Hardware Architecture for Simultaneous Arithmetic
Coding and Encryption

Amit Pande Joseph Zambreno Prasant Mohapatra
Department of Computer Science Electrical and Computer Engineering Department of Computer Science
University of California lowa State University University of California
Davis, CA, USA Ames, IA, USA Davis, CA, USA
Email: amit@cs.ucdavis.edu Email: zambreno@iastate.edu Email: prasant@cs.ucdavis.edu

Abstract—Arithmetic coding is increasingly being used in This paper discusses arithmetic coding from a slightly
upcoming image and video compression standards such asdifferent perspective. Recent work has established hoth-ari
JPEG2000, and MPEG-4/H.264 AVC and SVC standards. It metic coding can be viewed as an iteration on piece-wise

provides an efficient way of lossless compression and recently,l. haoti 31 141, Furth h h
it has been used for joint compression and encryption of video inear chaotic maps [3], [4]. Further, many researchersshav

data. In this paper, we present an interpretation of arithmetic Studied the use of arithmetic coding for joint encryption
coding using chaotic maps. This interpretation greatly reduces and compression [5], [6], [7]. For example- In [8], a chaos-
the hardware complexity of decoder to use a single multiplier by pased adaptive arithmetic coding technique was proposes. T
using an alternative algorithm and enables encryption of video 4 ithmetic coder's statistical model is made varying inunat

data at negligible computational cost. The encoding still requires - .
two multiplications. Next, we present a hardware implementation 2ccording to a pseudo-random bitstream generated by @buple

using 64 bit fixed point arithmetic on Virtex-6 FPGA (with and ~ Chaotic systems. Many other techniques based on varying
without using DSP slices). The encoder resources are slightly the statistical model of entropy coders have been proposed
gighedr than fa tfadition?hAC erT'(t:Odter’ but trI:_ere a:e i«'v}VingS inin literature, however these techniques suffer from losses
ecoder performance. € arcnitectures acnieve CIocK frequ H i~ H
of 400-580 MHz on Virtex-6 xc6vIx75 device. We also agvcgte compresston efficiency that result. from changes in entropy
multiple symbol AC encoder design to increase throughput/slice model statistics and are weak against known e_lttacks_[g]. Re-
of the device, obtaining a value of 4. cently, Grangetto et al. [5] presented a Randomized Aritflane
Coding (RAC) scheme which achieves encryption by inserting
|. INTRODUCTION some randomization in the arithmetic coding procedure at no
The state-of-the-art video coding standards such as S¥&pense in terms of coding efficiency. RAC needs a key of
(technically Annex G of MPEG-4/H.264 AVC) [1] is beenlength 1-bit per encoded symbol. Kim et al. [6] presented a
widely adopted in current video application systems due generalization of this procedure, called as Secure Aritlame
its outstanding coding performance, and scalable pragsertCoding (SAC). The SAC coder builds over a Key-Splitting
which allow deployment in fluctuating channel conditionsl anArithmetic Coding where a key is used to split the intervals
to serve heterogeneous clients. There are three entrofiygcodf an arithmetic coder, adding input and output permutation
tools adopted in H.264/SVC. One is Context-based Adaptite increase the coder’s security.
Binary Arithmetic Coding (CABAC), based on arithmetic
coder. The other are Context-based Adaptive Variable lkengt In this paper, we extend this discussion to hardware com-
Coding (CAVLC) and Exp-Golomb coding (to code syntax '

elements). CABAC can achieve averaged bit-rate savings %Pmty - 1o study the hardware optimizations in design of

9% to 14% at the cost of higher computational complexity |?1U.Ch schemes_. Part!cularly, we.study th? implementation of
. . 7 arithmetic coding using piece-wise chaotic maps [3], [4$ A
comparison to CAVLC. However, the increased computationa L . .
: ; L . we shall study, this implementation has lower decoder requi
complexity and strong data dependencies significantlyicest

the throughput of CABAC decoder. This restriction becomements than the commercial implementations. Apart fromehes

a challenge in hardware design of CABAC coder makin(:%aofjIC mags have ?)ISO been gsed '8 cryptography and for
CAVLC more suitable for decoding in low-power embedde§Seu 0 random number generation [10].
systems.

Arithmetic coding is a data compression technique that The reduced decoding efficiency of arithmetic coding allows
encodes data by creating a code string which represent& @ trend towards the low computational complexity of
fractional value on the interval [0, 1). When a string isluffman coders, allowing BAC to enter embedded systems
compressed using arithmetic coder, frequently-used cteasa market. The aspects of context-modeling and adaptation and
are stored with fewer bits and not-so-frequently occurringnormalization, as done in CABAC coder are beyond the
characters are stored with more bits, resulting in fewes biscope of this work, where we focus on architectural optimiza
used in total [2] tions on encoder and decoder processes.

Why another design? Il. LITERATURE REVIEW

An inquisitive question which comes to mind at this point is Adaptive minimum-redundancy (Huffman) coding is ex-
the need for hardware implementation of chaotic maps. Whpansive in both time and memory space, and is handsomely
arithmetic coding is already been done using traditionatsya outperformed by adaptive AC besides the advantage of AC

why do we need yet another architecture? in compression effectiveness [14]. Fenwicks structureireq
The motivation to develop a hardware architecture fgust n words of memory to manage an n-symbol alphabet,
chaotic maps iterations is summarized below: whereas the various implementations of dynamic Huffman

1) Arithmetic coding done using chaotic maps is asymmetri®ding [15], [16] consume more than 10 times as much
in nature, (explained in later sections) making the decodaemory [17].
architecture simpler than existing framework for AC. The Hardware architectures have been proposed in research
reduced decoder complexity is highly desired to redudiéerature for arithmetic coding using CACM model [18] or
the power and computational requirements of video deelated works [14], [19], [20]. CABAC or Context-Adaptive
coding in low power mobile devices. Current mobiléginary Arithmetic Coder is used in H.264 AVC and SVC.
video profiles use Huffman coding instead of Arithmetidhe critical path of coder is the multiplier, which is remdve
coding to reduce the computational complexity, whicln CABAC and recent implementations [21], [22], [23] by
leads to average compression inefficiency of 15%, partigsing a look-up approximation (leading to some compression
ularly poor performance in coding events with symbdhefficiency).
probabilities greater than 0.5, due to the fundamental There has been little work [24], [25], however, in implemen-
lower limit of 1 bit/symbol on Huffman coding [11]. tation of chaotic maps on hardware. However, the recendtren
2) Recently, arithmetic coding based encryption schemtssvard joint compression and encryption using chaotic maps
have been proposed in research literature for joint corand arithmetic coding for low power embedded systems would
pression and encryption purposes [7], [12]. It would bke greatly complimented by an efficient hardware architectu
interesting to integrate both coding and encryption usiras presented in this paper.
chaotic maps at a computational complexity lower thap. . . .
existing implementations. This motivates the need inary Arithmetic Coding (BAC)
coding and encryption architecture using chaotic maps. Binary arithmetic coding is based on the principle of recur-
3) Chaotic maps can be used to Pseudo-Random NumB#e interval subdivision. We start with an initial intehf@,1)
Generation (PRNG) [10] and stream ciphers [13], apa#nd keep dividing it into subintervals based on the proitgbil
from arithmetic coding. These have been found to be lighf incoming symbols. A good detailed overview of BAC is

weight and simple. presented in [14]
Contributions 1. How DO WE INTERPRETAC USING CHAOTIC MAPS?
The main contributions of this paper are as follows: A description of equivalence between binary arithmetic

1) We introduce arithmetic coder architecture using clzaooding and chaotic maps is given in earlier works [4], [7]. In
maps which has potential advantages in reducing decod@is section, we gave a brief overview of N-alphabet arittiene
complexity and allows combined encryption. coding to familiarize the reader with coding using piecseavi

2) We present two architectures for FPGA implementatidinear chaotic maps.
of the proposed scheme: one using explicit multipliers Scenario: We have a stringS = z;, s, ...x); consisting
from DSP48E1 slices on Virtex-6 FPGA, while otheof M symbols (v unique symbols) to be encoded. The
using reconfigurable multipliers and mapping to hardwaggobability of occurrence of a symbs), i € 1,2,...n is given

6-LUTs. by p; such thaipp; = N;/N and N, is the number of times the
3) We advocate the multiple-symbol encoding which mak&ymbols; appears in the given string.
sense for throughput/ area. Description: Consider a piece-wise linear magp) (vith the

following properties:

S f th k . _ , .
cope ot the wor « Itis defined on the intervgD, 1) to [0,1) i.e.

In the regular coding mode, prior to the actual arithmetic
coding process the given binary data enters the context mod- p: [0,1) —[0,1)
eling stage, where a probability model is selected such that
the corresponding choice may depend on previously encoded
syntax elements. Then, after the assignment of a context N
model, the bin value along with its associated model is ghsse p= U Ok
to the regular coding engine, where the final stage of arittme b1
encoding together with a subsequent model updating takes : ;
place (see Figure 1). We shall restrict the focus of further * Ewaecrnty;?\r/tagl,forq?pisethe region on x axigegy, endy) to
discussions on the final arithmetic encoding (and decoding) T
stages of CABAC coder. ok : [begi,endy) — [0, 1]

The map can be decomposed into N piece-wise linear
parts gy, i.e.

: . Arithmetic :
Syntax LSl B; . bin Context bin Codi Bit stream
element tnarizer Modeler | conext oding
model Engine

Fig. 1. Block diagram of CABAC coder

The last two propositions lead to: String 9z, 5 Oz ps 4 ---0x, - We start with the initial interval [0,1)
N and back-iterate this interval over chaotic maps using tifiregs
U [begr, endy,) = [0,1) Ozars Ozpr_y--0x, 10 get a final interval. The output codeword
Pt} is chosen as the shortest binary number from final interval.
« The mapgy is one-one and onto i.e.: Compression Efficiency and Equivalence
Vi € [begy, endy,) Arithmetic coding has been shown to be achieve Shannon’s

limit on compression efficiency asymptotically. The same re
sult holds true for coding using piecewise linear maps bseau
vy € [0,1) of the following observations:
Iz € [begy, endy,) : on(x) =y The width of final interval is given by [, /], where
fi is the probability of occurance of symbs), andn; is the
frequency of occurance of symbe). This value asymptoti-
cally approaches Shannon’s value for maximum entropy []. It
can be observed that while CAC scales the codeword or initial
V(k # j) : [begk, endy) ﬂ[begj, end;) =0 value to map them to the intervals corresponding to differen
)) .)) symbols, the standard arithmetic coder keeps the codeword
« Each linear mapoy, is associated uniquely with oneqqnsiant and instead scales the map in every iteration to find
symbol s;. The mappingo, — s; is defined arbitrarily o gymnol. It is immaterial - whether one scales the map
but one-one relationship must hold. to suit the codeword or scales the codeword to suit the map

« The valid-input width of each mapf), given by éndi— _yhe relative ratios remain the same, hence output of both
begy) is proportional to a probability of occurrence Ofprocedures is the same.

symbol s;.

Jy €10,1) : y = ox(z), and

e p is a many-one mapping fron0,1) to [0,1). This
implies that the decomposed linear maps.)(don't
intersect each other i.e.

endy, — begy, x p; Use of Chaotic Maps in Encryption

[12], [7] present two different scenarios of using chaotic
maps for arithmetic encryption. The first case uses N-ary
We recall thaty";_, (endy, — begy,) is same as the input arithmetic coding and has high cryptographic strength and i
width of Uff:l or = p, which is 1. AIso,Zfilpi = 1. plementation cost, while the second case uses binary aitbm
Thus, we get the value of constant C to be coding to encrypt data with low computational resources. In
both the cases, the choice of multiple piece-wise linearamap
to encode the input symbol is used for key generation. This
Figure 2 shows a sample map fulfilling these propertiegroperty is used for encryption, for without knowledge of th
Figure 2(a) shows the full map with different papts o0-,...ony COrrect map, an adversary cannot decode the input stream
present while Figure 2(b) zooms into individual linear part correctly.

The maps are placed adjacent to each other so that each ilx)uk lications
point is mapped into an output point in the rarigel). - APP

= endy, — begr, = C X p;

= endy, — begr, = p;

)) The CAC can be used as a joint compression-cum-
Encoding/ Decoding encryption technique for data encryption. It is particiyldnen-

The decoding process is quite simple. The encoded valueefiial for data-intensive tasks such as multimedia enaypt
considered as an initial valuB/. This value is iterated over and compression and can be integrated into the standard vide
the piece-wise linear map, M times to get M iterated values compression algorithms such as JPEG2000, JPEG, MPEG etc.
1V;. Each value is mapped to piece-wise linear partand CAC can be used for full or selective encryption of multime-
thus to corresponding;. dia data. For full encryption, the entire volume of multirreed

The encoding process is done by reversing the input stridgta is passed through BCAC (Binary CAC) encoder while
toxz, a1, ...x1. Each input character is mapped to uniquan case of selective encryption only the important parts of
symbolss; and then to piece-wise linear maps Thus, we get data are passed through BCAC encoder. If we reveal the first
a sequence of piece-wise linear maps corresponding to inpubits of the key publicly, then a part of the bitstream can

1 ' I 1 ; I
o A -
. OnN-2" “on_ i .
91:92_"_Q3 7 N i oxl
R A o
. I o .
Lo Vo Pl
! | E
" 1| . L ’
Py / \ | il
|- \ . \1' . I
i g) .
. / -1 T
! \ Y H ' ' H
0 1 0 begy, end,, 1
end,; begy,y
(2) (b)

Fig. 2. A sample piece-wise linear map for arithmetic coding ldompression (a) The entire map is showh (p) A single linear part of the mappf) is
zoomed. It can have a positive or negative slope dependindoice

be decoded correctly while decoding the entire bitstreath winap which is decided by choice of map. These values can be
require knowledge of the entire key. Thus, BCAC can be usethpped to look-up tables and the remaining operation can be
to provide conditional access to the multimedia content. optimized similar to BAC. However, we skip this detail inghi
. . paper for the sake of brevity.
Implementation Efficiency
For a normal binary arithmetic coder, at each iteration the

starting intervall, I..) is updated at one end. On encoding a In this section, we discuss the hardware architecture for
‘0’ the final interval becomes$i; + p(I. — I;),I.) while on arithmetic coding using chaotic maps, and N-ary chaotic
encoding a ‘1’ the final interval becomés,, I + p(I. — I;). arithmetic encryption.

Thus, every iteration requires one multiplication and two The chaotic encoder operation inverse inverse mapping of
addition operations. The decoding procedure for a binamyterval [0,1) on the chaotic map according to input symbol.
arithmetic coder involves updating the interVal, I.) at one For binary arithmetic coder, we have a fixed map to be iterated
end depending on whether the last decoded symbol was ait®’each cycle.

or a ‘1. Thus, every iteration again requires one multigion Figure 3(a) shows the basic architecture for coding using
and two addition operations. chaotic maps. The control unit receives the input bit stream

For chaotic arithmetic encoder, both end of interval amghich is passed on to the chaotic map Iterator (CMI). The

updated at every iteration using a linear transformation: control unit passes the bitstream, one symbol per cycleggnl
my+-c thus requiring two multiplications and two additions foin the case of multiple symbol encoding, which will be
encoding. The decoding is simple as it involves iteratiothan discussed later). For encoding, the initial interval pdste
chaotic map according to the linear transformatios nz+c¢ CMI is [0,1), which is transmitted as the beginning, and
involving a multiplication and an addition operation. Teere end (£,,) interval values. Both the intervals are then iterated
some additional table lookups (an 8-input LUT required fasver CMI (using two instances of CMI), and then the output
BCAC to choose the exact chaotic map) involved in chaotis sorted so thaB,, < E,,. If the difference D,, = E,, — D,,)
coding to choose the right chaotic map at every iteratias lower than a threshold, we need to renormalize the encoder
which can be efficiently implemented in software or hardwar&he renormalization procedure for arithmetic coding hasnbe
Thus, CAC encode requires more computations than BAfiscussed in [14]. A similar extension of renormalization
encode while CAC decode requires less computations thamocedure may be possible for chaotic maps. But, for the
BAC decode. [11] present a multiplier-free binary arithimet evaluation designs considered in this work, we have corside
coder, called as modulo coder (M-coder) which can be showd bit encoder without any renormalization procedure.

to have negligible performance degradation by some intervaIn case of decoding, Control Unit (CU) transmits the coded
approximations. Our BCAC coder is similar to a BAC codesymbol into CMI, which is then iterated over Piece-wise dine
except the variable slope and intercept of the lines of ébaomap and reported back to CU. The CU makes a comparison

IV. HARDWARE ARCHITECTURE

Begin and Coefficients

End Look-up
Intervals
: S s
Symbol Control I€ Chaotic Look- < P
Bitstream —’"“Uh'i{' o Map up >
N Iterator(s) Table
T)
Symbol probability,
key value
CLK ()

@

Fig. 3. Generalized Hardware Architecture for Chaotic Mgp$ Generalized architecture and (b) Circuit details fa@tic map lterator

with chaotic map indicated by the key and outputs a single it remove the use of DSP slices. This implementation reguire

output. 1585 slices and achieves a clock frequency of 500 MHz. The
CMI has a multiplier and an adder to perform chaotithroughput of this implementation is 1 bit per cycle with a

iteration. The internal details of this operation are giveB00 MHz clock, i.e. 500 Mbps.

in Figure 3(b). The multiplication and addition coeffici:-zntBinary Chaotic Arithmetic Coder and Encryption (BCAC)

are obtained from a look-up table/ RAM collating the inpuf . nhitecture

symbol, key value and probability value as the input address :

The Look-ed up value or a word is demultiplexed to obtain the The _archltecture for BCAC dn‘fgrs from b'”f”‘ry ar|th.met|c

multiplication and addition coefficients. This option cann coder in the sense that, the choice of chaotic map is made

fine for at most binary case, and for the case wheralue based on a key value, and is not precomputed. For this

is limited to fixed precision, say 8 bits. Such fixed precisioﬁnplememaﬂon’ the CMI has 1 bit symbol input, 8 bit symbol

approximations have been introduced in CABAC [11], homprobability and 3 bits for choice of chaotic map (for binary

ever it leads to approximation of results. Alternativelg ean case N = 2, hence number of different chaotic maps is

N : : i
use a multiplexer which can implement look-up using physic 122 - g 'S'l\eMﬁ ?It lEOkuEI)_ (k?lm bgﬂ:rripélir.?entedd uzl?g a
circuits to compute the return values. The second approash words or LOOk-up 1abi€, i Its word. Alter-

been implemented in this work, as it allows more erxibiIit;Pat'Ve'y’ wde_ us?d 8'&0'1 mulkt]lple;(f_er_ totobbtgm the coetllldjlmseb
in design and accuracy in computation. corresponding to a key, each cefficient being generateddbase

For implementation, the input and output intervals to th%n value in Table 1 in [7]. The implementation on target

. : : . EPGA gave a clock frequency of 500 MHz, utilizing 321 slices
Chaotic Map Iterator are represented in 64 fixed point (O bi 43 : ’ o T
integer and 64 bits fraction, shortly 1%64) arithmetic. The and 10 DSP48EL slices (which have optimized multiplier and

o . : accumulator operation implemented in VLSI). Mapping these
symbol probability has been quantizeditdits (I.F0.8). multiplication to FPGA logic increased the slice usage té414

Binary Arithmetic Coder (BAC) architecture without any change in achievable clock frequency.
The BCAC decoder hardware utilization was 173 slice LUT

To implement BAC in proposed architecture, we target &, 5 hsp slices (806 slice LUTs with LUT multiplier) with
design with processes 1 symbol (1 bit in this case) per cyc clock frequency of 510 MHz (500 MHz). The 64x8 bit

The .CMI has 1 bit symbol_ input, 8 bit symbol probab|llty an ultiplier is implemented by ISE into 5 DSP slices. However,

no bits for ch0|_ce of chaotic map (there is only onemap in th{ e same multiplier can be optimized and implemented withou

g;sl\e/l)' Thl_egflt Ioﬁ_k%ﬁ) cag be Impgeme;éei'gsm%abilz WOl rdware multipliers using other multiplier such as square
or Look-up 1able. \une word 1S IS - s eac%ot multiplier, reconfigurable constant multipliers efthe

for multiplication and addition coefficients. Alternatlyethis hardware requirements are basically dependent on size of
can be |mplement§d using a m_ultlplexer and hardware addf ok-up logic which increases exponentially with increase
subtracter to obtain the coefficients. The later approack w N. The throughput of this implementation is 1 bit per
used for BAC implementation. The design was synthesizedégCle with a 510 MHz clock, i.e. 510 Mbps. To consider the

Xilinx Virtex-6 XC6VLX75t FPGA using Xilinx ISE Design area effectiveness of this design, we consider througheut p

Suite 12.0 enwr_onment. The same tar_get FPGA’ which is Qgﬁce, with the second implementation where we implement
of the low end Virtex-6 family member is used in all synthés

I?nultiplication in LUTs rather than using DSP48EL1 slices
translate/ map/ place and routes.

) S . resent in device. The throughput/ slice for this design is
The two 64x8 bit multiplications are mapped in hardwar btained as 322 Kbislice ghp 9

into 10 DSP48E slices. A slice usage of 302 was obtained and _

the design achieved a clock frequency of 510 MHz, with orfeost of encryption

symbol per clock cycle. The optimized implementation of mul Comparing the BAC and BCAC architectures, we obtain a
tiplication, using carry-chains of FPGA fabric was synihed zero latency, same throughput and little hardware overf@@d

7000 Thus, to compare these values on a graph, we multiply each

throughput with N' value (2 for binary) to indicate relative

throughput. It can be observed that increasing the size of

5000 = Binary dictionary significantly reduces the throughput, evenrafteeh

ol considerations due to exponential increase in hardwargeusa

for key implementation.

3000 Although our experiment to scale to multiple-symbol dietio

nary failed, the reason is not the same as for traditionajdes

6000

4000

2000

for arithmetic coding [11]. Rather, the key explosion is the
1000 main reason for such limitations. We next consider incregasi
. - B B the system throughput by encoding multiple binary symbols
slices DSP4SE slices Clock Throughput! slice in a single pass. This approach is different than the praviou
approach in the sense that multiple probability values ate n
involved.

Fig. 4. N-ary arithmetic coding and encryption architecsur@omparative

performance. The # of slices, # of DSP slices (x100), clocgdemcy (MHz) Multiple symbol per cycle arithmetic coding
and throughput per slice (x1000) are reported in the figurean be observed
that increasing the size of dictionary significantly redutiee throughput. The Let us consider the case of arithmetic coding where we want

figure is drawn by scaling the throughput/slice legend tositer the fact that to encode two symbols in a single iteration of chaotic map. In
a 4 symbol dictionary will require half the words as a 2 symbagtidnary. this case, the chaotic map will spit into multiple (four iesd
of two) piece-wise maps. Arithmetic coding with encryptisn

slice LUTS) in implementing this encryption scheme again§tll 9oing to suffer with band-width expansion, but we atvee
AES or other schemes which have significant overhead. FBAt the bandwidth expansion is much less (or ordep by
instance,Chang et al. [26] reports AES implementationgusiff'Stead ofN2". Consider, for example the case where we want
156 slices, 2 Block RAMs to obtain a lower clock of 306° €ncode two symbols together (‘01" instead of ‘0" and 1" in
MHz. two separate iterations) using BAC. In this case, the rastilt
To increase the throughput per slice for a bitstream, W&iaotic iterator will have 4 (instead of 2) piece-wise linea
intuitively consider the dimension of increasing the numtfle Maps and their precision of implementation will be increase
symbols in dictionary used in arithmetic coding. For exapf16 instead of 8 bits). This analysis can be extended to three

- considering 3 or 4 symbols in the dictionary. four or more symbols. _ . o .
In this case, the increase is caused by increase in fixed point

N-ary Chaotic Arithmetic Coder and Encryption (NCAChyrecision of coefficients (and hence multipliers and adders
coding and increase in number of piece-wise maps. However, against

N-ary arithmetic encryption using the entire possible kethe case of MCAC where there was a bandwidth explosion due
space quickly turns out-of-bounds for a FPGA device. Movinp increase in key size, we observe a considerable different
from 2 to 3 piece-wise linear maps, we have a tremendoresult of implementation on Virtex-6 device. These results
increase in key-size. We implemented tri-nary CAC codare reported in Figure 5. The results are interesting to, note
in FPGA device to obtain a device usage of 492 slices ahecause contrasting with the traditional notion of onedsyin
10 DSP48E slices (1800 slices without DSP slices), but tiper cycle, we show that we can scale upto 4 symbols per cycle
achievable clock frequency dropped to 127 MHz. The trand achieve a higher throughput per slice. As we go from 2 to
nary decoder hardware utilization was 419 slice LUT witd case, we observe a increase in throughput which is then
5 DSP slices (1052 slice LUTs with LUT multiplier) with checked by the exponential increase in hardware resources
a clock frequency of 442 MHz (369 MHz). The hardwareaused by multiple symbols use. This value of 4 cannot be
requirements are basically dependent on size of Look-uig logt device constraint (restrictions due to finite area or size o
which increases exponentially with increase of N|@Y), device) because the pure LUT mapping based implementation
making it infeasible to scale-up the throughput/slice. requires only 5480 slices out of 43000 slices present iretarg

A simple way to restrict this bandwidth explosion is to usegc6vis75 device. The highest throughput achievable is 431
the algorithm for encryption proposed in [12]. They redtriKbits per slice for 4 symbols case.
the keyspace and instead use only a small fragment of keyd$-or the sake of brevity, we have restricted our discussion
from the entire range, for encryption. However, the apphnoain last sections to NCAC and multiple symbol BAC encoder,
presented in [12] has other computationally-inefficienttpa but the same trend follows for the decoder also.

The results are shown in Figure 4. The number of slice
LUTs is reported directly, number of DSP slices is scaled di-
recty and clock frequency is measured in MHz. The throughputin this paper, we presented architecture for simultaneous
comparison is tricky because using a 4-symbol dictionary (4oding and encryption using chaotic maps. After preseritiag
ary coding) will lead to reduced bitstream (around 50% rdwardware requirements and computations involved in cbaoti
duction) than the bitstream generated by 2-symbol dictipnamaps, we mapped these designs into a Virtex-6 FPGA to obtain

V. CONCLUSION

600 [5] M. Grangetto, E. Magli, and G. Olmo, “Multimedia selectigacryption
by means of randomized arithmetic codintfEE Trans. Multimedia

500 =1 vol. 8, no. 5, pp. 905-917, Oct. 2006.
m2 [6] H. Kim, J. Wen, and J. Villasenor, “Secure arithmetic cainEEE
u3 Trans. Signal Processingol. 55, no. 5, pp. 2263-2272, May 2007.
400 4 [7] A.Pande, J. Zambreno, and P. Mohapatra, “Joint video cesgion and
5 encryption using arithmetic coding and chaos,”IEEE International
300 - - Conference on Internet Multimedia Systems Architectur@ Applica-

tion, 2010.

200 |] ~ [8] R. Bose and S. Pathak, “A novel compression and encryareme

using variable model arithmetic coding and coupled chaotitesy,”
IEEE Trans. Circuits and Systemswvol. 53, no. 4, pp. 848-857, April

100
2006.
l [9] G. Jakimoski and K. Subbalakshmi, “Cryptanalysis of sometimeidia
o) - ‘ — - encryption schemes|EEE Trans. Multimediavol. 10, no. 3, pp. 330—
Slices DSP48E slices Clock Throughput! slice 338, April 2008.

[10] T. Stojanovski and L. Kocarev, “Chaos-based random remmb
generators-part |: analysis [cryptographyircuits and Systems I:

Fig. 5. Multiple symbols per cycle (BAC): Comparative perfonoe. The # Fundamental Theory and Applications, IEEE Transactionswa. 48,
of slices, # of DSP slices (x10), clock frequency (MHz) antbtighput per no. 3, pp. 281-288, 2002. . _
slice (x1000) are reported in the figure. It can be observeti 4hsymbols [11] D Marpe, H. Schwarz, G. Blttermann, G. Heising, and T.eVi
per cycle achieve highest throughput before LUT explosioa tb increased Context-based adaptive binary arithmetic coding in thés#i/avc video
precision and maps. compression standard/EEE Trans. Circuits and Systems for Video

Technologyvol. 13, pp. 620-636, 2003.
[12] K.-W. Wong, Q. Lin, and J. Chen, “Simultaneous arithmetiading
and encryption using chaotic maps/EEE Trans. _Circuits and
a performance analysis on real hardware. We investigated th Systemsvol. 57, pp. 146-150, February 2010. [Online]. Available:

. . . . : http://dx.doi.org/10.1109/TCSI1.2010.2040315
key-explosion problem which avoided the implementation ?{3] S. Lian, J. Sun, J. Wang, and Z. Wang, “A chaotic streaphei and the

simultaneous coding and encryption using larger dicti@sar usage in video protectionChaos, Solitons & Fractalsvol. 34, no. 3,
However, we found that the hardware resource explosion is pp. 851-859, 2007.

. . . . 4] A. Moffat, R. Neal, and I. Witten, “Arithmetic coding reited,” ACM
not much in case of multiple character coding using BA& Transactions on Information Systems (TOIE)l. 16, no. 3, pp. 256—

(indicating 5 symbols be encoded simultaneously). Thiskwor 294, 199s.
is one of the earliest hardware implementation of chaotipsna[15] G. Cormack and R. MORSPOOL, “Algorithms for adaptive hhodin

first reported implementation of chaotic maps for simultarse iggis’ Information Processing Lettersvol. 18, no. 3, pp. 159-165,

coding and encryption. It achieves encryption at insigaific [16] J. vitter, “Design and analysis of dynamic Huffman cotiekyurnal of
hardware cost, against use of encryption ciphers such as AES the ACM (JACM)vol. 34, no. 4, pp. 825-845, 1987.

. . . . 17] A. Moffat, N. Sharman, I. Witten, and T. Bell, “An empiricavaluation
which require separate modules for encryption operation. of coding methods for multi-symbol alphabetbyformation Processing

We are looking for, and encourage other readers also for & Managementvol. 30, no. 6, pp. 791-804, 1994.
future work in two directions: [18] I. Witten, R. Neal, and J. Cleary, "Arithmetic coding fdata compres-
sion,” Communications of the ACMol. 30, no. 6, pp. 520-540, 1987.
1) Looking for ways to solve key-explosion problem usingL9] p. Howard and J. Vitter, “Analysis of arithmetic codingrfdata com-
circuit level techniques. pression,”’Information Processing & Managementol. 28, no. 6, pp.
. o . 749-763, 1992.
2) Incorporating re-normalization and context to this e|'[20] G. Langdon, “An introduction to arithmetic codinglBM Journal of
coder, so that it can be added to CABAC or other Research and Developmerbl. 28, no. 2, pp. 135-149, 1984.
encoders. [21] R. Osorio and J. Bruguera, “Arithmetic coding architeet for H.
264/AVC CABAC compression system,” 2004.
[22] T. Chuang, Y. Chen, Y. Chen, S. Chien, and L. Chen, “Awtture
ACKNOWLEDGEMENT Design of Fine Grain Quality Scalable Encoder with CABAC fdr
))) . 264/AVC Scalable ExtensionJournal of Signal Processing Systems
This research is supported by the National Science Foun- vol. 60, no. 3, pp. 363-375, 2010.

dation under Grant #1019343 to the Computing Resear2Bl C. Lo, S. Tsai, and M. Shieh, “Reconfigurable architeetfor entropy
decoding and inverse transform in H. 26€bnsumer Electronics, IEEE

Association for the ClFellows Project. Transactions onvol. 56, no. 3, pp. 1670-1676, 2010.
[24] T. Addabbo, M. Alioto, A. Fort, S. Rocchi, and V. Vignoli'Low-
REFERENCES hardware complexity prbgs based on a piecewise-linear chawp,”
Circuits and Systems |l: Express Briefs, IEEE Transactionsvol. 53,
[1] H. Schwarz, D. Marpe, and T. Wiegand, “Overview of thelabie video no. 5, pp. 329 — 333, May 2006. _ _
coding extension of the H. 264/AVC standar¢EE Transactions on [25] A. Pande and J. Zambreno, “Design and hardware implenientat
Circuits and Systems for Video Technologgl. 17, no. 9, pp. 1103— of a chaotic encryption scheme for real-time embedded systems,
1120, 2007. Signal Processing and Communications (SPCOM), 2010 |atemal
[2] G. Langdon and J. Rissanen, “Compression of black-whiteges with Conference on |IEEE, 2010, pp. 1-5.)
arithmetic coding,"IEEE Trans. Communicationsol. 29, no. 6, pp. [26] C.-J. Chang, C.-W. Huang, K.-H. Chang, Y.-C. Chen, andCCHsieh,
858-867, Jun 1981. “High throughput 32-bit aes implementation in fpga,” @ircuits and
[3] M. Luca, A. Serbanescu, S. Azou, and G. Burel, “A new corspien Systems, 2008. APCCAS 2008. |IEEE Asia Pacific Conferenc&0n
method using a chaotic symbolic approach,”Aroc. IEEE Commun. 2008.

Conf Citeseer, 2004, pp. 3-5.

[4] N. Nagaraj, P. Vaidya, and K. Bhat, “Arithmetic coding asnan-
linear dynamical system,Communications in Nonlinear Science and
Numerical Simulationvol. 14, no. 4, pp. 1013-1020, 2009.

