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Poly-DWT: Polymorphic Wavelet Hardware Support for Dynamic
Image Compression

AMIT PANDE and JOSEPH ZAMBRENO, Iowa State University

Many modern computing applications have been enabled through the use of real-time multimedia process-
ing. While several hardware architectures have been proposed in the research literature to support such
primitives, these fail to address applications whose performance and resource requirements have a dynamic
aspect. Embedded multimedia systems typically need a power and computation efficient design in addition
to good compression performance. In this article, we introduce a Polymorphic Wavelet Architecture (Poly-
DWT) as a crucial building block towards the development of embedded systems to address such challenges.
We illustrate how our Poly-DWT architecture can potentially make dynamic resource allocation decisions,
such as the internal bit representation and the processing kernel, according to the application requirements.
We introduce a filter switching architecture that allows for dynamic switching between 5/3 and 9/7 wavelet
filters and leads to a more power efficient design. Further, a multiplier-free design with a low adder re-
quirement demonstrates the potential of Poly-DWT for embedded systems. Through an FPGA prototype, we
perform a quantitative analysis of our Poly-DWT architecture, and compare our filter to existing approaches
to illustrate the area and performance benefits inherent in our approach.

Categories and Subject Descriptors: C.3 [Special-Purpose and Application-Based Systems]: real-time
and embedded systems; I.4 [Image Processing and Computer Vision]: Compression (Coding)—approxi-
mate methods

General Terms: Algorithms, Design

Additional Key Words and Phrases: Polymorphic architecture, wavelet transform, filter design

ACM Reference Format:
Pande, A. and Zambreno, J. 2012. Poly-DWT: Polymorphic wavelet hardware support for dynamic image
compression. ACM Trans. Embedd. Comput. Syst. 11, 1, Article 6 (March 2012), 26 pages.
DOI = 10.1145/2146417.2146423 http://doi.acm.org/10.1145/2146417.2146423

1. INTRODUCTION

Multimedia services over embedded devices are becoming popular with the develop-
ment of scalable encoders and rise of reconfigurable hardware to support the required
high throughput. The large computational complexity and memory requirements
involved in real-time image processing algorithms have been a bottleneck for such
systems.

The Discrete Wavelet Transform (DWT) has emerged as a powerful tool for compres-
sion and is being used in many multimedia and signal processing applications. It consti-
tutes a significant part of the overall computations involved in image/video compression
schemes. Many image compression schemes have been derived from DWT-based struc-
tures [Said and Pearlman 1996; Shapiro 1993; Taubman 2000]. The work on using
Embedded Zero-tree Wavelet (EZW) structures [Shapiro 1993] for image compression
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was a milestone research that introduced sub-band coding to achieve high-compression
performance. Said and Pearlman [1996] introduced a more efficient DWT-based Set
Partitioning in Hierarchical Trees (SPIHT) encoding to improve the performance of
Shapiro’s EZW coding. [Taubman 2000] proposed the DWT-based Embedded Block
Coding with Optimal Truncation (EBCOT) coding algorithm, which was accepted for
scalable encoding in JPEG2000 [Christopoulos et al. 2000]. JPEG2000 achieves almost
twice as much compression as JPEG with the same reconstruction quality of images (in
terms of PSNR or Peak Signal-to-Noise Ratio). DWT has been incorporated in recent
image and video compression research such as motion JPEG2000 [Qiu and Yu 2001];
3-D , 4-D sub-band coding [Choi and Woods 1999; Yang et al. 2006]; and MPEG-4 SVC
(Scalable Video Coding extension, released in July 2007) [Schwarz et al. 2007]. Of the
fourteen proposals for SVC received by the MPEG committee, twelve were based on
DWT, while two were extensions of the existing DCT based MPEG-4 AVC standard.
Thus, DWT is increasingly becoming a popular choice for image/video compression due
to high compression, scalability, and other features.

We recognize that DWT serves as backbone for new generation multimedia compres-
sion schemes and present a polymorphic architecture for its hardware implementation
in this paper. Implementations such as those using ASICs or FPGAs are capable of
accelerating these computations by exploiting the inherent algorithmic parallelism.
Stroobandt et al. [2004] discuss the performance requirements of a reconfigurable hard-
ware architecture for a scalable wavelet-based video decoder. Eeckhaut et al. [2007]
present a complete video deliver chain including a video server, negotiation and scal-
able video clients using a wavelet-based coding scheme at its core. Many hardware
implementations have also been proposed in the research literature [Alam et al. 2003;
Benkrid et al. 2003, 2001; Ritter and Molitor 2001; Kotteri et al. 2005; Martina and
Masera 2005; Villasenor et al. 1995]. These implementations aim at reducing hardware
complexity in order to improve the system throughput.

Another concern is the fact that many typical applications of DWT have dynamic
resource requirements. For example, consider a distributed video surveillance setup
[Verma et al. 2006, 2008]. There are low-activity (idle) times and high-activity (active)
times associated with the camera. During idle times, a low-power and low-bandwidth
design may satisfy the requirements. However, during active times, the system would
require transmission of a higher quality signal over a potentially sparse resource
network. In such cases, it would be extremely beneficial to be able to distribute the
available hardware resources to allow a compression efficient implementation using a
relatively large amount of power.

In this article, we introduce a new layout and reconfiguration scheme for multime-
dia applications, which we call the Polymorphic Wavelet Architecture (Poly-DWT). We
define polymorphism as the capacity of an architecture to adapt its hardware usage
to meet the desired dynamic specifications. In the image processing domain, these
specifications would be in terms of throughput, reconstruction quality, and power con-
sumption, among others. Our Poly-DWT architecture allows the individual processing
kernels to modify their hardware resources to suit the instantaneous application re-
quirements. At its highest level, the Poly-DWT provisions for optimal device usage
under the given performance and quality requirements. A fine-grained description of
poly-DWT has been provided that allows run-time reconfigurability of the design over
commodity FPGA platforms and ASIC designs.

Figure 1 gives a general description of Poly-DWT and its interface with a larger
multimedia system. Some multimedia input (such as a stream of pixels for consec-
utive frames of a video) is first transformed into the time-frequency domain by the
wavelet transform (DWT). Depending upon the throughput required and the input
available from the video device, various instances of DWT kernels can be used in the
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Fig. 1. Conceptual overview of the polymorphic wavelet architecture.

Fig. 2. Conceptual overview of the DWT filter design constraints and desired features.

implementation. The DWT kernel can be implemented using varying lengths, leading
to varying image compression properties of the DWT block. An interface is provided for
the application to dynamically notify the architecture about its performance require-
ments in terms of the hardware requirements and the image reconstruction quality
requirements. Besides the previously mentioned video surveillance application, other
real-time video streaming applications such as those used in medical image process-
ing [Leeser et al. 2004], remote laboratories [Mittal et al. 2007], or educational video
streaming [Pande et al. 2007] may benefit enormously from the polymorphism of DWT
kernels.

We summarize the requirements of embedded multimedia system design in Figure 2
and they are enumerated as following.

—Modern embedded multimedia systems would require transmission of a high-quality
signal over a potentially sparse resource network. Thus, good compression is a desired
feature of an efficient implementation.

—High-system throughput and good perceptual quality are desired features and pose
constraints on system design.

—Embedded systems have hardware and power constraints because they are typically
mobile, battery-driven devices.
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—Hardware reconfiguration of the filters is the enabling technology to realize these
tradeoffs. Intelligent allocation of hardware resources can achieve a run-time tradeoff
between hardware resources and performance constraints.

Our Poly-DWT architecture takes these explicit run-time requirements, along with an
output feedback of the available hardware resources and image reconstruction quality
and continually makes a reconfiguration decision. The reconfiguration mentioned in
this article refers to the ability of our hardware to reconfigure its hardware resources.
The implementation of our design can be done over FPGA, and ASICs. Given an image
quality constraint the architecture can self-reconfigure to maximize device performance
or power consumption, and given an external resource or performance constraint it can
reconfigure to maximize image quality. Initial results had been presented in Pande and
Zambreno [2008a, 2008b]. The proposed approach can provide a set of solutions for the
dynamic requirements of system performance and power consumption without any
overheads in throughput or hardware cost in comparison with existing approaches.

The contributions of this article can be summarized as follows.

—We introduce the concept of the Polymorphic Discrete Wavelet Transform (Poly-DWT)
architecture. The Poly-DWT architecture enables dynamic allocation of hardware
resources to efficiently create a dynamic response to changing external conditions.

—We discuss the development of a family of parameterized bi-orthogonal 9/7 filters
and the derivation of binary coefficient filters for hardware efficient implementation.

—A multiplier-free binary 9/7 wavelet filter is introduced to obtain a faster and more
efficient implementation.

—A switching scheme to allow runtime switching between 5/3 and 9/7 wavelet struc-
tures with hardware reuse is presented.

—We present a quantitative analysis of the various factors and tradeoffs involved in a
Poly-DWT implementation.

—We present a detailed area/performance tradeoff analysis for the sample Poly-DWT
filters.

The remainder of this article is organized as follows: In section 2, we give a working
knowledge of DWT filters used in image compression. Section 3 provides a background
study of the DWT algorithm and its hardware implementation. We also present the
related research and limitations with existing hardware implementations. This moti-
vates us for a Polymorphic design, which is presented in Section 4. The subsections
give the mathematics, numerical study and background of the design. Next, we arrive
at the candidate filters and their hardware architectures and then choose the optimal
filters for Poly-DWT. Section 5 gives an insight into hardware re-allocation by changing
the internal word width representation of registers by “bit-width” switching scheme.
Section 6 introduces the “on-the-fly” switching scheme for filter coefficients. Section 7
also gives details of other experiments both in ModelSim and Xilinx ISE for hardware
performance and over MATLAB for rigorous image processing performance measure-
ments. In Section 8, we conclude the article with a look towards planned future work.

2. MOTIVATION AND INSIGHT

Prior works in signal processing explain that the 1-D DWT can be viewed as a signal
decomposition using specific low pass and high pass filters. A single stage of image
decomposition can be implemented by successive horizontal row and vertical column
wavelet transforms. Thus, one level of DWT operation is represented by filtering with
high- and low-pass filters across row and column successively and is illustrated in
Figure 3. After each filtering a down sampling is done by a factor of 2 to remove the
redundant information. The two most common DWT filters used in image compression
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Fig. 3. Basic stages of a one level 2-D wavelet transform operation.

are Le Gall’s 5/3 filter and the Daubechies 9/7 filter [Christopoulos et al. 2000]. They
are accepted in the JPEG2000 standards. The Le Gall’s filter has rational coefficients
and its hardware implementation requires less resources. The Daubechies 9/7 (also
commonly known as CDF 9/7) filter has better compression performance. However, it
has irrational coefficients therefore its hardware requirements are very large.

This article develops the Poly-DWT architecture to serve as a backbone for real-time
multimedia applications to address their dynamic demands and constraints. In this
article, we discuss some dimensions that provide this polymorphism to our architecture.
The first dimension is the choice of suitable DWT filter. Different applications such as
medical image processing, High Definition Television, video surveillance applications,
and wireless video all have different real-time constraints [Pande et al. 2007; Mittal
et al. 2007] and different filters may serve the requirements at different times.

The complexity of DWT hardware is another important design aspect. An imple-
mentation with diverse hardware requirements like multipliers, buffers etc will have a
lower throughput due to increased processing time and is less favorable for Polymorphic
architecture.

In this article a binary coefficients 9/7 filter is implemented to allow cheaper imple-
mentation cost, higher throughput and “on-the-fly” switching to 5/3 filter architecture.
The term “binary coefficients filter” refers to a filter whose coefficients can be exactly
written in the form p

2q where p and q are integers. Thus, we have the desired ratio-
nal properties of Le Gall’s 5/3 filter and image compression performance similar to
Daubechies’ 9/7 filter.

2.1. Daubechies 9/7-Tap Bi-Orthogonal Filter

The bi-orthogonal Daubechies 9/7 filter is the most widely used filter for DWT opera-
tion. These wavelets have symmetric scaling and wavelet functions, that is, both the
low-pass and high-pass filters are symmetric. This filter has excellent image compres-
sion capabilities. There are four filters that comprise the two-channel bi-orthogonal
wavelet system. The analysis and synthesis low-pass filters are denoted by H0 and G0
respectively. The analysis and synthesis high-pass filters are denoted by H1 and G1,
respectively, and are obtained by quadrature mirroring the low-pass filters.

H1(z) = z−1G0(−z), G1(z) = zH0(−z) (1)
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Table I. Coefficients for the CDF 9/7 Filter

i h0(i) h1(i) g0(i) g1(i)
±4 0.026748757411 0 0 0.026748757411
±3 −0.016864118443 0.091271763114 −0.091271763114 0.016864118443
±2 −0.078223266529 −0.057543526229 −0.057543526229 −0.078223266529
±1 0.266864118443 −0.591271763114 0.591271763114 −0.266864118443

0 0.602949018236 1.11508705 1.11508705 0.602949018236

Table II. Coefficients for Le Gall 5/3 Filter

i h0(i) h1(i) g0(i) g1(i)
±2 −1/8 0 0 −1/8
±1 2/8 −1/2 1/2 −2/8

0 6/8 1 1 6/8

If we define D(z) = G0(z)H0(z) the Perfect Reconstruction (PR) condition simplifies to
the following:

D(z) + D(−z) = 2. (2)
This equation is solved using Lagrange Half Band Filters (LHBF), Lk(z) where :

D(z) = Lk(z) = zk
(

1 + z−1

2

)2k

α(k),

α(k) =
k−1∑
n=0

(
k+n−1Cn

)(
2 − (z + z−1)

4

)n

. (3)

This is simplified for k = 4 to get the famous Cohen-Daubechies-Feauveau (CDF) or
simply Daubechies bi-orthogonal 9/7 filter. The filter coefficients are irrational and their
approximate values are given in Table I. Ansari et al. [1991] discuss the derivation in
detailed steps.

2.2. Le Gall’s 5/3 Filter

Gall and Tabatabai [1988] solved the PR condition by substituting D(z) = a0 + a2z−2 +
a3z−3 + a2z−4 + a0z−6 with the condition a0 ∈ [− 1

8 , 0]. For a = 1
16 the simplification leads

to the famous Le Gall’s 5/3 filter pair. The coefficients for this filter are given in Table II.
This filter has lower latency than the ones studied earlier but provides lesser image
compression capabilities.

low53(i) = 3
4

× x(i) + 1
4

× (x(i − 1) + x(i + 1)) − 1
8

× (x(i − 2) + x(i + 2)) (4)

high53(i) = x(i) − 1
2

× (x(i − 1) + x(i + 1)) (5)

3. BACKGROUND AND RELATED WORK

Our Poly-DWT architecture must enable dynamic control of the allocated resources in
order to yield high performance subject to many external parameters. Although this
architecture serves different needs depending on the target multimedia application,
one constant across many variations is the use of wavelets for high-quality compression
of image or video data.

Recent works in partial reconfiguration of FPGAs provide an insight into the
state-of-the-art. Claus et al. [2008a] gives a comparison of embedded reconfigurable
video-processing architectures. They propose a hybrid of two hardware platforms: one
providing easy reconfiguration of modules and the other providing easy implemen-
tation with higher clock frequency, to achieve an optimal FPGA-based dynamically
and partially reconfigurable platform for real-time video and image processing. The
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Fig. 4. Result of three level 2-D wavelet transform operation on an image.

tool ReCoBus-Builder [Koch et al. 2008] simplifies the generation of dynamically
reconfigurable systems to almost a push button process. The work also describes a
communication infrastructure for dynamically reconfigurable systems. Claus et al.
[2008b] presents an IP core that enables fast on-chip dynamic partial reconfiguration
close to the maximum achievable speed. [Paulsson et al. 2008] present a scheme for
self-optimization of power and performance according to the run-time specific require-
ments. The work discusses power optimization of signal routing for application-specific
dynamic performance requirements.

Contrary to the previously mentioned approaches, in this article we refer to reconfig-
uration as the dynamic switching of hardware architectures to save power resources.
Thus, this switching can be implemented in both FPGA-based and ASIC-based de-
signs. We next discuss the existing work and developments in the theory of wavelet
transform and presents the motivation for hardware implementation of this algorithm.
Section 3.1 discusses the development of the theory of wavelet transform, and its ef-
ficient image-processing capabilities. Section 3.2 describes some recent attempts at
implementing DWT on reconfigurable platforms.

3.1. Wavelet Transform Background

The efficient representation of time-frequency information by the wavelet transform
has lead to its popularity for signal processing applications. DWT provides superior
rate-distortion and subjective image quality performance over existing standards. Ap-
plying a 2-D DWT to an image of resolution M × N results in four images of dimen-
sions M

2 × N
2 : three are detailed images along the horizontal (LH), vertical (HL) and

diagonal (HH), and one is coarse approximation (LL) of the original image. LL rep-
resents the low-frequency component of the image, while LH, HL, and HH represent
the high-frequency components. This LL image can be further decomposed by DWT
operation. Three levels of such transforms are applied and shown in Figure 4. The
coarse information is preserved in the LL3 image and this operation forms the basis of
Multi-Resolution Analysis for DWT [Vetterli and Kovačevic 1995].

Spectral factorization in the frequency domain and lifting schemes are the two
common schemes for achieving wavelet decomposition. The spectral factorization
method first pre-assigns a number of Vanishing Moments on the Bi-orthogonal Wavelet
Filter Banks (BWFBs), then obtains a trigonometric polynomial (known commonly as
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6:8 A. Pande and J. Zambreno

a Lagrange Half-Band Filter or LHBF) and then the filter coefficients are determined
according to the perfect reconstruction condition. As will be seen in the following
section, we implement a spectral factorization based approach that also obtains a
low-hardware implementation like that achieved from lifting by using a folding scheme.

BWFBs are commonly used for image processing but they have irrational coeffi-
cients, the associated DWT requires a high precision implementation, leading to an
increased computational complexity. In a hardware implementation, rational binary
coefficients can help in achieving a multiplier-free implementation of filter coefficients
[Martina and Masera 2007; Redmill et al. 1997]. These multiplier-free implementa-
tions involve image reconstruction quality tradeoffs. Many other researchers have also
faced the problem of reducing DWT complexity [Alam et al. 2003; Ritter and Molitor
2001; Martina and Masera 2005]. What differentiates our work is that we consider ap-
plications that could make use of runtime (not one-time) hardware resource allocation.
To fulfill this requirement, we design a new polymorphic architecture that can enable
dynamic control over the properties of the allocated hardware resources.

3.2. Hardware Implementation of DWT

Much research has been done in the development of DWT architectures for image
processing [Benkrid et al. 2001; Ritter and Molitor 2001; Kotteri et al. 2005; Martina
and Masera 2007]. A good survey on architectures on DWT coding is given by Tseng
et al. [2005]. This article gives insight on hardware implementations for JPEG2000
scheme which is based on DWT computations. The computational complexity analysis
of JPEG2000 by Adams and Kossentini [2000] and Lian et al. [2003] explains that
EBCOT coding and DWT operations together contribute more than 80% of the overall
complexity. More details of the JPEG2000 standard are given in Christopoulos et al.
[2000] and Skodras et al. [2001].

The DWT architectures can be broadly classified into lifting-based, convolution-based
and B-spline-based architectures. The lifting-based architectures are popular and be-
came the mainstream because they need fewer multipliers and adders and have a
regular structure. Similarly, B-spline-based architectures have been proposed to min-
imize the number of multipliers by using B-spline factorization [Huang et al. 2003].
However, the lifting-based architecture has a larger critical path. Convolution-based
approaches have a lower critical path but require a larger number of multipliers.

In this article, we rationalize the filter coefficients that overrides the past limitations
of convolution-based approaches. We introduce a multiplier-free implementation and
further introduce a switching structure that enables efficient hardware resource shar-
ing between low- and high-pass filters of DWT. By pipelining, we are able to achieve a
good performance with our approach.

Chang and Hauck [2004] propose several optimization techniques aimed at providing
the developer with more control over the area-to-error trade-off during data path pre-
cision optimization that would not be available with simple truncation. An error model
is developed for adder and multiplier circuits. However, one of the problems faced is
the uncertainty in actual error of the system that depends on the actual value of the
input. The upper bound on error skews toward larger positive values as we reduce the
bit allocated per pixel. In this article we make use of a dynamically reconfigurable ar-
chitecture to modify the resource allocation for the system based on the image quality
required by the application. Benkrid et al. [2001] discuss that the overall performance
and area depends significantly on the precision of intermediate bits used in the design.
This motivates us to further look at bit allocation as another aspect of polymorphism
in our Poly-DWT structure.

Martina and Masera [2007] propose a multiplier-free VLSI architecture for the fa-
mous 9/7 wavelet filters. The novelty of their architecture is the possibility of combining
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the 5/3 wavelet data path into the 9/7 data path, resulting in a reduced number of
adders compared to other solutions. This implementation approximates the filter coef-
ficients into two decimal places of accuracy and then implements a folded structure for
achieving a hardware-efficient DWT implementation. This implementation requires
19 adders, an improvement over 21 adders required in their previous implementation
[Martina and Masera 2005]. Our work obtains a different expression for wavelet filter
coefficients to obtain all binary rational coefficients. This reduces the number of adders
required by our implementation significantly and also achieves significantly better
image reconstruction results over the original filter. As will be described in Section 4,
our folded implementation reduces the number of adders to just 9.

Tay [2000] presents a technique to rationalize the coefficients of wavelet filters
that will preserve bi-orthogonality and perfect reconstruction. This approach also
preserves regularity of the structure by preserving most of the zeros at z = −1. This
approach has been developed further in this article to facilitate the development of a
polymorphic structure.

4. POLY-DWT FILTER

A look at Table I explains the inherent difficulties in the hardware implementation of
the original Daubechies 9/7 filter. While this filter has high compression performance,
it will lead to lossy compression due to truncation involved in filter coefficients in a rea-
sonable fixed point hardware representation such as a 16-bit representation (12-bits for
integer and 4-bits for fractional part values). The number of bits required for accurate
representation increases as we increase the number of levels of wavelet decomposi-
tion. On the other hand, floating point implementation implies a higher hardware cost
(32 bits for single precision representation). Moreover, hardware multipliers would be
needed to implement this in our design with reasonable precision.

We alleviate this problem by searching for an integer coefficients filter that can offer
a higher PSNR at a smaller word size. A parameterized filter design allows us to obtain
a family of 9/7 filters. This new design is then searched for rational coefficients to obtain
new filters to alleviate the previously mentioned problems.

4.1. Parameterized Filter Design

A parameterized design alleviates the problem of irrational coefficients. Tay [2000]
poses this constraint on D(z) to derive the binary rational coefficients and achieve new
sets of 9/7 filters by adding more degrees of freedom to the original LHBF equation (by
introducing a free parameter α):

H0(Z) = Kh(Z + 1)(Z3 + AZ2 + V Z + C) (6)
G0(Z) = Kg(Z + 1)2(Z + α) (7)

D(Z) = KhKg(Z + 1)3(Z + α)

×(Z3 + AZ2 + BZ + C). (8)
The PR condition on D(Z) gives simultaneous constraint equations which simplify to
give solutions for A, B, and C (and simultaneously for the filter coefficients) in terms of α:

A = −(3 + α) (9)

B = 9α3 + 35α2 + 48α + 24
3α2 + 9α + 8

(10)

C = 8(1 + α)3

3α2 + 9α + 8
. (11)

Here, we have Z = (z+z−1)/2. Setting α to −1.6848 gives back the original 9/7 filter pair.
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Table III. Analysis High-Pass Filter Coefficients (H1) for the
Bi-Orthogonal 9/7 Tap Filter

i\α 1.6848 −1.667 −1.8 −2
±3 0.091271763114 1/16 1/16 1/16
±2 −0.057543526229 −1/16 −1/16 0
±1 −0.591271763114 −9/16 −9/16 −9/16

0 1.11508705 9/8 9/8 1

Table IV. Analysis Low-Pass Filter (H0) Coefficients for the
Bi-Orthogonal 9/7 Tap Filter

i\α 1.6848 −1.667 −1.8 2
±4 0.026748757411 1/32 1/32 1/64
±3 −0.016864118443 −1/32 0 0
±2 −0.078223266529 −1/16 −3/32 −1/8
±1 0.266864118443 9/32 1/4 1/4

0 0.602949018236 19/32 5/8 23/32

Fig. 5. Numerical Analysis of Quantization error for seven bit finite representation of filter coefficients.

4.2. Numerical Study

The parameter α can be varied to achieve a family of bi-orthogonal filter pairs for DWT
implementation. Setting α = −1.6848 gives us the CDF-9/7 filter that have been proven
to have good compression performance. Next, we perform a numerical study to explore
a set of binary coefficients filter which is in close proximity to the CDF-9/7 filter. We
ran MATLAB experiments to obtain the quantization error for the filter coefficients
with α varying from −1.6 to −2 (in vicinity of the α = −1.6848 value). The results are
presented in Figure 5. It can be observed that the minimization of this error occurs at
α = −2, where quantization error drops down to 0. A zero quantization error indicates
that the filter coefficients derived with α = −2 are (exactly) rational. We can also
observe local minima of curves around two regions in the vicinity of α = −1.6848 (at
α = −1.66 and α = −1.8 approximately). We also derive approximate filter coefficients
from these minima to obtain a binary coefficients 9/7 filter. These filter coefficients are
reported in Tables III and IV.

4.3. Candidate Filters

Let us consider an input signal x(i). The low- and high-pass outputs of this filter
(low(i) and high(i), respectively) are obtained by convolution of x(i) with h0(i) and h1(i),
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respectively:

low(i) =
k=4∑

k=−4

h0(k) · x(i − k), (12)

high(i) =
k=3∑

k=−3

h1(k) · x(i − k). (13)

Substituting the values of filter coefficients from Tables II, III, and, IV, we can factorize
our 9/7 filter coefficients in terms of 5/3 filter outputs. The subscripts A, B, and C are
used to denote the filters obtained with α = −1.67, −1.8, and −2, respectively:

lowA(i) = 19
32

× x(i) + 9
32

× (x(i − 1) + x(i + 1)) − 1
16

× (x(i − 2) + x(i + 2))

− 1
32

× (x(i − 3) + x(i + 3)) + 1
32

× (x(i − 4) + x(i + 4)) (14)

highA(i) = 9
8

× x(i) − 9
16

× (x(i − 1) + x(i + 1)) − 1
16

× (x(i − 2) + x(i + 2))

+ 1
16

× (x(i − 3) + x(i + 3)) (15)

lowB(i) = 5
8

× x(i) + 1
4

× (x(i − 1) + x(i + 1)) − 3
32

× (x(i − 2) + x(i + 2))

+ 1
32

× (x(i − 4) + x(i + 4)) (16)

highB(i) = 9
8

× x(i) − 9
16

× (x(i − 1) + x(i + 1)) − 1
16

× (x(i − 2) + x(i + 2))

+ 1
16

× (x(i − 3) + x(i + 3)) (17)

lowC(i) = 23
32

× x(i) + 1
4

× (x(i − 1) + x(i + 1)) − 1
8

× (x(i − 2) + x(i + 2))

+ 1
64

× (x(i − 4) + x(i + 4)) (18)

highC(i) = x(i) − 9
16

× (x(i − 1) + x(i + 1)) + 1
16

× (x(i − 3) + x(i + 3)) (19)

The original Daubechies 9/7 filter has α = −1.68. Thus, the compression performance
of A will be slightly greater than B and C. However, we can also see that the C ar-
chitecture requires fewer number of addition operation. The simpler coefficients value
in C (coefficients being 0 or easily represented in exponents of (2) promises a cheaper
hardware implementation. This implies a tradeoff between image reconstruction qual-
ity vs. hardware resources required by various filters. In the next section, we discuss
the hardware resource requirements of these architectures.

4.4. Hardware Architectures

We performed several optimization steps to reduce the cost of underlying hardware.
The following optimization steps were performed:
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—Observe in Tables II, III, and IV that the coefficients of x(i ± k) are the same. Thus,
they can be grouped together to reduce the hardware complexity.

w0 = x(0), (20)
w1 = x(i − 1) + x(i + 1), (21)
w2 = x(i − 2) + x(i + 2), (22)
w3 = x(i − 3) + x(i + 3). (23)

The Daubechies 9/7 filter requires 9 data values - four each corresponding to four
previous and next values and one for the present pixel value. After this optimization,
we reduced this number from nine to five. This also reduces the requirement of
multipliers in implementing equations such as Eq. (12) and (13) in hardware from
nine to five.

—Division by binary coefficients (e.g., 1/64, 1/16, 1/4) was performed using arithmetic
shift operations. This eliminates the need for multipliers in the circuits. The coeffi-
cients as given in Tables III and IV are rational and most of them have some simple
binary value. Therefore, we switch our design to a multiplier-free design requiring
limited adders in the implementation.

—The input stream was pipelined. Thus, as shown in Figure 6 our architecture takes
one pixel (or channel input) as the input and outputs the low- and high-pass signal
coefficients with a finite latency. This helps us to achieve a good throughput and a
higher clock frequency. The pipeline stages are implemented by clocking the cascaded
registers to the left in the figure.

Figure 6(a-c) provides a visual overview of the three designs with the value of
α = −1.67,−1.8, and −2, respectively. As can be seen in Figure 6, our Le Gall’s 5/3
filter implementation requires only six adder/subtracter units. Our 9/7 filter imple-
mentations for α = −1.67 required 19 adders. For α = −1.8, our design requires
17 adder/subtracter units. But we observe that the design for α = −2 requires only
12 adder/subtracter units. This is a significant improvement over any reported exist-
ing work as reported in the experiment section.

As described in Figure 1, the reconfigurable implementation must allow dynamic
switching between wavelet filters. Our implementation allows for easy enabling and
disabling of the extra hardware to obtain the choice between a more power-efficient
binary 5/3 filter versus a more compression-efficient 9/7 filter. In the remainder of this
section we describe an architecture to allow for this dynamic switching. Let us consider
an input signal x(i). The low- and high-pass outputs of this filter (low(i) and high(i),
respectively) are obtained by convolution of x(i) with h0(i) and h1(i), respectively:

low(i) =
k=4∑

k=−4

h0(k) · x(i − k), (24)

high(i) =
k=3∑

k=−3

h1(k) · x(i − k). (25)

Substituting the values of filter coefficients from Table II, III, and IV, we can factorize
our 9/7 filter coefficients in terms of 5/3 filter outputs.

lowA(i) = 1/2 × low53(i) − (1/4 + 1/16) × high53(i)
+(1/2 + 1/32) × w0 + 1/32 × (w4 − w3) (26)

highA(i) = 1/2 × low53(i) + (1/2 + 1/4) × high53(i)
−1/4 + 1/16) × w1 + 1/16 × (w3) (27)
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Fig. 6. Continued.
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Fig. 6. Hardware architectures for bi-orthogonal 9/7 filter

lowB(i) = 1/2 × low53(i) + 1/4 × high53(i)
+1/32 × (w4 − w3) (28)

highB(i) = 1/2 × low53(i) + (1/2 + 1/4) × high53(i)
−(1/4 + 1/16) × w1 + 1/16 × (w3) (29)
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lowC(i) = low53(i) − 1/32 × w0 + 1/64 × w4 (30)
highC(i) = 1/2 × high53(i) − 1/32 × w1

+1/32 × w3 (31)

Figure 6(a-c) provides the implementation details of these architectures. The dark
(yellow) region is the hardware required for the implementation of Le Gall’s 5/3 filter.
The architecture has registers, adders, and multiplexers. The right shift operation (can
be implemented by adjusting the wires) is represented by small triangles. A triangle
with the number “x” means a shift to the right over “x” positions, or a division by 2x.
All the architectures are designed as extensions of Le Gall’s 5/3 filter. This gives the
feature of ‘on the fly’ switching from 9/7 filter to Le Gall’s mode of operation.

The low- and high-pass filter outputs can be lowA/B/C(i) and highA/B/C(i), or low53(i)
and high53(i) depending upon the mode of operation. When operating in 5/3 filter
mode only the yellow shaded region of the architecture would be used thus reducing
considerably the power consumption of the system. This figure shows the conceptual
design and architecture and does not include the pipeline stages of these structures. A
folded architecture can be developed for the α = −2 case where the low- and high-pass
output coefficients are dependent only on low- and high-pass values respectively of 5/3
filter. This is presented in Figure 6(d). This design requires only nine adders in the
circuit.

5. FIXED POINT IMPLEMENTATION

An image channel is generally represented at 8-bit precision. This encourages us to
develop a fixed-point hardware. We avoid the floating point implementation of the
system to avoid nonoptimal usage of resources. Chang and Hauck [2004] discuss the
issues involved in the fixed, point analysis with respect to the output error. There are
two conflicting issues that affect the decision to decide the hardware bit allocation for
internal representation of variables:

(1) Increased number of bits generally implies better performance in terms of image
quality and reduced error.

(2) Reduced number of bits imply a better hardware utilization, and lower power
consumption.

For certain applications such as a static HDTV encoding system, we may always
require a large number of bits that ensure high-quality and high-resolution multimedia
transmission. However, certain applications such as remote tele-medicine applications
and remote distributed surveillance applications are highly power and performance
sensitive. They may require a dynamic tradeoff. The Poly-DWT provides a good trade-
off in achieving a dynamic hardware reconfiguration for such applications. Similarly,
Chang and Hauck [2004] report that the error (in image reconstruction in case of
DWT) is skewed or biased, only in the positive direction. Thus, static analysis may not
be applicable in all situations and we need custom hardware to adapt itself according to
the present conditions. The image statistics (like Peak Signal to Noise Ratio (PSNR),
Mean Absolute Deviation (MAD)) provide the system a performance feedback and
allows it to take steps to lead to a more efficient representation. These metrics can
be used as performance measure of image compression systems and we can switch
hardware to reach a desired compression level with minimum hardware resources.

We present a simple scheme to change the bit allocation for hardware implemen-
tation. The main factors or sources for the change in hardware bit allocation can be
summarized in the following headings.
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—Functional Requirements of the Chip. There may be several computational kernels
such as image enhancement, noise filtering, etc, which may be optionally required
for a multimedia application. Depending on input from the source, some of them may
not be required to be functional at all times. The extra hardware available in such
cases can be dedicated to the Poly-DWT architecture to improve its performance.

—Quality Requirements of the Application. Many DWT kernels or instances of DWT
hardware may be required by different applications. Moreover, with the change in
input images we may dynamically require different levels of accuracy.

—Level of Decomposition using DWT. In image compression algorithms such as SPIHT,
CEZW, and EBCOT more than one level of DWT operation is done. Fry and Hauck
[2005] discuss the changes in numeric range in higher level decomposition using
DWT. For example, the eight bit input can have maximum magnitude of 255 and can
be well represented using 8.0 fixed point format representation (8 bits to represent
integer and 0 bits for fractional part). An analysis of the coefficients of each filter bank
shows that a 2D low-pass FIR filter at most increases the range of possible numbers
by a factor of 2.9054. As a result, the coefficients at different wavelet levels require
a variable number of bits above the decimal point to cover their possible ranges.
At fourth wavelet decomposition level, 17-bit representation may be required to
accommodate the magnitude range of coefficients. A dynamic word width allocation
may make a lower-level DWT kernel fit for decomposition at higher level if required
by the application.

—User Preferences. In our proposed system, the user has the final say in all the subjec-
tive image quality/cost trade-offs. Applications and users may differ in their subjec-
tive view of good performance of the system. Chang and Hauck [2004] also discuss
the importance of defining a user-defined error constraint.

—Other Considerations. A Poly-DWT implementation may include other considerations
like the number of DWT kernels required, separation/folding of row and column
processing DWT kernels etc. We have not discussed these aspects in our present
Poly-DWT analysis and they are left as a future work.

6. HARDWARE (RE)-ALLOCATION

Poly-DWT allows several levels of hardware resource (re-)allocation to obtain a power-
efficient design, which are explained as follows.

(1) The number of DWT kernels in the wavelet decomposition can be varied depending
upon the application requirements.

(2) On-the-fly switching of filter design from 9/7 to 5/3 filter architecture in finite cycles
latency.

(3) The number of bits allocated for internal registers in the design can be varied to a
obtain an application-specific trade-off between clock frequency and reconstruction
quality vs. hardware usage.

The variations in number of DWT kernels in wavelet decomposition is specific to the
requirements of the multimedia encoding scheme and its dynamic requirements. In this
paper, we therefore restrict our discussion to reconfiguration of design of the individual
DWT kernels to meet the performance vs. power trade-off dynamically in hardware.
Figure 7 gives the architecture design of poly-DWT kernel to achieve these tradeoffs.

6.1. “On-the-fly” Switching

We first consider “on-the-fly” switching of filter designs from 9/7 to 5/3 architectures.
The switchhw signal in Figure 7 is used to switch between 5/3 and 9/7 architectures.
The two multiplexers (unshaded in Figure 7) ensure the correctness of the input and
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Fig. 7. Architectural details of poly-DWT to facilitate “Reconfiguration”.

output of poly-DWT hardware. As seen in this figure, we can divide the hardware into
two categories.

(1) Type A Hardware. The hardware common to both 5/3 and 9/7 filter architectures
is called as type A hardware and it is unaffected by “on-the-fly” switching. This
includes the registers and adders in the shaded portion of design in Figure 7.

(2) Type B Hardware. The hardware used by 9/7 filter architecture, which is obsolete to
5/3 filter, is called as type B hardware. This hardware is switched off when switchhw

signal is changed to 0. This corresponds to the registers and adders in the unshaded
portion of design in Figure 7.

The following steps are involved in switching from 9/7 to 5/3 filters (the 5/3 filter
hardware is shaded in Figure 6).

(1) The input pipeline for the 5/3 filter is smaller than the 9/7 filter. In order to use the
same pipeline we need a latency of two cycles to ensure that the pipelining registers
have proper inputs. The values in the pipeline registers (x(i − 4) and x(i − 3)) are
pipelined to the 5/3 filter hardware before they are switched off.

(2) The extra hardware for computation can be switched off in a single clock cycle. This
can be enforced by driving the signal switchhw from 1 to 0 (shown in Figure 8(b)
and explained in next section);

(3) The input and output multiplexer can be switched from input port 1 to input port
0 in one cycle.

Since the previously mentioned operations can be performed together, we require only
a latency of two cycles to switch from a 9/7 to a 5/3 filter. A similar argument can be
constructed to explain that it would take a latency of two cycles to switch from 5/3 to
9/7 filter architecture.
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Fig. 8. Register level details to enable reconfiguration (a) Type A architecture and (b) Type B architecture

While the proposed architecture is capable of switching between 5/3 and 9/7 filter
architectures at runtime of a few ns, such a design will incur a large overhead in
transmitting control information to ensure the correctness of the output at the decoder
(we will need to send 1 bit per clock cycle for one filter kernel used). However, in practical
scenarios, we can restrict the switching between 5/3 and 9/7 filters between different
levels of wavelet decomposition. Thus, the overhead involved in such a switching is
reduced to a few bits (3-10 bits per frame) and can be integrated into frame header.

6.2. “Bit-width” switching

We discuss the scheme for bit-width switching in this section. We break the internal
registers in design into multiples of four bit registers. Thus, a N = 16 bits register is
represented as four 4-bit registers. As shown in Figure 7, the registers are represented
as four 4-bit registers. Figure 8 explains the working of “bit-width” switching scheme
with individual registers. The four signals R4, R8, R12, and R16 are used to switch the
registers on or off at runtime. When R4, R8, and R12 are on, the register has 12 bits
available for use while the other 4-bit register is switched off to save power. This is done
with the help of chip enable (CE) signal as indicated in the Figure 8. Similar changes
can be made to the design of adders to partially switch off the LUTs corresponding to an
adder hardware. Figure 8(a) explains the bit-width switching of type A hardware. The
two inputs switchhw and the register select input (R4/R8/R12/R16) are ANDed to get
the chip-enable (CE) signal for individual 4-bit type B registers. This enabling/disabling
of registers for type B hardware is illustrated in Figure 8(b).

The dynamic power consumption of a circuit is given by the following equation:

P = ACV 2 F,

where A is the activity factor (0 ≤ A ≤ 1), C is the switched capacitance of the circuit, V
is the supply voltage and F is the clock frequency. By switching off the extra hardware,
we reduce the switched capacitance C of the circuit, thereby obtaining a useful dynamic
tradeoff between the power and performance constraints.

7. EXPERIMENTS

This section presents quantitative results for the performance of Poly-DWT archi-
tecture presented in this article. We evaluate our approach on the Xilinx Virtex-V
XC5VLX30 FPGA by generating the different DWT architectures. The polymorphic ar-
chitecture presented in this article has been analyzed in terms of image reconstruction
and kernel area considerations. As previously mentioned, the tradeoff between the two
is dynamically reached in a polymorphic architecture.
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Fig. 9. (a) Results of one level of DWT and (b) Energy decomposition by respective filters.

We present the results of analysis for various word widths for internal and external
configurations of DWT kernel and also examine the performance of different kernels.
The standard color test images (e.g., Lena, Barbara) were used for the purpose of simu-
lation. Each pixel in a color image has 3 channels, with 8 bits of data per channel. Unless
otherwise specified, we used 8.4 fixed point arithmetic for internal computations.

Our design is written in VHDL and synthesized using Xilinx ISE 9.1i. ModelSim
simulations were performed to test the waveforms. The more detailed analysis of image
reconstruction performance of various filters is performed in MATLAB. To verify the
correctness of the various filters implemented in the FPGA, we compared it against
a pure software implementation on a Intel Core 2 Duo processor running at 2.0 GHz.
Both implementations generate the same numerical results for transformed output. In
the following sections, we analyze the working of our proposed DWT hardware with
respect to area, performance and quality perspectives.

7.1. Image Reconstruction Quality

The proposed Poly-DWT filter gives a more efficient representation than the original
Daubechies 9/7 filter as well as the Le Gall’s 5/3 filter as illustrated in Figure 9(a).
It can be seen in the figure that Poly-DWT provides provides very little high-pass
information (white marks in black background in higher frequency subbands). The
reduction in high-level information in our Poly-DWT filter makes it more suitable for
the compression applications.

A more accurate representation over fixed point hardware gives a better image re-
construction for Poly-DWT filter than the Daubechies 9/7 filter. Results over several
test images showed similar results. The bars in Figure 9 illustrates the superior perfor-
mance of the Poly-DWT filter for limited hardware resources. The ratio of energy of the
low- and high-pass components is measured. Poly-DWT is found to outperform other
filters in retaining low pass energy. This property, also known as energy compaction
property, of the filter is helpful to achieve a better compression efficiency.

The image compression performance of Poly-DWT filter was evaluated on a SPIHT
image coder [Said and Pearlman 1996]. We tested the performance on an open-source
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Table V. Image Compression Performance on SPIHT Coder (PSNR Values)

Image Bitrate=0.5 bpp Bitrate=2 bpp
Daub. 9/7 Poly-DWT Martina,07 Daub. 9/7 Poly-DWT Martina,07

lena 28.213 29.46 27.7 38.47 38.17 36.5
surveillance 26.1 28.1 26.54 38.41 42.21 39.21
lecture 34.35 33.8 32.73 48.3 51.25 43.71
helicoptor 33.75 35.7 35.01 48.59 54.72 47.14

Table VI. Hardware Acceleration on a Virtex-5 XC5VLX30 FPGA (time in μs)

Image Le Gall 5/3 Filter Daubechies 9/7 Filter Poly-DWT 9/7 Filter
SW HW Speedup SW HW Speedup HW Speedup

CIF 1420 197 7.06× 2980 330 9.03× 288 10.35×
Q-CIF 370 68 5.45× 790 91 8.68× 77 10.26×

filter bank based implementation provided by Tian [2008]. We chose the intermediate
variables in 9.4 fixed-point format for this experiment setup. In case of low bit-rate
applications, this property helps in better reconstruction of images from low pass
coefficients. The performance over some test sequences has been reported in Table V.
The results are reported over bit rates of 0.5 bpp (bits per pixel) and 2 bpp. It can be
seen that the compression efficiency of Poly-DWT filter is comparable to Daubechies 9/7
filter. A performance comparison with another multiplier-free implementation provided
by Martina and Masera [2007] illustrates that our design requires a fewer number of
adders and gives a higher compression performance as evident by higher PSNR values.

7.2. Hardware vs Software Performance

The hardware performance of DWT kernels proposed in the article was compared with
a software based implementation on the PC platform. Table VI gives the speedup
achieved by an FPGA based implementation of DWT kernels. The software implemen-
tation of both Daubechies 9/7 filter and Poly-DWT (9/7) filter takes the same time as
the number of filter taps in both cases is the same. The FPGA based design outputs one
pixel per clock cycle for every DWT kernel. The computation times for one level of DWT
for different image sizes is presented in Table VI. The is reported in microseconds (μs).
The proposed Poly-DWT filter obtains a speedup of about a factor of 10 for CIF images
(standard images of size 352×288 pixels). The speedup for Q-CIF images (Quarter-CIF)
is also about 10. The smaller speedup in smaller sized images is attributed to the over-
heads in I/O operations which are more significant in the case of small-sized images.
A line-based image scan architecture [Chrysafis and Ortega 1998] is used for data I/O
operations.

The results as summarized in Table VI show the advantages of a hardware im-
plementation of this class of algorithms. This is due to the fact that the required
calculations are simple, allowing for a high throughput implementation. By pipelining
the individual adder and add operations, we were able to achieve very high clock fre-
quencies (394 MHz on our target Virtex-5 platform and 4 bits word length). The actual
speedup achieved by the Poly-DWT kernel (Table VII) over Daubechies filter is greater
(three times more) than the results indicated in Table V because of memory access
computations involved in image compression results.

7.3. Hardware Comparison

Direct implementation of the CDF-9/7 filter gave a clock frequency of 107 MHz, while
requiring 9 multiplier units. A clock frequency of 110 MHz was reported when we
forced the design to map the constant multiplications into Lookup Tables. [Martina
and Masera 2007] implement Daubechies 9/7 filter with approximate coefficients and
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Table VII. Comparison of Binary Filter Features and Hardware Resources Requirements.

Features Daub. α = −2 α = α = α = Tay, Kotteri, Huang, Martina, Martina,
9/7 folded −2 −1.8 −1.67 2001 2005 2001 2007 2005

Adders 15 9 12 17 19 19 15 8 19 21
Multipliers 9 0 0 0 0 0 0 4 0 0
PSNR A B B A A C C A B B
Reconf. N Y Y Y Y N N N Y N
Registers 144 208 213 253 294 - - - - -
LUTs 80 175 194 217 289 - - - - -
Bit Slices 210 245 259 311 375 - - - - -
Clock(MHz) 107 389 317 311 310 - - - 200 -

report a clock frequency of about 200 MHz through a multiplier-free implementation,
targeting 0.13 μm VLSI technology.

Table VII summarizes the performance of our Xilinx Virtex-V implementation, and
compares our results with other recent works. All the parameterized binary imple-
mentations outperform the existing implementations in terms of number of required
adders and clock frequency.

Our initial nonpipelined design obtained a clock frequency of about 108 MHz, due
to its long critical path. The critical path of the circuit lies from the wi registers to the
final output lowC(i) or highC(i), passing through signals lowC(i) or highC(i). We then
pipelined this computation into several stages and obtained a faster implementation.
The α = −2 architecture showed a clock frequency of about 317 MHz. This design
requires less FPGA resources (registers and LUTs) than the α = −1.67 and α = −1.8
architectures and is most fit for Poly-DWT implementation.

The folded architecture variant for α = −2 was also implemented, resulting in a
faster clock frequency and less adders (leading to fewer logic slices). The design of bi-
nary coefficients filter also helped us to achieve perfect reconstruction of image signals.
This proposed architecture can run (over line-based DWT architectures) at 389 MHz,
enabling it to process High Definition Video frames (1440 × 1080) in an estimated
5 ms time. As previously mentioned, the shaded (yellow) regions in Figure 6 show the
baseline 5/3 filter implementation. Thus, the architecture can be optimized to switch
on-the-fly to 5/3 mode in order to save power. The folded architecture and the simple
architecture of Poly-DWT filter both have the same performance in terms of image
reconstruction and they differ only in hardware requirements. The input data width
was 8 bits corresponding to one channel of an image stream. The proposed binary fil-
ter reaches perfect reconstruction with lesser number of bits than the Daubechies 9/7
filter. Thus, the overall area requirements are less. The hardware resources utilized
in these DWT kernels are summarized in Table VII. Here, a comparison of hardware
resources utilization is provided against existing works. Martina and Masera [2007]
present a multiplier-free implementation which is suitable for polymorphic switch-
ing between 9/7 and 5/3 filters. However, they approximate the original Daubechies
filter coefficients to two decimal places which leads to its poor PSNR performance.
Our architecture provides both more efficient hardware usage and better compression
performance.

Figure 10 shows the change in synthesized clock frequency for the various implemen-
tations of DWT with varying input word width. The change in external data width as
shown in Figure 10 leads to reduction of clock frequency and hence reduced throughput.

Zhang et al. [2007] present a switching between 5/3 and 9/7 filters using partial
reconfiguration of the bit streams and a lifting-based implementation of the DWT.
They used a platform based on Xilinx Virtex-4 FPGA for experimental implementation.
However, this implementation requires a switching time of 40.2 ms. Thus, this system
introduces a delay/lag of 2 frames (at CCIR resolution of 720 × 576 pixels per frame
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Table VIII. Performance Comparison using Standard Cell Libraries

Poly-DWT Le Gall’s Daub. 9/7 [Martina and Masera 2007]∗
Area 2135 1370 6693 -
Cells 544 194 1022 -
Clock Frequency 500 500 300 200

*Martina and Masera [2007] reports a gate count of 2.68K using a 130nm cell library.

Fig. 10. Change in FPGA clock frequency(MHz) for variable word widths for various filters.

and 50 MHz clock). As compared to these results, poly-DWT has a very small switching
time of two clock cycles (equivalent to 5.14 ns, assuming a 389 MHz clock).

7.3.1. ASIC Synthesis. In order to make a more fair comparison with related work, we
also synthesized our Poly-DWT architecture to ASIC technology. We used the Synopsys
Design Compiler environment to perform our experiments using the freePDK 45nm
cell library [Stine et al. 2007]. The results of ASIC synthesis indicate that we can
achieve a clock frequency comparable to Le Gall’s filter with an insignificant increase
in the number of cells in the design (as reported in Table VIII). We were able to achieve
a clock speed of 500 MHz for the folded 9/7 filter design.

7.4. Dynamic Bit Allocation

In this section we study the effect of bit allocation on the clock frequency and image
quality. The implementation used fixed point arithmetic over VHDL. First, the input
data was kept at 8.0 format and the word width of internal registers was changed.
Figure 11 shows the change in reconstruction quality of the images depending on
changes in hardware resources (single bit registers or flip-flops). The x axis here refers
to the total number of bits given to an internal processing register. Figure 12 compares
the implementation of our structure with other filters. It is observed that changes in
bit-width of internal registers from 9.0 to 9.6 fixed point representation leads to a linear
increase in hardware requirements (number of single bit registers or flip-flops) and a
slight decrease in achievable clock frequency. The folded Poly-DWT filter register usage
on an FPGA chip approaches the implementation of 5/3 filter, while its compression
performance approaches the Daubechies’ 9/7 filter. This indicates the hardware efficient
feature of our design.

7.5. Real-World Application

We consider a real-time scenario where we propose a DWT based video-surveillance
system. Lake Pontchartrain Causeway in southern Louisiana has a bridge that runs
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Fig. 11. Plot of PSNR vs the number of bits alloted for internal registers

Fig. 12. Comparison of register usage for the binary filter implementations.

23.87 miles. A surveillance system featuring 29 cameras mounted at different points
along the bridge is used to keep guard with cameras placed at approximately every
3 miles. Employees monitor the bridge traffic with the help of this system. We propose a
dynamic power-saving solution using Poly-DWT considering the usage of surveillance
cameras. There are two usages associated with these cameras.

ACM Transactions on Embedded Computing Systems, Vol. 11, No. 1, Article 6, Publication date: March 2012.



6:24 A. Pande and J. Zambreno

(1) Idle-usage. Most of the time, the cameras are used for monitoring the traffic and
a low resolution version of these 29 images is provided to the users. Essentially, a
very coarse version of the input video is provided to the employees at monitoring
station.

(2) Active-usage. When a suspected activity is detected, the employee scans for a high-
resolution version of the video. A high-resolution version of the surveillance video
from concerned video camera is sought. This may be the case of traffic congestion,
or someone trying to commit suicide or a car broken down midway in the bridge.

The 9/7 poly-DWT filter has higher hardware requirements and hence consumes
more power than the 5/3 filter. Using Xilinx Xpower analyzer for our Xilinx Virtex-5
FPGA, we obtain a power consumption of 0.34W for the 5/3 filter and 0.46W for 9/7
filter. Using the poly-DWT filter during active-usage time and switching to the 5/3 filter
during idle-usage time will save us 0.12W power. The respective values were 0.0477 W
for 5/3 filter and 0.06 W for 9/7 filter using low power Xilinx Spartan FPGAs.

Most of the time (nearly 99 percent of time) is idle-time for each camera. We get a
power saving by a factor of 0.46

0.46×0.99+0.34×0.01 = 1.348 (for Virtex-5) and by using our
poly-DWT filter.

Another practical scenario is the usage of speed cameras for monitoring traffic. Speed
cameras use several different types of technology, most commonly lasers or radar, to
pinpoint cars that are exceeding the marked speed limit. When a speeding car is
detected, the radar or laser signal triggers the camera to record the car’s license plate
and that data is used to issue a ticket to the car’s owner. Reading the number plate
requires a DWT filter with large taps such as the 9/7 filter. On the other hand, the
normal usage of camera can be to monitor traffic (at coarse resolution) which is served
better by 5/3 filter. The 9/7 poly-DWT filter can be used to get a more accurate view of
car’s license plate when triggered by radar/laser signal triggers while we can switch
to Le Gall’s 5/3 filter for keeping a record of traffic movements and also make power-
savings.

Time-crucial surveillance applications such as meteorology, remote scientific experi-
ments, defense applications require such rapid switching (in one-two cycles as provided
by Poly-DWT) of the hardware architectures.

8. CONCLUSIONS AND FUTURE WORK

This article introduces the concept of polymorphic wavelet architecture for image pro-
cessing and compression. Polymorphism allows for real-time implementations to dy-
namically configure the device to allocate hardware resources to suit its instantaneous
needs and obtain an area/power optimized design. We presented a low hardware (bi-
nary rational) implementation of Daubechies 9/7 filter and its derivation from Le Gall’s
5/3 filter outputs to allow on the fly switching between the transform structures upon
the demands of application. Moreover, a study of filter performance with the changes
in word width allocation was performed. We discussed how internal hardware resource
allocation for computational purpose changes the area/reconstruction quality perfor-
mance of the DWT kernel. The experiments favored the theory of polymorphic wavelet
architecture design for dynamic image compression applications.

As a future work, such architectures can be developed for other image compression
modules. Moreover, most aspects of DWT implementation and dynamic reconfiguration
can be explored further. For example—the number of DWT kernels utilized in image
transform and the multiplexing between row and column kernels can be studied to add
yet another dimension of polymorphism to our architecture.
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