDM
neighborhood 

address mapper

CU Control Unit
RAM
ADM

UltraRAM/BRAM 
address demapper

NAM
neighborhood 
data mapper

PA prefix adder

DU decompression 
unit

CS
comparison and 

shift

HS Histogram elements 
counter

Ultra-RAM/BRAM 
data demapper

PA
(r, r)

RAM
DDM

RAM
DDM

&

&

&

tsc-tsp-1,-1

tsc-tsp0,0

tsc-tsp1,1

tsc+tsd-1,-1

tsct

tsc-tsd0,0

tsc-tsd1,1tsct+1

Figure 1. Event based Histogram Computation Unit

reduces from 32 bits to 18 bits, when moving from
storing absolute time to time differences.

Figure 3 illustrates our compressed event format,
where multiplied events are concatenated into a ring
buffer structure. The size of each ring buffer structure
is Wts, as computed using Eqn. 1, where Wdata is the
bits of precision required, Wdt is the number of bits
to store time differences, Hs is the histogram capacity,
and PN is the data precision.

Wts = Wdata × PN − (Hs ∗Wdt)− blog(Hs)c (1)

Read (APS) ADC samplex addry addrtype

timestamp

01631

324863

Figure 2. Data representation for an event in AEDAT 2.0. Each event
comprises of 32 bits for an events timestamp, and 32 bits consisting of
the polarity (type), address (xaddr and yaddr), pixel intensity (ADC),
and a select part (Read APS) for IMU, APS and signal level options.

The compressed data is stored into the array of RAMs
using a 2-D addressing scheme. The lowest 3 bits of
the x address, and lowest 3 bits of the y address (see
Fig. 2) are used to index into this array of RAMs. This
addressing scheme stores neighboring pixels regions
into separate RAMs, thus allowing for parallel access
to up to 64 pixel regions at a time (i.e. an 8x8 grid of
pixel regions).

s𝑖𝑧𝑒 𝑡𝑠𝑝 𝑑𝑡0 𝑑𝑡𝑛

𝑊𝑑𝑎𝑡𝑎 − 1 :
𝑊𝑑𝑎𝑡𝑎 − log 𝐻𝑠

…

𝑊𝑑𝑎𝑡𝑎 − log 𝐻𝑠 − 1 :
(𝑊𝑑𝑎𝑡𝑎 − log 𝐻𝑠 −𝑊𝑡𝑠)

𝑊𝑑𝑎𝑡𝑎 − log 𝐻𝑠 −𝑊𝑡𝑠 − 1 :
𝑊𝑑𝑎𝑡𝑎 − log 𝐻𝑠 −𝑊𝑡𝑠 −𝑊𝑑𝑡

𝑊𝑑𝑎𝑡𝑎 − log 𝐻𝑠 −𝑊𝑡𝑠 −𝑊𝑑𝑡 − 1 :
𝑊𝑑𝑎𝑡𝑎 − log 𝐻𝑠 −𝑊𝑡𝑠 − 𝐻𝑠 − 1 ×𝑊𝑑𝑡

𝑊𝑑𝑎𝑡𝑎 − log 𝐻𝑠 −𝑊𝑡𝑠 −

𝐻𝑠 − 1 ×𝑊𝑑𝑡 − 1
: 0

Figure 3. Data representation for each line of memory unit

B. Noise removal

In this stage we use the concept of a background
activity filter [3] for noise removal. When there is
no noise, a moving object will cause events to occur
temporally close in time in the spatial neighborhood
of an object. However in a dynamic scene with noise,
an event within an object’s spatial neighborhood that
occurs temporally far away from the last event is likely
cause by a random glitch, which could come from a
number of sources. We use a time threshold of (∆tn)
to identify events that are too far away temporally as
noise events, and remove them. Equation 2 shows how
this threshold is used, where tsc refers to the current
timestamp and tsp−1:1,−1:1 are previous timestamps
within neighboring regions.

tsc− tsp−1:1,−1:1 < ∆tn (2)

C. Timestamp Decompression

This stage is responsible for decompressing times-
tamps, and removing outliers. Each stage of this process
is illustrated in Fig. 4. First a parallelized prefix adder
is used to sum the time differences concurrently. We
implement the prefix adder using the radix4-Sklansky



0 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120

Δ𝑡0 Δ𝑡1 Δ𝑡2 Δ𝑡3 Δ𝑡4 Δ𝑡5 Δ𝑡6 Δ𝑡7 Δ𝑡8 Δ𝑡9 Δ𝑡10 Δ𝑡11 Δ𝑡12 Δ𝑡13 Δ𝑡14 Δ𝑡15

200 199 197 194 190 185 179 172 164 155 145 134 122 109 95 80

2
0
0

2
0
0

200
2
0
0

𝑡𝑝𝑟𝑒𝑣 𝑡𝑝𝑟𝑒𝑣 𝑡𝑝𝑟𝑒𝑣 𝑡𝑝𝑟𝑒𝑣

200 (2)

(1)

𝑡ℎ
𝑟𝑒
𝑠ℎ
𝑜
𝑙𝑑

21050

𝑡𝑐𝑢𝑟𝑟

160
1
6
0

1
6
0

1
6
0

-40 -39 -37 -34 -30 -25 -19 -12 -4 5 15 26 38 51 65 80-40 (3)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1510

𝑡𝑐𝑢𝑟𝑟

210

𝑑𝑡0 𝑑𝑡1 𝑑𝑡2 𝑑𝑡3 𝑑𝑡4 𝑑𝑡5 𝑑𝑡6 𝑑𝑡7 𝑑𝑡8 𝑑𝑡9 𝑑𝑡10 𝑑𝑡11 𝑑𝑡12 𝑑𝑡13 𝑑𝑡14 𝑑𝑡15𝑑𝑡𝑝𝑟𝑒𝑣

10 0 1 2 3 4 5 6 7 8 0 0 0 0 0 0210

𝑑𝑡′0 𝑑𝑡′1 𝑑𝑡′2 𝑑𝑡′3 𝑑𝑡′4 𝑑𝑡′5 𝑑𝑡′6 𝑑𝑡′7 𝑑𝑡′8 𝑑𝑡′9 𝑑𝑡′10 𝑑𝑡′11 𝑑𝑡′12 𝑑𝑡′13 𝑑𝑡′14 𝑑𝑡′15𝑡′𝑝𝑟𝑒𝑣

(4)

(5)

Figure 4. Decompressing and comparing timestamps for the his-
togram update stage. 1) the result from the prefix adder, 2) the
decompressed data after subtracting the previous timestamp. 3) sub-
tracting the previous timestamp from the current timestamp for outlier
detection. 4) positive values mean timestamps within the threshold
value. 5) one right shifting the ring buffer elements to store the recent
timestamp in place of the previous timestamp.

approach [4], which makes efficient use of hardware
resources. After summing time differences, we subtract
these from the previous timestamp to obtain decom-
pressed timestamps (line (2)). Outliers are removed
if they are greater than the current time minus the
threshold (i.e. tcurr− threshold). In Fig. 4, the current
time is tcurr = 210, the threshold is threshold = 50,
and their difference is 160. Thus, in line (3) of Figure 4
positive times are removed by zeroing them out in line
(5). Additionally, it can be seen when moving from line
(4) to line (5) that the timestamps are moved to the right
by one in the ring buffer. Note that though this method
increases the number of operators from 26 to 36 when
compared to Brent-Kung [5], it decreases the number
of steps from 2log2(n) to log2(n).

D. Histogram Update

After decompressing the timestamps and removing
outliers, the remaining values (shown in green in line (4)
of Fig. 4) are used to update the histogram. This process
simply involves counting the green boxes to increment
the appropriate bins of the histogram, and shifting the
event ring buffer by one to the right.

III. RESULTS

Though event-based camera sensors are inherently
asynchronous, multiple pixels can spike simultaneously.
This asynchronous behavior makes sub-microsecond
processing time in FPGAs viable when sufficient par-
allelism is applied. We used two separate input bench-
marks for our evaluation: 1) the rotating disk benchmark
is a disk with eight compartments in which the camera

moves around its z dimension. 2) The translating si-
nusoid benchmark is a pattern that varies sinusoidally
in a horizontal direction, with the camera is panned
clockwise around the y-axis. This results in a model that
shifts to the left. Since the per-frame latency equivalent
in event-based cameras is on the order of a single
microsecond, for this benchmark, that has as many as
1396 pixels spiking at the same time in translating
boxes, implies that our hardware solution requires a
processing time of approximately of 10−6/1396 or
about 0.71 nano-second to keep up with our inputs.

To measure the resource usage of our proposed
architecture, we synthesized various configurations of
our VHDL design using Vivado HLx 2018.1. Hardware
utilization is presented in Table I in which several trends
can be observed. First, the resource consumption relates
to the data width of each line of memory, and each
of these lines represents a ring buffer with variable
element width as shown in Fig. 3. To meet the fixed
configuration of Ultra-RAM (RAMU ) modules, the
width of ring buffer in each line of memory would be
72 bits multiplicands of precision. When the value of
precision is more than one, the data width exceeds 72
bits, which results in a hybrid set of BRAMs (RAMB)
and RAMU modules. The current timestamp data width
should be similar to the previous timestamp in width,
and, according to Eqn. 1, the final data width depends
on the capacity of the histogram elements counter,
delta-times, and a precision factor. For example, with
a histogram capacity of 4 bits, delta times width of
4 bits, and a precision factor of 1, we would have
72 − (4 + 16 × 4) = 4 bits for each timestamp.
Moreover, the required resources on the FPGA relates to
the search distance. This search distance (radius) value
exponentially increases the number of parallel regions
for processing neighboring pixels, i.e., horizontal ele-
ments in Fig. 1. In Table I, resource consumption is
based on a design space exploration with a data-width
of 72 bits with precision, multiplicands of 1, 2, 3, and
4, and search regions of 3*3, 5*5, and 7*7.

For throughput and processing time analysis, the
target frequency is the key factor. We divide the
throughput analysis into on-chip and off-chip con-
siderations. The On-chip throughput is equal to the
Frequency×DataWidth×SearchDistance. As pre-
sented in Fig. 5, in a constant frequency, increasing
the search distance and data width increases the on-
chip throughput from about 100 Gbps to 2700 Gbps.
On the other hand, the off-chip throughput is equal
to the target frequency, and this design has an off-
chip throughput of more than 200 M event/sec. On



Data Width = 72 Data Width = 144

RAMB RAMU FF LUT RAML RAMB RAMU FF LUT RAML

3 × 3
Used Resources 0 64 10969 25245 442 104 51 16716 24737 442

Percentage 0.00 66.66 2.38 10.95 0.43 33.33 53.12 3.62 10.73 0.43
5 × 5

Used Resources 0 64 12421 68899 450 112 50 16910 42510 450
Percentage 0.00 66.66 2.69 29.90 0.44 35.89 52.08 3.66 18.45 0.44

7 × 7
Used Resources 0 64 13470 144857 463 152 45 17853 79634 465

Table I
RESOURCE USAGE IN A ZCU106 FPGA DEVICE

Figure 5. Power and throughput analysis for the histogram sizes of
8, 12, and 16 and the radius values of 1, 2, and 3

the processing time analysis part, we compared our
fully parallel design, which has a constant runtime of
1/Freq in different search distance configurations, to
the equivalent software models in Java and Cpp in
Table II. This runtime is based on mean runtime per
event of the rotational disk and with precondition of
having an event packet of 90000 events.

IV. CONCLUSION

This paper presents a pipelined, parallel, and
memory-efficient architecture for histogram creation for
use in event-based camera applications. It shows a
thousand times speedup over a well-known Java ver-
sion implementation. The final design’s throughput is
proportional to the device’s supported frequency, and
our results show an event processing throughput of

r
FPGA JAER Cpp Speedup
(µsec) (µsec) (µsec) (Cpp)

1 0.00493 6.4261 1.1581 1303.5
(234.9)

2 0.00482 6.7020 2.2346 1390.5
(463.6)

3 0.00499 8.1021 3.9516 1627.5
(791.9)

Table II
RUNTIME ANALYSIS FOR ROTATING-DISK BENCHMARK FOR

DIFFERENT SEARCH DISTANCES (r)

more than 200 million events/sec. The generic imple-
mentation also supports lowering timestamp precision
with little accuracy degradation that makes the design
compact enough for embedded applications.

REFERENCES

[1] A. Amir, B. Taba, D. Berg, T. Melano, J. McKinstry,
C. Di Nolfo, T. Nayak, A. Andreopoulos, G. Garreau,
M. Mendoza, et al., “A low power, fully event-based
gesture recognition system,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pp. 7243–7252, 2017.

[2] P. Lichtsteiner, C. Posch, and T. Delbruck, “A 128*128
120 db 15µs latency asynchronous temporal contrast vi-
sion sensor,” IEEE journal of solid-state circuits, vol. 43,
no. 2, pp. 566–576, 2008.

[3] A. Linares-Barranco, F. Gómez-Rodrı́guez, V. Villanueva,
L. Longinotti, and T. Delbrück, “A usb3. 0 fpga event-
based filtering and tracking framework for dynamic vision
sensors,” in 2015 IEEE International Symposium on Cir-
cuits and Systems (ISCAS), pp. 2417–2420, IEEE, 2015.

[4] D. Merrill and M. Garland, “Single-pass parallel prefix
scan with decoupled look-back,” NVIDIA, Tech. Rep.
NVR-2016-002, 2016.

[5] R. P. Brent and H. T. Kung, “A regular layout for parallel
adders,” IEEE transactions on Computers, no. 3, pp. 260–
264, 1982.


