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Abstract—The proliferation of embedded devices in modern
vehicles has opened the traditionally-closed vehicular system to the
risk of cybersecurity attacks through physical and remote access to
the in-vehicle network such as the controller area network (CAN).
The CAN bus does not implement a security protocol that can pro-
tect the vehicle against the increasing cyber and physical attacks.
To address this risk, we introduce a novel algorithm to extract the
real-time model parameters of the CAN bus and develop SAIDu-
CANT, a specification-based intrusion detection system (IDS) using
anomaly-based supervised learning with the real-time model as
input. We evaluate the effectiveness of SAIDuCANT with real CAN
logs collected from two passenger cars and on an open-source
CAN dataset collected from real-world scenarios. Experimental
results show that SAIDuCANT can effectively detect data injection
attacks with low false positive rates. Over four real attack scenarios
from the open-source dataset, SAIDuCANT observes at most one
false positive before detecting an attack whereas other detection
approaches using CAN timing features detect on average more than
a hundred false positives before a real attack occurs.

Index Terms—CAN bus, intrusion detection system, timing
model, real-time systems.

I. INTRODUCTION

THE connected car industry is quickly growing, and by some
estimates will account for almost $40 billion in annual

revenue by 2020 [1]. This growth is led by cyber-physical sys-
tem (CPS) advancements in enhancing safety and automation,
and by expanding use of Internet connectivity for in-vehicle
infotainment, which brings connected cars into the Internet
of Things (IoT). These applications have increased the cyber
connectivity and complexity of vehicles, as demonstrated by the
rising number of electronic control units (ECUs), wireless com-
munication interfaces, and software lines of code in the modern
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vehicle. The dramatic increase in vehicle functionality however
also makes the vehicular systems, including the safety-critical
systems, more vulnerable to cybersecurity risks and attacks [2].
Vulnerabilities across the autonomous vehicles, vehicular ad-
hoc networks, vehicle-to-vehicle, vehicle-to-infrastructure, con-
nected car, intelligent transportation system, and even traditional
(non-connected) automobiles motivate adversaries to launch
cyberattacks against vehicles [3]. Unfortunately, today’s car
lacks the necessary security mechanisms to protect the vehicular
system from attack.

A critical asset to secure is the automotive in-vehicle network,
which facilitates communication between ECUs over multiple
physical networks and protocols, with the most prevalent being
the controller area network (CAN). An adversary may subvert
the in-vehicle network through attack surfaces that increase
proportionally to new vehicle features. Physical access to the
on-board diagnostics (OBD-II) port can be used to easily com-
promise the network, while remote access through a wireless or
cellular connection can greatly increase an attack’s scalability
and reduce exposure of the attacker. Bluetooth attacks have
been demonstrated by Checkoway et al. [4], while Miller
and Valasek [5] accessed a Jeep Cherokee through its WiFi
network by exploiting a weakness in its password generation
protocol. Once access to the in-vehicle network is achieved,
the attacker can manipulate and delete data, degrade vehicle
functions, and even take over control of the vehicle. The limited
computational, memory, and power resources of ECUs hinder
the implementation of complex security mechanisms. Hence,
lightweight and computationally efficient algorithms are an im-
portant requirement in implementing security mechanisms for
the in-vehicle network.

We introduce Specification-based Automotive Intrusion De-
tection using Controller Area Network Timing (SAIDuCANT),
a specification-based intrusion detection system (IDS) that uses
the real-time model of the CAN bus to specify intended be-
havior, and then detects violations of the model as signs of a
compromised network. Given an instance of a message, we aim
to determine if its completion time aligns with the timing model
specification of the message. Our approach to this problem is
to infer the parameters of the real-time model of the CAN bus
during normal operation. Using the schedulability analysis of the
network, which guarantees that message deadlines will be met
in the worst-case, we derive the timing model specification for a

0018-9545 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Iowa State University. Downloaded on February 14,2020 at 02:26:22 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-8959-2038
https://orcid.org/0000-0001-7429-3836
https://orcid.org/0000-0002-0566-5744
https://orcid.org/0000-0002-5677-7092
mailto:habeeb.olufowobi@scs.howard.edu
mailto:cwyoung@iastate.edu
mailto:zambreno@iastate.edu
mailto:gbloom@uccs.edu


OLUFOWOBI et al.: SAIDuCANT: SPECIFICATION-BASED AUTOMOTIVE INTRUSION DETECTION USING CAN TIMING 1485

set of messages and hypothesize that messages that do not fit into
this timing model are anomalous. The timing model expresses
the behavior of the CAN bus from which anomalous deviations
indicate an attack is in progress. Although our focus is on the
CAN bus as the in-vehicle network, we expect our results would
apply well to any network that provides real-time behavior.

The contributions of this paper are:
1) A method for extracting real-time model parameters from

observations of CAN bus message behavior without prior
knowledge.

2) A specification-based IDS based on real-time schedula-
bility response time analysis of the CAN bus.

3) Two new metrics for measuring the performance of auto-
motive intrusion detection systems. These metrics provide
essential and useful information that can be used in making
a decision about the IDS more so than the traditional
classifier metrics.

4) Prototype and evaluation of real-time model specification-
based IDS using real CAN logs generated from passenger
sedan vehicles. The evaluation shows that SAIDuCANT
outperforms existing timing-based IDS for CAN and es-
pecially exhibits a low false positive rate in normal data
prior to the start of an attack.

This paper extends our previous work [6] with modifications
to the detection algorithm to improve its classification perfor-
mance, expansion of the evaluation using additional metrics and
data from real attacks, and comparison of our approach with
other work that uses the timing features of CAN bus messages
for intrusion detection.

The remainder of this paper is organized as follows. In
Section II, we discuss the related work on specification-based
intrusion detection systems for in-vehicle networks. Section III
provides a primer on CAN response time analysis. Section IV
describes the design of SAIDuCANT including the threat and
attack model, timing model extraction, and anomaly detection.
In Section V, we describe the experimental setup for evaluation,
and Section VI presents the experiments and results. Section VII
discusses SAIDuCANT’s limitations and possible directions for
future work. Section VIII concludes the paper.

II. RELATED WORK

Security problems of in-vehicle networks have been studied
over the years by several researchers [7]. Koscher et al. [8] were
the first to demonstrate and perform practical attacks on vehicles.
The authors demonstrated complete control of a wide range
of automotive functions by sniffing the CAN bus and reverse
engineering ECU code. Hoppe et al. [9] demonstrated practical
attacks on the CAN bus, and demonstrated an anomaly detection
method by looking at the frequency of messages transmitted on
the bus. Existing works have applied cryptographic techniques
to in-vehicle networks, such as digital signatures, encryption,
and message authentication codes [10]–[12], but the communi-
cation overhead of these techniques is very high, making them
unsuitable or at least difficult in practice for the CAN bus.

A plethora of automotive in-vehicle network IDSs have been
developed over the years that explore methods of detecting

anomalies as indicative of intrusions [13]–[28]. However, none
of these works use a specification-based approach, instead rely-
ing on message properties such as frequency [9], [16], [24],
[28], inter-arrival time [19], [22] and entropy [14], [20], or
physical properties of ECUs such as their clock drift [18] or
voltage [25]. SAIDuCANT captures the behavior and models
the timing of the CAN messages to extract the specification of
the network activities to detect intrusions. More precisely, we use
the worst-case response time analysis of each message to build a
set of specifications for message transmissions to compare with
observed network activities to detect intrusions. In the following
we contrast SAIDuCANT with prior work in specification-based
IDSs.

A specification-based detection method relies on a specifi-
cation that describes the behavior of the system components.
This legitimate behavior of the system is described by its
functionalities and the constraints of other interacting com-
ponents. The monitoring of the system activities involves de-
tecting deviations from the sequence of operations outside of
the specification, which are considered intrusions. Expected
behavior of the system components may be manually extracted
and crafted as security specifications [29]. Manually-defined
specifications can provide low false positive rates when com-
pared with other anomaly-based detection methods [30]. An
advantage of specification-based detection is that the IDS is
effective immediately when the specification is defined, as there
is no user or data profiling involved. However, the amount of
work required in capturing and verifying the correctness of a
specification is a major drawback.

Specification-based detection has been applied to several sys-
tems including network protocols, applications, and CPSs [31]–
[35]. Mitchell and Chen [31], [32] proposed a behavior-rule
specification-based IDS for medical CPS and unmanned aircraft
systems. In their approach, they use a binary failure threshold
to classify a node as normal or malicious based on the node’s
compliance threshold. Esquivel-Vargas et al. [35] proposed an
approach to automatically deploy a specification-based IDS to
monitor a building automation system using rules that represent
valid device behavior in BACnet networks to detect violations
in the network traffic. Fauri et al. [34] proposed an approach to
combine formal specification with anomaly-based monitoring
to overcome the semantic gap between network anomalies and
actionable alerts by leveraging the lightweight logical system
specification.

The concept of specification-based detection for CAN bus
was first investigated by Larson et al. [36]. They described
the application of a specification-based IDS for the CANopen
protocol using the application protocol layer. They show that
potential attacks can be detected from the trace of extracted
information through theoretical simulation, and concluded that
the most important ECU to protect is the gateway ECU.

Studnia et al. [37] proposed a language-based detection ap-
proach using language theory to develop a set of attack signatures
from the behavioral model of CAN. The authors generate sets of
forbidden sequences from the behavioral model that corresponds
to the manifestation of possible attacks on the network that they
seek to detect. Lee et al. [38] proposed an IDS called OTIDS
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Fig. 1. CAN Message Structure.

that measures the response performance of network nodes based
on the offset ratio and the time interval between request and
response in CAN messages. The authors claim that each node
has a fixed response offset ratio and time interval in a normal
operation mode which varies significantly in attack modes. This
difference in the offset ratio and time intervals is used to detect
attacks in the network.

SAIDuCANT differs from the prior art because we lever-
age real-time schedulability analysis of messages to automate
creating a specification. The novelty of our approach is in the
close coupling we create between real-time theory and intrusion
detection, and in the automation of parameter extraction.

III. CONTROLLER AREA NETWORK (CAN) BACKGROUND AND

RESPONSE TIME ANALYSIS

CAN is a message-based protocol that uses a lossless bitwise
arbitration to transmit binary signals over twisted pair cabling.
Dominant bits represent the logical 0, and recessive bits the
logical 1. As shown in Figure 1, data is transmitted between
ECUs via frames that include an Identifier field, Control field,
Data field, and a Cyclical Redundancy Check (CRC). The CAN
protocol includes collision detection and avoidance, error detec-
tion, signaling, and fault confinement.

CAN efficiently implements static fixed priority non-
preemptive scheduling of messages through bus arbitration.
CAN messages may be periodic, sporadic, or aperiodic. Peri-
odic message instances arrive at a regular interval with a fixed
length called period. Sporadic messages recur with a minimum
inter-arrival time between successive instances, while aperiodic
message instances occur at arbitrary times.

Each transmitting message goes through the arbitration pro-
cess to determine which wins the bus. When a message wins
arbitration and starts transmission, it becomes non-preemptable.
Messages win arbitration according to their priority, which is
determined by the message identifier (ID): lower IDs have higher
priority.

CAN bus is susceptible to faults due to electromagnetic
interference (EMI). EMI errors can be modeled as a random
single bit fault in CAN bus that, when detected, will cause a
receiver to transmit an error frame and cause retransmission of
the original message [39], [40]. If an error is detected either
by the sending node or in the CRC field, the error is signaled
directly to all the nodes on the bus. The receiving nodes will
discard the received erroneous message, and the sending node,
assuming only a transient fault on the wire, then enters arbitration
to retransmit the message frame. The error recovery process
transmits up to 31 bits in the worst case (error signaling and
recovery time is typically between 17 to 31-bit times) in addition
to the retransmission of the message.

Fig. 2. CAN Message Transmission States.

Tindell et al. [40], [41] and Davis et al. [42] present a real-time
model and worst case response time analysis of the CAN bus
derived from fixed priority response time analysis (RTA) of CPU
scheduling. We adopt their terminology and rely on some of their
key results in developing our specification-based approach. For
readers familiar with real-time schedulability, the key difference
between task scheduling and CAN message scheduling is the use
of messages in place of tasks, and each release of the message is
a message instance rather than a job. A message is parameterized
by its period and ID, which is a unique identifier and also the
message’s priority, with a lower ID having a higher priority.
Every period units of time, a message releases another message
instance. Each message instance has its own transmission time
and queuing jitter with a data payload of 0 to 8 bytes. The length
of the data payload is specified in the Data Length Code (DLC)
frame field.

As illustrated in Figure 2, messages go through the steps
of message release, queuing for transmission, arbitration, and,
finally, transmission. The process involving a message release
includes the preparation and storage in the software queue,
which is considered part of the computation time of the node
sending the message. A message release time is the time instant
the message is ready to be written into the priority-based trans-
mission buffer queue. When a message is released, it is written
to an available transmission buffer, or if there is no available
transmission buffer, it is stored in the host controller (CPU)
priority-based software queue until a buffer is available for
writing it. Once written to the transmission buffer, the message is
ready for transmission. In the transmission buffer, messages go
through an arbitration process, and the message with the highest
priority gets to transmit in the bus.

Our notation is summarized in Table I. M denotes an ordered
set of messages, and Mi ∈M is a message with ID i in the set.
Mi,k denotes the kth instance ofMi, which has completion time
Ti,k. If Mi is periodic, the time from 0 until the occurrence of
the first instance i.e., Mi,1, is the message phase, denoted by φi.
Concretely, the kth instance of Mi, denoted as Mi,k, is released
at time φi + (k − 1)Pi and should complete its transmission by
time φi + k(Pi), where (k = 1, 2, . . . ). A message may also
have a deadline, however we assume a constrained, implicit
deadline (equal to the period). Thus, Mi can be characterized by
a 3 tuple (φi, Ci, Pi), representing the message phase, the mes-
sage worst-case transmission time, and the period respectively.
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TABLE I
TABLE OF NOTATIONS FOR RESPONSE TIME ANALYSIS

Davis et al. [42] determine a message worst-case response
time (WCRT) by taking the maximum response time over the
instances of the message in a busy period,

Ri = max
q∈[0,Qi−1]

(Ri(q)) (1)

where Qi is the number of instances of messageMi that become
ready for transmission before the end of the busy period, and
Ri(q) is the WCRT of instance q. Ri(q) and Qi are given by

Ri(q) = Ji + wi(q)− qPi + Ci (2)

Qi =

⌈
ti + Ji
Pi

⌉
(3)

whereJi, the queuing jitter of the frame, corresponds to the max-
imum time variation between the release of a message instance
and queuing the message for transmission;wi, the queuing delay
under faults, corresponds to the maximum time a message can
remain queued before successfully transmitting. This delay may
be due to other higher and lower priority messages using the bus.
Ci, is the transmission time, which corresponds to the maximum
time a message can take to be transmitted. ti is the length of
the priority level-i busy period during which only messages
with higher priority to i get transmitted. The busy period of
the message ends at the earliest time that the bus becomes idle
or when messages of lower priority get transmitted. ti is found
by solving the following recurrence relation with a starting value
of t0

i = Ci and ending when tn+1
i = tni :

tn+1
i = Bi + Ei(t

n
i ) +

∑
k≤i

⌈
tni + Jk

Pk

⌉
Ck (4)

where Bi is the blocking time, which is the longest time that any
lower priority message can occupy the bus while message Mi is
queued, and is given by

Bi = max
k>i

(Ck). (5)

The worst case overhead caused by the error recovery mech-
anism that can occur for a given time interval is

Ei(ti) =
(

31τbit +max
k≥i

(Ck)
)
F (ti) (6)

where there can be 31 overhead bits for error signaling, and τbit
is the transmission time of a single bit (determined by the bus
speed).F (ti) is a step function that yields the maximum number
of errors on the bus for a time interval and must be a monotonic
non-decreasing function. According to Broster et al. [43], the
expected number of errors for the fault model in an aggressive
environment is 30 faults per seconds.

The queuing delay wi is composed of two elements: Bi, the
blocking time as given in Equation 5, and Ii, the interference
time, which is the longest time that all higher priority messages
can occupy the bus before the message i is finally transmitted,
given by

Ii =
∑
k<i

⌈
wi + Jk + τbit

Tk

⌉
Ck. (7)

Therefore, the queuing delay wi is given by:

wi = Bi + Ii (8)

The worst case queuing delay wi given an error model to
account for random errors on the bus is determined by calculat-
ing the delay for each of the Qi instances, and is given by the
following recurrence relation:

wn+1
i (q) = Bi + E(wn

i + Ci) + qCi + Ii (9)

with starting value w0
i (q) = Bi + qCi and terminating when

wn+1
i (q) = wn

i (q). This analysis adds a degree of pessimism as
it includes the 3-bit inter-frame space in the computed queuing
delay, which can be removed by subtracting 3τbit from the
calculated response time values.

IV. REAL-TIME SPECIFICATION-BASED IDS DESIGN

Expected regularity of messages in the CAN bus motivates a
supervised learning approach to create the specification-based
IDS. In a supervised learning approach, a classifier is trained to
differentiate between normal and anomalous behavior. Super-
vised learning uses training and detection phases. In the training
phase, the IDS collects CAN traces that represent the normal
behavior of the network and extracts real-time parameters as the
features that compose the specification. In the detection phase,
the behavior of each message observed on the bus is checked
whether or not it conforms with the specification. In our current
analysis we restrict to checking only the periodic and sporadic
messages. In this section, we present the design of SAIDuCANT
starting with the assumed threat model. Then, we describe the
method used in the training phase to extract real-time model
parameters from observations of CAN bus messages before ex-
plaining the detection phase’s algorithm using those parameters.

A. Threat and Attack Model

In this paper, we focus on impersonation attacks (masquerade,
replay, or injection), in which the goal of the adversary is to
control the vehicle. ECUs on the CAN bus take action based on
the most recently received data field of specific IDs that they are
programmed to monitor. By transmitting an injected message
soon after the authentic message of the same ID is transmitted,
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the attacker’s injected message will be acted on by the ECUs on
the bus instead of the authentic message.

We assume an adversary is able to receive and send messages
on the CAN bus. A receive operation involves eavesdropping
messages, and a send operation involves transmitting injected
(forged or replayed) messages. We assume the adversary does
not modify any regular transmission of messages, but observes
the network traffic to learn about the transmission pattern and
properties of the data packets of a particular node and then
impersonates that node. This assumption fits with the known
attacks such as replay and masquerade attacks that penetrate
the CAN bus by first subverting a non-critical ECU, and then
eavesdrop and inject messages targeting the critical ECUs, but do
so while behaving according to the bus protocol. SAIDuCANT
aims at detecting the active transmission of an attacker, and is
unable to detect passive tools that eavesdrop and record network
traffic, since they do not interfere with the timing of messages
transmitted on the bus.

B. Timing Model Extraction

Although we expect messages within a CAN bus to be schedu-
lable according to some real-time model, we do not expect to
know the actual model or its parameters for a given system.
The exact timing model and its parameters, especially precise
message periods, are difficult to obtain—they are not normally
disclosed by manufacturers. Thus, we assume the RTA-based
model described in Section IV and derive its real-time parame-
ters from observations of the CAN bus. The model and param-
eters comprise the IDS specification. Once the specification is
learned, it does not change over time unless features are added
to the vehicle, for example by reflashing an ECU with a software
update, in which case the RTA model would need to be relearned.

Algorithm 1 infers bounds at which the period of each mes-
sage could occur by reconstructing the steps the message will
go through before transmission. Bounded parameter estimates
are derived from CAN bus activity by calculating upper and
lower bounds for each message’s period (inter-arrival time).
The algorithm extracts for each distinct message Mi a bounded
period estimate, fi,min, fi,max, and the transmission time Ci.

Algorithm 1 takes as input a CAN log and message ID i. It
returns the estimate P̃i of the period by iteratively calculating
upper and lower bounds on the release and inter-arrival times
of successive message instances. The release time of the first
message instance of a given message cannot be inferred directly,
because the system state prior to the first observed message is
unknown. Thus, the first instance of each message is ignored.
In line 4, the algorithm scans backward to find the timestamp
of the previous message with lower priority or the time the bus
is in an idle state. We are uncertain of the release time of Mi,k:
it may have occurred at any point during recent higher-priority
messages that may have interfered with its transmission until
the most recent lower-priority message or an idle bus. Thus, the
algorithm pessimistically selects the earliest and latest possible
release times of the current message, denoted Lcur and Hcur.

To construct a bounds on the period, the algorithm subtracts
the latest and earliest release of the previous instance of the

Fig. 3. Variation of inferred lower and upper bound of the period for consec-
utive instances of different message IDs. (a) Message A Car X. (b) Message A
Car Y.

Algorithm 1: Estimate the Period and Release Jitter of a
Message Mi Given a Partial Log and ID i.

1: function DERIVEPERIODICPARAMETERS (Log, i)
2: fi,min, fi,max ← 0,∞
3: for Mi,k ∈ Log, k ≥ 1 do
4: Tl,m ← FindPreviousTimestamp()
5: Lcur ← Tl,m − Cl,m

6: Hcur ← Ti,k − Ci,k

7: if k > 2 then
8: ΔL ← Lcur −Hpast

9: ΔH ← Hcur − Lpast

10: if ΔL > fi,min and ΔH < fi,max then
11: fi,min, fi,max ← ΔL,ΔH

12: Lpast, Hpast ← Lcur, Hcur

13: P̃i = fi,min

14: Ji = fi,max − fi,min

15: return (P̃i, Ji)

same message from the earliest and latest release of the current
instance, respectively, to obtain ΔL and ΔH . These Δ values
represent the smallest and largest possible inter-arrival time
between the previous and current instance. fi,min and fi,max

are, eventually, the ΔL and ΔH that are closest to each other.
The final value of fi,min is taken as the estimated period P̃i,

which, assuming a constant actual period and non-negative re-
lease jitter, is no greater than the actual period. The release jitter
is the difference between fi,max and fi,min, which describes the
maximum error in the estimated P̃i because the actual period is
no greater than fi,max.

Since vehicles of the same make, model, and even trim can
offer different features, two seemingly identical cars may have
distinct RTA specifications. Thus, the specification of a partic-
ular car must be obtained by running Algorithm 1 to extract
the node IDs and their timing characteristics. Figure 3 shows
two distinct messages for Car X and Car Y with the inferred
period bounds from Algorithm 1. The difference between the
lower and upper bound represents the tightness in the minimum
and maximum timestamp that a message can assume. There
is a variation in this tightness as seen in Figure 3 which is
indicative of the performance of the algorithm on the messages
in a CAN bus. Car Y shows a slightly loose bound compared
to Car X. Algorithm 1 obtains upper and lower bounds for each
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ID that are within approximately 5 ms of each other; thus an
attacker cannot successfully inject a message without violating
the expected period of the next authentic message, because the
inferred period converges within±2 ms of the real period. Since
the real period of automotive CAN messages is on the order of
10, 100, or 1000 ms, an adversary can only inject additional
messages without being detected if the range between upper
and lower bounds is greater than 5, 50, or 500 ms, respectively.
With SAIDuCANT, the tightness on the estimate of the period
makes detection of message injection attacks possible.

C. Anomaly Detection

SAIDuCANT monitors the bus and calculates an interval of
possible values that bounds the valid completion time of each
message instance. This calculation relies on the learned param-
eters and the RTA model as a specification, and on the history
of observations of messages that have been transmitted on the
bus since the time the bus was last idle. This history contains
each message’s priority, transmission time, and the data payload,
which are necessary to account for blocking and interference
factors that delay the time between a message instance release
and its transmission. A message is considered anomalous if its
completion time violates the acceptable interval defined by the
specification of its real-time parameters.

We obtain the response time of each message using Equation 1
with the estimated P̃i and Ji determined by Algorithm 1. We
use this response time in a supervised learning algorithm to
classify messages as normal or anomalous. Algorithm 2 takes
as input a message instance’s completion time, the estimated
period, response time, phase, and the instance count. Note that
we estimate the phase φi as Ti minus Ci of the first instance.
Algorithm 2 calculates the minimum timestamp that a message
instance can assume by adding the phase to the instance mul-
tiplied by the period. The maximum timestamp represents the
minimum timestamp plus the WCRT. The algorithm classifies
the message instance as normal if its actual timestamp falls
between the calculated minimum and maximum timestamps.
Algorithm 2 is O(1) for each message received from the bus.

We call a message instance delayed if it does not arrive by the
expected maximum timestamp, and dropped if it does not arrive
by the minimum timestamp of the next instance. Algorithm 2
classifies as normal the first message instance after dropped
messages (Lines 6–8), and classifies delayed messages as normal
(Lines 11–12).

D. Example

Consider the message log and schedule in Figure 4, composed
of messages M1(0, 0.27, 0.675), M2(0, 0.27, 0.945), and M3(0,
0.27, 1.89) with M1 having the highest priority (of 1) and M3

having the least priority (of 3), and with time in milliseconds.
The busy period starts at time t = 0 with the release of all the first
message instances, M1,1,M2,1,M3,1, and M1,1 wins arbitration.
Thus, M1,1 causes interference for both M2,1 and M3,1. At t =
0.675, M1 releases instance M1,2 while M3,1 is in transmission,
thus blocking M1,2 until M3,1 completes. The bus is idle from
t = 1.62 to 1.89.

Fig. 4. Example of periodic message behavior in CAN bus (Time in ms.)

Algorithm 2: Anomaly Detection From Timing Specifica-
tion.

1: function DETECT (Ti,k, P̃i, Ri, φi, k)

2: mints ← φi + (P̃i ∗ k)
3: maxts ← mints +Ri

4: nextmints
← mints + Pi

5: nextmaxts
← maxts + Pi

6: if Ti,k > nextmaxts
then

7: k ←
⌈
Ti,k−φi

Pi

⌉
8: return 0
9: if mints ≤ Ti,k ≤ maxts then

10: return 0← normal
11: if maxts ≤ Ti,k < nextmints

then
12: return 0← normal
13: else
14: return 1← anomalous

To better understand how the fi,min and fi,max are cal-
culated, consider M1. The first instance M1,1 is ignored. For
M1,2, scanning backward finds that the preceding message is of
lower priority, which implies that the release of this message
occurs during or immediately after the transmission of M3,1.
Therefore, a lower bound on the release time is given by sub-
tracting the transmission time from the timestamp of the preced-
ing message, i.e., Lcur = T3,1 − C3,1 = 0.81− 0.27 = 0.54.
The upper bound is always calculated directly from the mes-
sage instance, e.g., Hcur = T1,2 − C1,2 = 1.08− 0.27 = 0.81.
The range from [(T3,1 − C3,1), (T1,2 − C1,2)] = [0.54, 0.81] de-
scribes the maximal time interval that M1,2 could have spent
waiting for transmission. As expected, M1,2’s actual release
time 0.675 ∈ [0.54, 0.81]. Because the first instance does not
calculate an upper and lower bound, the second instance is not
able to calculate a valid ΔL or ΔH , so the algorithm stops
processing this instance, stores the calculated Lcur and Hcur

as Lpast and Hpast, and moves on to M1,3. Scanning back-
ward from M1,3 find that the previous message M2,2 has lower
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priority, so Lcur = T2,2 − C2,2 = 1.35− 0.27 = 1.08. Again,
the upper bound is calculated as Hcur = T1,3 − C1,3 = 1.62−
0.27 = 1.35. Now ΔL = Lcur −Hpast = 1.08− 0.81 = 0.27
and ΔH = Hcur − Lpast = 1.35− 0.54 = 0.81. These calcu-
lated bounds are used as the first estimates for the period, so
f1,min = 0.27 and f1,max = 0.81 after processing M1,3. The
actual period of M1 = 0.675 ∈ [0.27, 0.81]. For M1,4, the algo-
rithm calculates ΔL = 1.89− 1.35 = 0.54 and ΔH = 2.16−
1.08 = 1.08. Although the newΔL improves on f1,min, the new
ΔH is worse than the f1,max so the bounds are not updated. As
the log ends with no more instance of M1, its estimated period
and jitter are P̃1 = 0.27 and J1 = 0.81.

V. EXPERIMENTAL SETUP

We evaluate SAIDuCANT using data we collected and with
published datasets. We collected data from two different sedan
vehicles, Car X and Car Y, which are the same make but dif-
ferent model and year. The vehicles are operated in a controlled
setting on a dynamometer in the Cyber Security Laboratory of
the National Transportation Research Center managed by Oak
Ridge National Lab, and CAN log data are collected through
the OBD-II ports. The vehicles have a medium speed CAN
bus and high speed CAN bus. Initial test data was recorded
for the vehicle state comprising ignition key turn (handbrake
on), acceleration, maintaining a constant speed, braking, and
reverse. We performed attacks by injecting malicious messages
at high frequency to override normal vehicle operations. These
malicious messages were constructed by spoofing legitimate
messages. Messages are injected at different intervals through
the OBD-II port for about 60 seconds at a frequency higher than
normal to cause a malfunction in the vehicle.

Furthermore, we evaluated the performance of SAIDuCANT
using CAN data from Hacking and Countermeasure Research
Lab made available for research purposes.1 The dataset contains
a standard vehicle operation and attack datasets comprising
fuzzy, RPM spoofing, gear spoofing, and DoS attacks. These
datasets were recorded from a real vehicle through the OBD-II
port. The ground truth about the dataset is known as it contains
information about regular and injected messages. For the gear
and RPM spoofing attacks, the respective IDs are injected every 1
millisecond. The fuzzy attack dataset contains randomly injected
messages IDs performed every 0.5 milliseconds while DoS
attack dataset contains attacks where the dominant message ID
0000 is injected every 0.3 milliseconds to disrupt the vehicle
functions.

We observed messages that appear just once in a log. These
messages appeared mostly at the beginning of the log, and we
suspect they relate to the initial startup of the vehicle. We have
ignored these one-time messages in our results.

To evaluate IDS performance we use traditional classification
metrics by collecting the number of true negatives (TN), true
positives (TP), false negatives (FN), and false positives (FP),
and calculating the accuracy, recall, precision, and F1 score in

1https://sites.google.com/a/hksecurity.net/ocslab/Datasets/CAN-intrusion-
dataset

the usual way:

Accuracy =
TP + TN

TP + TN + FP + FN
(10)

Recall =
TP

TP + FN
(11)

Precision =
TP

FP + TP
(12)

F1 Score = 2 ∗ Precision ∗Recall

Precision+Recall
(13)

We also introduce two new metrics for characterizing perfor-
mance of an automotive IDS, the time to detection (TTD) and
false positives before attack (FPBA), that we define as

TTD = TD − TA (14)

FPBA =
∑

m∈Log[0:TA]

isFP (m) (15)

where TD and TA denote the detection time and completion
time of the first instance of an injected attack message, respec-
tively, Log[x : y] is a subsequence of messages observed on the
network from time x until y, and isFP (m) is a binary valued
function that returns 1 if message m is a false positive, and 0
otherwise. The TTD measures the time after an attack happens
before it is detected, hence it is a latency indicator of IDS
performance. FPBA captures the classifier performance prior
to the existence of an attack.

These metrics provide a more meaningful measure of perfor-
mance than the traditional classifier metrics. The information
provided by these metrics relate the classifier accuracy with
the timeliness of detection. Often, traditional classifier metrics
are used for measuring model or algorithm performance, but
they may give a false sense of performance by achieving high
accuracy and low false positive rates that still translate to an
impractical solution. For example, even 0.01% false positive
rate implies one false positive per second in a 1 Mbps bus.
We introduce TTD and FPBA, which have never been used for
evaluating automotive IDSs, to better classify IDS performance
with respect to timely, accurate detection.

VI. EXPERIMENTS

We conducted five experiments using the two datasets. The
first experiment evaluates SAIDuCANT in the absence of at-
tacks, and the second evaluates with attacks, both using the
dataset collected at ORNL. In the third experiment, we validate
the performance of SAIDuCANT with synthetic attacks derived
from that dataset. The fourth and fifth experiments evaluate
SAIDuCANT using the open research data, and compare SAID-
uCANT with interval- and frequency-based IDSs.

A. Experiment 1: All Normal Data

First, we recorded data for six representative datasets on Car X
and five on Car Y. Each dataset is composed of data recorded for
about 120 seconds of standard vehicle operations, i.e., normal
data. One of the datasets (training dataset) is used to extract
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TABLE II
OUTCOME OF SAIDUCANT ON NORMAL DATA

the timing model specifications of each message on the bus by
applying Algorithm 1. The other datasets (test datasets) are used
to validate the model by invoking Algorithm 2 for every message
instance. A message instance is classified as anomalous if 1.) The
message ID was not recorded during training, or 2.) Algorithm
2 returns anomalous.

For this experiment, which does not have attack data, any
anomalous labels are false positives and normal labels are true
negatives. Thus, the accuracy is simply the ratio of normal labels
to total messages. Table II shows the classifier accuracy of
SAIDuCANT (Algorithm 2) over each test dataset. Precision
and recall are not calculated for this experiment because the
dataset does not contain any attack messages which implies that
there is only one relevant instance or data point of interest in
each dataset. The message column indicates the total number of
message instances present in each dataset.

About 48% of false positives we observed are from periodic
messages with the same ID, but different phases. These messages
exhibit the same behavior as a regular message, except they ap-
pear to either release multiple instances per period, or to transmit
several messages with identical periods that are offset from each
other. Our current detection algorithm is unable to classify these
messages because we have assumed one periodic message per
ID. We discuss other possible sources and mitigation for false
positives in Section VII.

B. Experiment 2: Real Attack

This experiment considers the algorithm performance on a
real attack dataset involving the vehicle backup light for Car
X. We performed a message injection attack that activates the
backup light every 700 microseconds. The injections are made in
intervals of length 15 seconds, with 15 seconds of non-injected
messages in between. Thus, the attack data contains a mix of
normal and attack message instances during injection intervals
[15, 30] and [45, 60] seconds, and normal message instances
outside those intervals.

In this experiment, due to infrastructure limitations, we
are not certain which logged messages are from our injection
and which are from the vehicle’s normal operations. Thus,
we cannot calculate metrics of classifier performance for this
experiment. In this experiment we injected 2,845 messages
to Car X as it was being driven on the dynamometer. The
attack log contains 154,564 message instances, with 3,767 of
them labeled anomalous by Algorithm 2. Although we cannot

distinguish our injected messages from authentic ones in the
log, we can say that we did not observe any anomalous labels
for message instances of the injected message ID outside of
the injection intervals, so we have confidence that the injected
messages are, mostly, correctly labeled anomalous.

C. Experiment 3: Synthetic Attacks

We simulate message injection attacks on the test datasets
by injecting a particular ID 2 to 3 times faster when an idle
bus time is observed. This attack is achieved by recreating the
expected message trace and injecting message IDs during the
idle time. The idle time is used to ensure that the simulated
attacks are accurately spaced to avoid any overlap in the message
timestamp. The injected message is not altered, thus maintaining
the same field properties as a normal message but with a different
timestamp. The timestamps of the injected messages are set to
fit within the limit of the idle time.

In this experiment, we have both attack and benign messages,
and we know the ground truth because we know which messages
we injected. Thus, we present the classification FP, TP, FN, and
TN. Table III shows the classifier performance of Algorithm 2
for the synthetically generated attack data. The message column
shows the total number of messages in each dataset. The predic-
tive value of our positive test indicates an approximation of 90
to 99 percent accuracy. An average 91 percent recall indicates
that the algorithm mostly labels the injected anomalous data
correctly.

D. Experiment 4: Real Attacks (Open-Source Data)

In this experiment, we consider the algorithm performance
on the open-source attack data. Table IV shows the classifier
performance on the four attack datasets. In spoofing the gear
and RPM datasets, the injected IDs constitute 99.72% and
99.91% of the total number of false positives, respectively.
We found that before the start of the message injection attack,
SAIDuCANT detects no FP in both datasets. This implies that
when the IDs are being injected, they contribute to the regular
IDs missing their expected deadlines, which results in false
positives. For the fuzzy attack dataset, the false positives are
distributed across the injected IDs. The DoS attack dataset
exhibits zero false negatives with a small number of false
positives (<0.003%) in the whole dataset.

E. Experiment 5: Comparison With Other Detection
Approaches

Using the same dataset from VI-D, we compare SAIDuCANT
with interval- and frequency-based detection approaches. In
the interval-based detection approach, the IDS reads the nor-
mal CAN frames to build a timing model for each message
ID interval. The IDS checks each message ID and calculates
the average time interval between subsequent messages in the
attack-free dataset. The generated intervals are then used for
detection against the attack datasets. If an interval in the attack
datasets is less than half of the calculated average interval for
the message ID, the IDS alerts for anomalous behavior. The
frequency-based detection approach calculates the frequency of
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TABLE III
OUTCOME OF SAIDUCANT WITH SYNTHETIC DATA INJECTION ALGORITHM

TABLE IV
OUTCOME OF SAIDUCANT WITH REAL ATTACK DATASET (OPEN SOURCE)

TABLE V
COMPARISON OF THE SAIDUCANT WITH INTERVAL-BASED AND FREQUENCY-BASED DETECTION APPROACHES

each message ID in the attack-free dataset. Frequency is the rate
of messages observed in a set time interval. For this work, we
used a time interval of one second. If the frequency of a message
deviates at a rate greater than two times normal, the IDS indicates
an anomaly.

Table V shows the performance of SAIDuCANT compared
to interval- and frequency-based detection. The table clearly
shows that SAIDuCANT performs better—in terms of both the
time it takes to detect attacks and the number of false positives
before an attack happens—compared to other approaches. Over
the four different attack scenarios, SAIDuCANT outperforms
other timing-based approaches with negligible (at most one)
FP prior to the start of an attack; in contrast, the interval- and
frequency-based approaches on average detect over a hundred
FP before an attack, and even in the best case detected 65 FP be-
fore the attack started. SAIDuCANT achieves these better results
because the model specifications leverage the network semantics
based on real-time theory. SAIDuCANT provides a significantly
higher detection ratio for DoS and fuzzy attacks compared to
the other methods; the F1 Score for SAIDuCANT algorithm
is over 90 percent compared to 80 percent for interval-based
and approximately 90 percent for frequency-based approaches,
respectively.

VII. DISCUSSION AND FUTURE WORK

Due to the stochastic nature of driving, we obtained different
results for each test dataset. The variability in different driving

modes is one of the causes of the disparities in the results. Some
of the data are recorded while the vehicles are in an accessory
mode, drive to accelerate, drive to decelerate, accelerate in
reverse, decelerate in reverse, maintaining a constant speed and
braking operations. Also, the driver’s actions and the underlying
driving operations can be contributing factors to the difference
in the presence of CAN messages and therefore the experimental
results.

False positives can be reduced by manually tuning the upper
bound of some of the IDs with arbitrary large periods (in the
order of seconds) by 0.05 ms without increasing the attacker’s
chance of successful data injection. However, blindly applying
a tuning number to the entire set of IDs increases the false
negatives. 2The need for this tuning is a result of uncertainty in
the RTA model, and future work could consider a more rigorous,
systematic approach to tuning automatically or adaptively to
accommodate for this uncertainty.

False positives may also be caused by hardware malfunctions
that significantly disturb the timing behavior of messages. We
did not observe any such scenarios in our experiments because
the vehicular systems operated normally. In our approach, if such
malfunctions cause an ECU to transmit too early or too often,
then the behavior would be detected and treated as an attack.
Note that other timing-based IDS, such as interval and frequency
detection, would exhibit similar false positive behavior in the
presence of hardware malfunctions.

In our analysis, we observe some messages with multiple
periods, which Koyama et al. have described as Type-1 mixed
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CAN messages [44]. These messages exhibit the same behavior
as regular periodic signals but have extra instances that are
triggered by events. These types of messages are common on
the medium-speed CAN bus used for body electronics in some
vehicles. For example, the door sensors of the car send their
status periodically as sort of a heartbeat, but when a change
occurs, such as someone opens the door, a status message is
sent immediately. Our current detection algorithm does not
perform very well in classifying these messages, because we
have assumed one periodic message per ID. We aim to better
classify such messages in future work.

Presently, our detection algorithm can detect attacks on pe-
riodic and sporadic messages, but not aperiodic messages or
message IDs with several message instances per period. How-
ever, most of the significant information relating to the control
of the safety systems in vehicles are transmitted periodically
and sporadically with a single message instance from a single
source ECU. Aperiodic messages are difficult to characterize
because the timing of such a message cannot be ascertained at
any given time and, to our knowledge, cannot be represented
with a mathematical equation. In our analysis, messages that
occur once on the bus are not labeled anomalous if their IDs
are registered in the allowed list of nodes that can access and
transmit on the bus.

In an advanced attack scenario, an adversary stops the trans-
mission from the victim node before transmitting malicious
frames. We consider two cases for this scenario. The first
case is that the attacker compromises the victim node’s soft-
ware/firmware and sends the malicious messages from the vic-
tim ECU: SAIDuCANT cannot detect this case, and to our
knowledge, neither can any IDS that only uses timing-based
features nor any of the related work in network IDS–it remains
an open problem, in a stronger threat model. The second case
is that the attacker first launches a bus-off attack against the
victim, and then masquerades as the victim after the bus-off is
successful. SAIDuCANT currently does not consider this case,
in which the attacker modifies messages on the bus to cause a
bus-off state in the victim. For future work, we aim to modify
SAIDuCANT to detect the bus-off attack as a prelude to the
masquerade attack.

Plans for further study aim at reducing false positives, in-
vestigating other attack scenarios, and examining the recovery
strategies for the in-vehicle network after an attack happens.
We believe that the real-time model provides a solid theoretical
foundation for such investigations.

VIII. CONCLUSION

In this paper, we present SAIDuCANT as an approach for
detecting intrusions in in-vehicle networks using a specification-
based IDS. The specification is developed through observations
of message timing and worst case response time analysis of
the CAN bus. We developed an efficient and straightforward
algorithm to estimate the real-time parameters of the RTA-
based model online in a black box approach. We evaluated
SAIDuCANT experimentally on datasets from two different
cars and open-source vehicle data. The IDS can detect message

injection attacks on the CAN bus with high accuracy and low
false positive rates. Compared to other detection approaches,
SAIDuCANT exhibits a better F1 score compared with interval-
and frequency-based approaches while reducing detection delay.
We introduced two new metrics, TTD and FPBA, that measure
the performance of an IDS respecting classifier accuracy and
timeliness, for which SAIDuCANT yields better and consis-
tent performance as compared to other detection algorithms.
SAIDuCANT raises at most one false positive before an attack
as opposed to interval- and frequency-based approaches that
exhibit a minimum of 65 false positives prior to an attack.
SAIDuCANT can be easily implemented on a vehicle’s gateway
ECU with limited computing power.
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