
RAMPS: A Reconfigurable Architecture
for Minimal Perfect Sequencing

Chad Nelson, Kevin R. Townsend, Student Member, IEEE, Osama G. Attia, Student Member, IEEE,

Phillip H. Jones,Member, IEEE, and Joseph Zambreno, Senior Member, IEEE

Abstract—The alignment of many short sequences of DNA, called reads, to a long reference genome is a common task in molecular

biology. When the problem is expanded to handle typical workloads of billions of reads, execution time becomes critical. In this paper

we present a novel reconfigurable architecture for minimal perfect sequencing (RAMPS). While existing solutions attempt to align a

high percentage of the reads using a small memory footprint, RAMPS focuses on performing fast exact matching. Using the human

genome as a reference, RAMPS aligns short reads hundreds of thousands of times faster than current software implementations such

as SOAP2 or Bowtie, and about a thousand times faster than GPU implementations such as SOAP3. Whereas other aligners require

hours to preprocess reference genomes, RAMPS can preprocess the reference human genome in a few minutes, opening the

possibility of using new reference sources that are more genetically similar to the newly sequenced data.

Index Terms—Hardware algorithms, FPGAs, bioinformatics, short-read aligner, convey HC-2, reconfigurable hardware

Ç

1 INTRODUCTION

AFTER the first human genome was sequenced in 2003,
the next generation of sequencing technologies were

developed with higher throughput and lower costs.
Sequencing machines operate by determining the sequence
of nucleotides of many small fragments of DNA, called
reads, in parallel. To improve the quality of the process, the
amount of genetic data that is sequenced is often enough to
cover the entire genome multiple times. The increasing
speed and adoption of next generation sequencing technolo-
gies has resulted in a great need for timely alignment of
large amounts of short read data.

For example, a single Illumina HiSeq machine sequences
120 billion base pairs in a 27 hours run [1], and the Beijing
Genomics Institute has at least 167 sequencing machines [2]
and efforts with names like the Million Human Genomes
Project [3]. World sequencing capacity was estimated at 15
quadrillion nucleotides per year in 2013 [4], and there is no
sign of slowing. Because of the large amount of data pro-
duced by a single sequencing machine, it also becomes
important for the processing of the data to occur on site.
Networks have already become a bottleneck to offsite com-
puter clusters, resulting in some scientists sending their
data on hard drives via FedEx to be processed [2]. In fact,
the growth in the amount of sequencing data is currently
growing at a rate faster than Moore’s law and is projected to
continue for some time [5]. Moore’s law states that the
number of transistors in an integrated circuit will double
approximately every two years [6]. Thus, new innovations

in algorithms and designs that utilize the transistors more
efficiently are needed if the alignment of the data is to keep
pace with the sequencing machines.

Numerous software projects have been developed to
align the short reads from the sequencing machines with a
reference genome, some of which are discussed in Section 2.
Because these attempts only changed the hardware used,
not the algorithm, the results show only a marginal increase
in performance due to the use of better hardware. To
achieve significant performance gains, more must be done
than tweaking the same algorithms to work on better hard-
ware. Since the growth of DNA sequencing data is currently
outpacing the growth of Moore’s law [6], simply using bet-
ter hardware won’t solve the problem in the long run.
RAMPS breaks the tradition of the previous short read
aligners by choosing a simple and new approach that is fast
and energy efficient.

In this paper we introduce RAMPS, a reconfigurable
architecture for minimal perfect sequencing that extends
our earlier work in [7]. RAMPS offers a new approach utiliz-
ing the Convey HC-2, a hybrid core computing system.
Using the human genome as a reference, RAMPS aligns
short reads hundreds of thousands of times faster than
software such as SOAP2 or Bowtie, and about a thousand
times faster than GPU implementations such as SOAP3. By
decreasing the preprocessing time, we hope to fundamen-
tally change the alignment problem by allowing a higher
percentage of the read data to be aligned exactly to the refer-
ence. The speed gains are made possible by selection of
a fast algorithm, the use of a highly pipelined hardware
design, and the large amounts of memory bandwidth pro-
vided by Convey’s hybrid core computing system.

The remaining of the paper is organized as follows.
Section 2 surveys the current software and hardware short
read aligners and discusses the algorithms that is currently
being used in the field. In Section 3 we introduce the prelimi-
naries of the minimal perfect hashing algorithm and DNA

� The authors are with the Department of Electrical and Computer Engineer-
ing, Iowa State University, Ames, IA 50011. E-mail: cnelson711@gmail.
com, {ktown, ogamal, phjones, zambreno}@iastate.edu.

Manuscript received 24 July 2015; revised 9 Dec. 2015; accepted 23 Dec. 2015.
Date of publication 29 Dec. 2015; date of current version 14 Sept. 2016.
Recommended for acceptance by M. Smith.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2015.2513053

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 10, OCTOBER 2016 3029

1045-9219� 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:
mailto:
mailto:

sequencing in general. Then, we present the main compo-
nents of RAMPS implementation in Section 4; a series of
hardware pipelines to preprocess a reference genome into a
hash table, and a hardware aligner for performing fast look-
ups. In Section 5, we show the experimental results of our
FPGA implementation. Finally, we draw our conclusions
and discuss future work in Section 6.

2 RELATED WORK

A plethora of short read aligners have been published in
the research field of bioinformatics. They vary greatly in the
algorithms used for matching and their target hardware
platforms. Different aligners will attempt to optimize one
parameter at the cost of others. Some seek high sensitivity,
the ability to nd matches given mutations in the DNA, at
the cost of speed. Others compress data structures to limit
the required memory footprint. Projects that attempt to
assemble fragments without a reference genome, called de
novo, are not listed as their runtime is not linear with
respect to the number of reads.

Early read aligners like BLAST [8] andMAQ [9]were slow
and operated by selecting the best indices from a list of candi-
date locations. BLAST, the Basic Local Alignment Search
Tool, was published in 1990 and was one of the first tools
available for sequence alignment. MAQ [9] was an imple-
mentation that provided quality data along with its align-
ment results. These tools used a few base pairs of the larger
read, called seeds, to generate a long list of candidate loca-
tions in the reference genome. The algorithm would then
perform a computationally expensive Smith-Waterman [10]
comparison on all candidate locations to determine the
best spot for the read. Each comparison using the Smith-
Waterman algorithm is costly, and a long list of candidate
locations limits the performance of these algorithms. Unfor-
tunately, many of the early tools are now too slow to handle
the influx of data from next generation sequencingmachines.

A newer approach, used in SOAP2 [11], BWA [12], and
Bowtie [13], is to index a reference genome using an FM
Index [14], which compresses the genome using the Bowler-
Wheeler transform [15]. This scheme allows the genome to
be compressed in a suffix tree, reducing the memory foot-
print, and allowing the use of commodity hardware. These
tools use an algorithm in which alignment is the result of a
pointer-based tree transversal. In cases of a mismatch, time-
consuming backtracking is used to find segments that may
match with high probability. Applications like SOAP2,
BWA, and Bowtie are generally similar in their approach,
but differ slightly in the way they construct their index of
the reference genome and optimize the algorithm. There are
ways to speed up tree traversal-based aligners that would
result in a small drop in sensitivity, such as combining
nodes on different levels of the tree or by using a hash table
on the starting segment of the tree transversal. Using a hash
table for the first few levels of the tree, was demonstrated
by Arbabi et al. [16] and resulted in reasonable speed
improvements without greatly compromising sensitivity.

Our choice of algorithmdiffers from prior attempts in that
we attempt to reduce memory bandwidth, whereas prior
approaches seem focused on using commodity hardware,
reducing memory footprints, and providing algorithms for

finding the matches for reads that contained mismatches or
fuzzy data. For aligners based on the FM index, the number
of memory operations in the best case is proportional to the
length of the read. In the worst case, aligners like SOAP and
Bowtie search multiple paths of the tree in order to allow for
mismatches and indels, and this process results in signifi-
cantlymorememory operations and thus amuch slower exe-
cution time. By preprocessing the reference genome into a
hash table, RAMPS makes the alignment of arbitrary reads a
simple hash table lookup requiring only two memory
operations.

Many implementations using alternative hardware are
ports of mainstream algorithms onto new hardware, such
as GPUs, a cluster of PCs, or FPGAs. Aluru and Jammula
presented a good survey of hardware acceleration in
sequence analysis [17]. The authors in [18] ported the slower
RMAP algorithm to GPUs. Even though the RMAP algo-
rithm was a good fit for the GPU architecture and they
improved the performance tenfold, the newer tree
traversal-based algorithms running on commodity process-
ors are significantly faster. Torres et al. took the BWA source
and ported it to a GPU [19] allowing for only exact matches.
SOAP3 [20] uses the same approach, but allows for mis-
matches and higher sensitivity. BFAST [21], is an implemen-
tation of a seeding-based algorithm that runs on a cluster of
PCs and is capable of aligning billions of reads per day.
Convey’s bioinformatics personalities [22] [23] improved
the performance of BWA implementation 15� over a server
and have even implemented designs for performing Smith-
Waterman on the Convey FPGA-based accelerators.
Recently, [24], [25] presented a hardware accelerator based
on Burrows-Wheeler Transform that showed speedup over
the software BWA. Fernandez et al. presented an FPGA-
based accelerator for the Bowtie tool using the Convey HC-
1/HC-2ex systems [26]. The work in [27] presented a short-
read mapping accelerator based on a hash-index mapping,
that allows for mismatches, implemented on the convey
HC-1ex system. The accelerator uses 64 processing elements
utilizing only about 30 percent of the Convey system’s peak
memory bandwidth. These examples attempt to speed up
the chosen algorithm by using the higher memory band-
width of GPUs, clusters of PCs, and custom accelerators.

3 PRELIMINARIES

3.1 Background on DNA Sequencing

Deoxyribonucleic acid (DNA) is double helix composed of
four nitrogen based nucleobases: Adenine, Thymine, Gua-
nine, and Cytosine (abbreviated ATGC). The DNAmolecule
actually contains two copies of the genetic information; an
important attribute that allows it to be easily replicated by
splitting the two chains of the double helix apart. The two
chains run anti-parallel to each other, with one end of a sin-
gle chain labeled 3’ (three prime) and the other labeled 5’
(five prime), depending on the direction of the third and
fifth carbon atom on the sugar molecule. The bases (ATGC)
of each chain pair with one another using hydrogen bonds.
Adenine always pairs with Thymine (AT); Cytosine always
pairs with Guanine (CG). While the relative proportion of
the bases in DNA were known to be approximately equal in
the base pair groups, Watson and Crick were the first to

3030 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 10, OCTOBER 2016

proposed the double helix architecture in which the bases
actually bonded in 1953 [28]. Due to the antiparallel nature
of the chains and base pairing, given one chain of DNA you
can compose the opposite chain by reversing the order and
substituting base pairs. The base pairs are chained together
using a five carbon sugar (ribose or 2-deoxyribose) called a
nucleoside; the nucleoside and nucleobase are together
referred to as a nucleotide. In the human genome, there are
over 3 billion base pairs. They are grouped into 23 chromo-
somes, each containing hundreds of millions of base pairs.
Full genome sequencing is the process of trying to discover
the exact sequence of base pairs for a particular individual.

In general, sequencing DNA today involves breaking the
DNA into small segments, amplifying, splitting the chains
apart, and rebuilding one of the chains one base pair at a
time. Amplification can take a single segment and multiply
it millions of times using a polymerase chain reaction (PCR)
machine, based on a process of repeated heating, cooling,
and duplication accredited to Mullis [29]. The amplification
is necessary so that when fluorescently marked bases are
added to a sample when rebuilding one of the chains a sin-
gle nucleotide at a time, a laser can detect which base pair
was added. Newer models of sequencing machines perform
“paired end” reads; i.e., both chains of the double helix are
sequenced in order to improve quality.

Next generation sequencing devices, such as the ones
from Illumina [1], can produce a massive amount of data:
300 million to 3 billion short paired reads on a typical 1 to
11 day run of the sequencer. Typically, the base pairs in the
genome are sequenced multiple times to ensure that every
portion of the genome is sequenced, since it is hard to know
exactly how the DNA is broken into small segments. The
amount of duplicate data, called coverage, is typically in the
range of 2� (low coverage) to 20� (deep coverage) [30].
Thus, it is normal to have tens of billions of base pairs worth
of information to align.

To align the short sequencing data, a reference genome is
used. The reference is like having a picture of the puzzle
while attempting to put the puzzle together. Aligners take
each short read from the sequencing machine and attempt
to ascertain its position in the reference genome. At best,
this amounts to a simple stringmatching. Atworst, it involves
allowing for mutations in the read data such as mutations
(single nucleotides with a different base), indels (insertions
and deletions of single nucleotides), or gapped alignment
(allowing for large gaps in either the read or the reference).

3.2 File Formats

Sequencing data typically comes in a text (ASCII encoded)
data format known as FASTQ. RAMPS utilizes programs
from the MEMOCODE 2012 reference design to compress
the reference genome into a binary encoded form. A single
ASCII encoded character (such as an ‘A’) typically con-
sumes a single byte of data (8 bits). Since there are only
four bases, each base can be binary encoded into 2 bits;
thus, the sequence data can be compressed by at least a
factor of 4. The data is further compressed by removing
axillary comments and quality data. Since we designed
and implemented our own hardware architecture using
the Convey system, we are better able to take advantage of
this compression, as the hardware can manipulate 2 bits at

a time whereas a normal computer must manipulate data
by the byte (8 bits) or word (32 bits). The quality score is
also ASCII encoded. Sequencing machines map the proba-
bility that a given base is incorrect into a set range of num-
bers, and then store them in the FASTQ file appropriately.
The higher the number of a quality character means the
higher the quality.

There also exists a format called FASTA in addition to
the FASTQ format for sequence data. FASTA is used for
storing pre-aligned reference data, such as the human
genome. The FASTA format similarly uses ASCII encoding
for the reference sequence. In addition to the regular
nucleic acids (ACGT), there are another few extra charac-
ters in the reference we used (human g1k v37 [31]). The
most common, ‘N’, represents unknown base pairs. In the
reference human genome we used, roughly 8 percent of
the genome was unknown.

3.3 Minimal Perfect Hash Algorithms

A hash table is a type of associative array for storing data
based on the hashed value of a key. A hash function is a
series of operations performed on the key that maps that
key to a specific index in the table. Minimal perfect hash-
ing is a way of building a hash table for a fixed set of keys
without collisions (perfect) and without wasted space
(minimal). Collisions occur when two different keys hash
to the same index. More formally, a minimal perfect hash
(MPH) is a hash function h from a set of keys S to a range
of numbers range ½n� ¼ f0; . . . ; n1g, where h is one-to-one
on S. For a small number of keys, finding such a hash
function is possible by randomly searching and checking.
For larger sets of keys, generalized algorithms use an inter-
mediate table of values to adjust the hash function subtly
in order to eliminate collisions and create the minimal per-
fect mapping.

Fig. 1 illustrates an example of a minimal perfect hash on
a set of known keys. Each key is initially hashed once to
retrieve a few bits of information stored in an intermediate
table. The key is then either rehashed with the new seed
from the intermediate table, or the offset from the interme-
diate table is added to the initial index. The MPH is created
by choosing values in the intermediate table so that a given
set of keys will not collide (i.e., two keys will not be directed
to the same index).

For any given key, the probability of it hashing into any
given index should be equal. Hash functions are designed
so that they provide the same index given the same key.
However, many hash functions allow the use of a seed
value. Changing the seed creates an entirely new mapping

Fig. 1. An example of a minimal perfect hash table.

NELSON ETAL.: RAMPS: A RECONFIGURABLE ARCHITECTURE FOR MINIMAL PERFECT SEQUENCING 3031

from the key set to a set of indices. This becomes important
when a collision occurs in the minimal perfect hashing
scheme, as it allows the intermediate table to choose a new
seed that will cause the colliding indices to not collide.

Linear time algorithms for the construction of general
minimal perfect hashes became practical starting in the
1990s, but their construction was complex. Botelho’s disser-
tation provides a history of these algorithms [32]. Schmidt
and Siegel were the first to propose a linear time construc-
tion algorithm, though in practice it was impractical. The
current dominant algorithm is Compress, Hash, Displace
(CHD) [33], though there were other more complex algo-
rithms prior. The majority of recent papers improve the
main algorithm’s storage complexity by using various com-
pression schemes [34], [35], [36].

The basic approach used in the hash and displace algo-
rithm of creating a minimal perfect hash is outlined in the
Algorithm 1 below. Essentially, one chooses values for the
intermediate table starting with those locations that had
the most key collisions. After assigning new seed values to
locations that had collisions, the remaining keys are dis-
placed into open locations in the table.

Algorithm 1. Pseudocode of MPH Creation

1: procedure CREATEMPH(keys; table)
2: Count the number of keys that fall into each slot of the

table
3: Sort keys into buckets in falling order of the count from

previous step
4: for (each bucket in order of size (where size > 1)) do
5: repeat bucket:seedþþ
6: until(All keys in the bucket fall into empty spots in

the hash table)
7: Record the new seed value
8: Mark the location of the keys (using the new seed)
9: end for
10: for (each bucket in order of original location in table

(where bucket size ¼¼ 1)) do
11: Let i be the location of next available index in the

hash table
12: Let j be the location of single key in the hash table
13: Record the new offset value ði� jÞ
14: end for
15: end procedure

4 IMPLEMENTATION

In this section we discuss the various algorithms and hard-
ware designs used to create RAMPS. It is important to
remember that RAMPS is composed of two major compo-
nents: the creation of a minimal perfect hash table and a
simple aligner that uses the hash table to perform look ups.
These two components were implemented as both a soft-
ware solution and a hardware solution.

4.1 Approach

When surveying the plethora of available aligners, it
becomes clear that the memory bandwidth is the main con-
straint on alignment speed. Thus, RAMPS is optimized for
reducing memory bandwidth. We choose hash tables as the

main data structure because it minimize memory operations
overhead, requiring only a few memory operations per read
to find an index in the genome. The Convey HC-2 coproces-
sor was chosen because of its large available memory band-
width of 80 GB/sec.

The main issue with regular hash tables is the size of
the table when scaled to bioinformatics projects. The
table size is proportional to the size of the reference
genome since there would be one entry per unique 100
base pair sequence in the reference. We used a reference
genome from the 1,000 genomes project [31] which con-
tained about 2.8 billion unique 100 base pair segments.
This means that every byte of data per entry increases
the size of the hash table by 2.8 GB.

If we were to store the key (the short read) in the hash
table, we would need about 32 bytes per entry, or a table
size of over 80 GB. In addition, any collisions would necessi-
tate a linked list type of structure for collision handling,
resulting in more increases in the size of the table. There is
no need to store the key (actual read data) in the hash table.
We store the read’s index to the reference genome in the
hash table and use the reference genome itself to make sure
the read belonged in the hash table. Additionally, minimal
perfect hash functions are only for a fixed set of keys. Short
read alignment uses a static reference. Thus, we eliminated
the need for collision detection by using a minimal perfect
hash function for the table. Algorithm 3 discusses the use
of minimal perfect hash tables and their use in performing
short read alignments.

The software was written first along with a testing frame-
work. The MPH creation algorithm closely follows that of
Belazzougui et al. [33], except we do not compress the inter-
mediate values. A suitable hash function was choosen,
Jenkin’s Spooky hash [37], that would map easily into hard-
ware. A pictoral explanation of generalized minimal perfect
hash construction can be found at Hanov’s website [38]. The
general process for creating the hardware was a multi-step
process: pick good algorithms, draw the designs, create a
software model for the Convey software simulator, create
the components using Xilinx’s Core Generator or Verilog,
test the user made components for correctness and timing
with a test bench, combine the components together and
test using Convey’s hardware simulator, synthesize and test
the bit files. The design drawings of the hardware are pre-
sented later in this section.

4.2 Overview of Convey Architecture

RAMPS’s hardware pipeline was built for use with the Con-
vey hybrid-core computing platform containing a minimum
of 32GB of coprocessor memory. The Convey HC-1 and HC-
2 are hybrid computers, containing a regular motherboard
and a coprocessor board that contains a set of 14 FPGAs.
Eight FPGAs are wired as memory controllers (MCs), two
are used as an Application Engine Hub (AEH), and the
remaining four are programmable and called Application
Engines (AEs). The host (�86) processor can send the AEH
custom instructions, which will then load a custom bitfile
(branded as a “personality”) onto the AEs and execute the
custom instruction. The coprocessor contains its own mem-
ory, though the host processor and coprocessor can share
all memory in a cache coherent manner. The entire Convey

3032 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 10, OCTOBER 2016

HC-2 platform consumes approximately 600 watts with the
coprocessor executing code [39].

The distinct competitive advantage that the Convey sys-
tem provides is its 80 GB/s of memory bandwidth. Fig. 2
shows the 16 memory DIMMs available on the coprocessor
board that allow it to access large amounts of memory
quickly. In addition, the Convey system has scatter-gather
DIMMs, allowing random access to memory locations with
speed on par with sequential access to memory. In addition
to raw hardware speed, Convey provides a rich set of hard-
ware interfaces for accessing memory in its personality
development kit (PDK). The PDK is built to allow develop-
ers to get their programs up and running quickly, without
having to spend time reinventing the memory subsystems.
Each AE is given access to 16 memory controller ports,
which are multiplexed to the eight MCs. The AEs operate at
a clock frequency of 150 MHz, allowing each memory con-
troller port to make 150 million memory requests per sec-
ond. Using these memory controllers, along with Convey’s
provided read order queue and crossbar switch, greatly
simplified the hardware design by allowing each MC port
to access any address and by creating an ordered data flow.

The development of a program on Convey starts with the
software. First, a software emulator is written. This software
emulator allows the developer to test the interface between
host machine and the coprocessor’s AEH. This step typi-
cally involves thinking about what memory should be
moved or allocated on the coprocessor, what parameters to
pass to the application engines, and how this data is trans-
ferred to and from the coprocessor through the AEH. It also
allows the developer to create a model that can be used in
the future to test hardware designs. The next step is to
design the hardware and create a custom personality. This
step involves diagraming hardware layouts, writing and
testing individual modules, testing and fixing the larger top
level module, and creating a bitfile by synthesizing the writ-
ten HDL (hardware description language).

4.3 Minimal Perfect Hash Creation

RAMPS’s minimal perfect hash is created using a fairly sim-
ple algorithm discussed in Algorithm 1. Before running the
algorithm, the first step is to find the set of unique entries
that need to be stored in the hash table. This can be done by

hashing each 100 base pair word in the reference genome in
a number of rounds, throwing away duplicates and storing
collisions for processing in the next round. After we have
thrown away all the duplicates and processed the left over
collisions, we are left with a set of unique keys. With a set of
known keys, we can construct a minimal perfect hash using
a generalized method called hash and displace [33].

After collecting a set of unique keys, all the keys are
sorted using a two pass counting sort. During the first pass,
a count of the size of each bucket of the hash table is taken;
if a key collides with another key (they both hash to the
same value), the bucket’s size is incremented. Thus, after
the first pass, the number of collisions for each entry in the
hash table is known. During the second pass, keys are
placed into a buckets array sorted by the size of the bucket.
Since the hash function has an equal probability of choosing
any given bucket, the size of a bucket is typically orders of
magnitude smaller than the length of the hash table. For
example, the largest bucket size we encountered was 13
when the algorithm was used with the 2.8 billion entries in
the human genome. It is because of the small number of
unique sizes that we are able to sort the keys in linear time
with a two pass counting sort.

With the buckets now sorted, the algorithm begins to
reseed buckets with a size of two or greater. Reseeding
ensures that the hash function will be “perfect” and no lon-
ger contain collisions. Starting with the largest buckets, the
keys in a bucket are reseeded such that they no longer col-
lide and will occupy empty spots in the hash table. The
reseed value is stored in an intermediate table and a bit field
or bit array is updated to indicated that the locations in the
hash table are now occupied. This process continues with
the next largest bucket until all buckets containing two or
more keys have been assigned a new seed.

Finally, once all buckets containing two or more keys
have been reseeded, buckets containing a signle key are
placed into open spaces in the hash table. The offset from
their original location is recorded in the intermediate table.
This can be done without looking at the keys, using exclu-
sively the information gained from the counting sort (the
entries in the hash table with a single entry are marked) and
the information gained from reseeding (the bit array con-
taining a record of the empty and occupied slots in the hash

Fig. 2. The Convey HC-2 co-processor consists of four programmable Vertex 5 PFGAs, branded as Application Engines. The FPGAs are connected
through a crossbar interface to a eight of memory controllers with a peak bandwidth of 80 GB/s.

NELSON ETAL.: RAMPS: A RECONFIGURABLE ARCHITECTURE FOR MINIMAL PERFECT SEQUENCING 3033

table). The intermediate table provides a minimal perfect
hash for the given key set, and can now be used to add val-
ues to the table to complete the key-value association.

Since the algorithm for MPH creation naturally falls into
five stages, the hardware for creating a minimal perfect
hash table is broken into five major pipelines. Four of the
major pipelines require proper memory ordering, atomic
increment operations, or atomic test and set operations.
These memory requirements can be solved by using a small
cache, indicated by a lock on the memory controller in
Figs. 7, 8, 9, and 10. Using our current design, it would be
impractical to run these four major pipelines on all four
application engines available on the Convey coprocessor
board due to the complexity of maintaining cache coherence
across all four chips. However, Botelho’s dissertation [32]
outlines ways of dividing the problem appropriately for a
distributive version of the algorithm that scales nearly line-
arly with the number of nodes added.

The fifth major pipeline does not require special memory
requirements, and thus it can be run on all application
engines. All five pipelines for MPH construction occupy
two personalities: the first personality contains Pipelines 1-4
and the second personality contains Pipeline 5. It should be
noted that in Figs. 7, 8, 9, 10, 11, 12, and 13, the data flows
from the left to the right of the diagram over the course of
time and stages are marked on memory boundaries. Fig. 3
however, shows the data flow between application engines.

In RAMPS, the intermediate table and hash table are
interleaved. With smaller table sizes (less than 20 million
entries), it makes sense to have a separate intermediate table
with compressed values so that the intermediate table can
fit into the cache on a processor. In our case, a human sized
genome requires a table size of nearly 3 billion entries, the
extra complexity of compressing the intermediate table was
skipped and it was instead placed along with the values of
the hash table. In fact, this interleaving may improve perfor-
mance marginally; offsets in the intermediate table are small
and the result may be within a few entries in the table, thus
if cache lines on the chip are larger than 8 bytes it may result
in a cache hit or the memory controller can combine opera-
tions since the data may reside in the same row of a RAM
module. The layout of a single entry can be seen in Fig. 4.

The software package of RAMPS, unlike the current ver-
sion of the hardware, is configurable using a command line
argument to allow creating hash tables of any number of
base pairs that is a multiple of 4. The multiple of 4 was

chosen because the bit packed representation stuffs four
base pairs per byte, thus keeping the data byte aligned. The
default number of base pairs used for creating the hash
table is 100. We use a command line argument to specify a
different size in bytes. Additionally, a command line argu-
ment specifies if the reference genome contains paired or
unpaired chains of the DNA and controls whether the hash
function produces a normal hash or a paired hash. A paired
hash means that both chains of the DNA at a given index
will hash to the same value; e.g. hash(“AAAG”) == hash
(“CTTT”). The software simply calculates a read’s pair
(reverse the sequence and swap base pairs) and hashes
whichever input is greater. Paired hashing effectively dou-
bles the number of reads you can align to a reference
genome that only contains one of the DNA chains, and is
enabled by default.

4.3.1 Hardware Hash Function

Most of the computation of the algorithm occurs in the hash
function. Jenkin’s Spooky Hash [37] was chosen because it
is both fast in software and easy to implement in hardware
due to its reliance on only shifts, adds, and XOR operations.
RAMPS uses a slimmed down version Jenkins’ Spooky
Hash that has been stripped to work with only keys of size
25 bytes (100 base pairs), though adjustments could easily
be made to handle keys of any given bytes size below a con-
stant maximum. By stripping unnecessary branches and
instructions, each hash requires 23 rotations, 23 XORs, 27
additions, and 1 mod operation. By grouping operations
together, a 34 stage pipelined hash function was created in
hardware.

The pipeline stages listed in Fig. 5 are registered, increas-
ing the maximum allowed clock frequency for the unit.

Fig. 3. RAMPS contains two personalities for creating the minimal perfect hash table. The first personality features four different bitfiles (total of six
hardware pipelines). The data is processed by each hardware pipeline sequentially, starting with the first. Each major pipeline must process the data
completely before moving on to the next phase. Here, AE0 loops until all unique reads in the genome have been found. Next, AE1 performs a two
pass counting sort. AE2 then reseeds large buckets, and AE3 finally displaces the singular buckets. The second personality contains Pipeline 5 on all
of its four AEs.

Fig. 4. An entry in the Minimal Perfect Hash table. The table is an array
with one 8 byte entry per unique read in the reference genome. The
intermediate table is stored in 21 bits and is used to find a unique index
into the table for each key. The first 43 bits contain the value associated
with the key; i.e. the index of occurrence in the reference genome and a
count of how many times it occurs.

3034 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 10, OCTOBER 2016

Further registers could be added within the mix blocks for
additional speed improvements. The key is fixed at 25 bytes,
or 100 base pairs. The hashing algorithm hashes the key 16
bytes at a time, and has specific ending mix blocks for the
last 9 bytes.

Like the software version of the program, the hardware
hash function supports paired hashing; i.e. hash(“AAAG”)
is equal to hash(“CTTT”). The hardware performs the nec-
essary wire assignments and bitwise NOT operation as the
first stage of the pipeline, and computes the hash of the
larger of a read or the read’s antiparallel pair. This can be
disabled using the command line ‘-d’ flag.

4.3.2 Pipeline 1a/b - Find Unique Entries

The first step is to find all the unique entries that need to be
stored in the hash table. This can be done by hashing each
100 base pair word in the reference genome in a number of
rounds, throwing away duplicates and storing collisions
for processing in the next round. Algorithm 2 shows the
process of removing duplicates.

Algorithm 2. Pseudocode of Pipeline 1a/b

1: procedure PIPELINE1A(list; genome; hashtable; collisions)
2: for (i ¼ 0; i < lengthðgenomeÞ � 99; iþþ) do
3: list½i� i;
4: end for
5: while list not empty do
6: eraseðhashtableÞ;
7: Pipeline1aðlist; genome; hashtable; collisionsÞ;
8: Pipeline1bðhashtable; uniqueÞ;
9: swapðlist; collisionsÞ;
10: end while
11: end procedure

During the first round, all valid indices in the genome are
added to a list for processing. During the processing step
(pipeline 1a), any portion of the genome that creates a colli-
sion in the hash table is set aside in a collisions list for

processing in the next round. Due to the random nature of
the hash function, roughly one-third of the indices collide
and need to be processed in the next round, leading to a
total runtime that is proportional to 1.5 times the length of
the genome (sum of geometric series).

Fig. 7 illustrates this process in more detail. At the begin-
ning of each round, the hash table is erased to remove left-
over intermediate data from the previous round. First, an
index into the genome is loaded from the list. Next, that
index is used to load a 100 base pair read from the genome.
While during the first round the indices are in order, the
random nature of collisions will cause subsequent rounds
to be unordered. In stage 3, the read is sent through the
hashing pipeline in order to locate the correct index from
the hash table. After finding the hash table entry, control
flow breaks in one of two directions. Either the entry is
empty and can be updated quickly, or there is a possible col-
lision or duplication which must be checked by loading the
original index stored in the hash table. Duplication happens
when the genome contains multiple copies of the same 100
base pair sequence. Collisions occur when the hash of two
different 100 base pair sequences are equal.

An important property of Pipeline 1a, 2a/b, and 3 is the
ability to perform atomic read-write operations. This is indi-
cated in the figures using a lock on the specified memory
controller ports. The atomic operations are implemented
by using an ordinary cache with the addition of a lock bit.
Any read operations to a locked address are placed into a
reply buffer and can receive the unlock signal from an
incoming write operation with the same address.

After a list has been processed, Pipeline 1b (Fig. 8)
quickly scans the hash table to collect non-empty entries
into a tight array. Since the order of the unique reads, or
keys, is unimportant, this step can utilize multiple process-
ing units to achieve a significant speedup. This step is neces-
sary; pipelines 2a, 2b, and 5 will each iterate over the list of
keys. Removing the empty spaces now reduces the total
memory requirement and eliminates memory operations in
the future. After copying all the unique keys to a results
array, the round ends. If there were any collisions, a new
round begins by processing the list of indices added to the
collisions list.

4.3.3 Pipeline 2a/b - Counting Sort

With a set of unique keys, construction of the minimal per-
fect hash can begin. As described in Algorithm 1, the first
step is to use a counting sort to store the keys into buckets

Fig. 5. The hardware hash pipeline is composed of several blocks which
are further described in Fig. 6. The diagram here shows the mixing of
the first 16 bytes followed by the last 9 bytes. The seemingly random
constant values help the hash function create a waterfall, where a single
bit change in the key being hashed causes all the bits to change with
equal probability.

Fig. 6. The hash function pipeline in Fig. 5 is composed of several sub-
components shown here. To the left (a) are the mix blocks used for hash-
ing the first 16 bytes of data. On the right (b) is an ending mix block used
to hash the last 9 bytes of the key.

NELSON ETAL.: RAMPS: A RECONFIGURABLE ARCHITECTURE FOR MINIMAL PERFECT SEQUENCING 3035

sorted by the size of the bucket. This is accomplished in two
passes, but the hardware pipeline is mostly the same for
each. The exception is that the 2nd pass stores the unique
index into the buckets array, while the first only calculates
the size of each bucket.

Before beginning, the hash table is erased. During the
first pass, each index is hashed and the corresponding entry
in the hash table is incremented by one (indicating the num-
ber of indices that hash to a given bucket). In addition, regis-
ters on the FPGA hardware are used to keep a running total
of the number of buckets of each size. This is accomplished
by simply incrementing and decrementing running total
counts as each key is hashed. Since the maximum expected
bucket size is small [33], we can dedicate a small number of
registers for this purpose (RAMPS uses 30). By keeping
track of the number of buckets of each size, it allows the
algorithm to use a counting sort that runs in time O(n) with
respect to the number of keys, n.

After calculating bucket size, the second pass sorts the
keys. The initial stages of the pipeline are reused in order to
load a unique read, or key, hash it, and load the correspond-
ing value from the hash table. During the last stage of the
pipeline, two possibilities exist every time a table entry is
loaded: either this is the first key encountered for a given
bucket, or it is not the first key. If it is the first key encoun-
tered for a given bucket, an appropriate index is calculated
from the running totals calculated in the first pass. This
index is then stored in the hash table, and a tally is incre-
mented for the bucket. If there is a tally that is not 0, or an
index stored in the hash table, then we know the key is not
the first key encountered for the bucket. In this case, the
tally is added to the bucket index stored in the hash table to
calculate the appropriate index for storing the unique read,
or key, in the sorted bucket’s list. Fig. 9 shows this pipeline.

4.3.4 Pipeline 3 - Reseed Large Buckets

Starting with the largest buckets, the keys within each
bucket are reseeded such that they no longer collide to the
same spot in the hash table. The reseed value is stored in
an intermediate section of the hash table. The hardware

pipeline was designed to handle buckets containing 2 to 5
keys. There are too few buckets with a size greater than 5
to necessitate designing another hardware pipeline. On a
human genome scale, RAMPS software can reseed the
buckets with a size greater than 5 in less than 1 second.
Buckets containing a single key are displaced in the next
hardware pipeline.

Fig. 10 illustrates the hardware pipeline for reseeding
buckets. To reseed a single bucket, all the keys and seg-
ments of the genome are first loaded. The reads are
rehashed with a new seed for the hash function, which
results in the previously colliding keys having different
indices. A bit array is checked to ensure that space is avail-
able in the hash table and to reserve the new slots for the

Fig. 7. Pipeline 1a is broken into five minor stages separated by memory operations, shown here flowing from left to right. The pipeline is responsible
for processing a list of indices in the genome, removing duplicates and storing collisions for later processing.

Fig. 8. Pipeline 1b runs through the hash table and collects all unique
entries into a list of unique entries. Each of the eight subcomponents is
responsible for loading 1/8th of the hashtable.

3036 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 10, OCTOBER 2016

keys that were just reseeded. If any of the keys collide
when rehashed or if they fall into a taken spot in the hash
table, the bucket is reseeded again. To reseed, the seed
value to the hash function is simply incremented because a
single bit change in the key or seed results in a waterfall
change in the hash.

4.3.5 Pipeline 4 - Displace Singular Buckets

Once all large buckets containing two or more keys have
been reseeded, the singular buckets containing just one key
are placed into open spaces in the hash table. The open
spaces in the hash table are those left empty after reassigning

all keys that fell into large buckets. The offset from their
original location is recorded in the intermediate section of
the table.

This process, shown in Fig. 11, must be done in order so
that the keys receive small offset values. This is done by run-
ning through the hash table and bit array in order. The first
entry in the hash table that has only a single key is matched
with the first empty index in the bit array. The next single
entry is matched with the next empty spot in the hash table,
and so on, until the last single entry is matched with the last
empty spot in the hash table. After this step is complete, the
minimal perfect hash has been created. The only step left is
to use theMPH to add the values to the hash table.

Fig. 9. Pipeline 2a/b: For the first pass, FIFO B and the MC port writing to the buckets array are disconnected. The first step is to load a unique refer-
ence genome index, which is used to load a 25 byte read from the genome in stage 2. In stage 3, the read is hashed to retrieve an index into the hash
table. After the entry from the hash table is loaded, stage 4 does one of two things. If it is the 1st pass, it increments the count and saves the entry. If
it is the 2nd pass, the control calculates the correct index into the buckets array to store the index. The hash table is updated with the location of the
bucket in the buckets array and the number of indices for that bucket already stored.

Fig. 10. Pipeline 3 runs multiple times, once for each size of bucket
between 5 and 2. The bucket size controls the multiplexor that stores a
read into one of the five FIFOs in bank C. Stage 4 performs a test and
set operation on the bit array to ensure that each index is assigned a
unique slot in the hash table.

Fig. 11. Pipeline 4 reads multiple entries from the hash table at a time in
stage 1, as not all entries are singular buckets. It also streams the bit
array. An indexer calculates the next available index open in the hash
table by looking for the next available bit in the bit array. The smallest
index from the hash table in the bank of FIFOs D and E is then displaced
and the intermediate value is written to memory.

NELSON ETAL.: RAMPS: A RECONFIGURABLE ARCHITECTURE FOR MINIMAL PERFECT SEQUENCING 3037

4.3.6 Pipeline 5 - Add Values to Table

Finally, the pipeline shown in Fig. 12 adds the unique indi-
ces and other data to the hash table. Unlike previous pipe-
lines for minimal perfect hash table creation, this pipeline
can be run on all four application engines. RAMPS parti-
tions the list of unique keys in the following manner: AE0
adds keys 0; 4; 8 . . . , AE1 adds keys 1; 5; 9 . . ., and so on. The
process of storing data in the table is similar to the process
discribed in Fig. 1 and shares similarity with the hardware
aligner.

4.4 Alignment via Hash Table Lookup

The alignment algorithm is simply to retrieve the correct
alignment from the hash table. All possible exact match
alignments have been preprocessed from the genome into
the hash table. To retrieve an index of occurrence, the pro-
gram simply attempts to lookup the read in the hash table,
validating the index of occurrence is corrected by comparing
the read to the genome at the retrieved index. Algorithm 3
formally describes this process. The five stages of the hard-
ware pipeline for alignment are shown in Fig. 13. This pipe-
line is duplicated across all four application engines. The set
of reads is split into four pieces, and each AE contains an
identical pipeline to process its subset of the reads.

Fig. 13 shows the flow of data through the aligner’s hard-
ware pipeline. In stage 1 of the pipeline, a bank of four
counters and the base address of the read data is used to cal-
culate the address for a given read. These addresses are
used to load short reads from four memory controller ports.
After a memory latency of about 100 cycles, stage 2 hashes
the short reads to obtain an index for retrieving a value
from the intermediate table. In stage 3, the value from the
intermediate table allows RAMPS to compute an index that
is guaranteed to not collide with other entries in the table.
The value is either a new seed value for the hash function,
or an offset. The unique index is calculated and used to load
the value from the hash table. In stage 4, the index in
the genome loaded from the hash table is used to load the
corresponding 100 base pairs from the reference genome.
In stage 5, the reference genome is compared to the read. If
they match, the index of occurrence in the genome and

number of occurrences are recorded in an output table
in memory.

Algorithm 3. Pseudocode of Hash Table Lookup

1: procedure ALIGN(reads; genome; hashtable; results)
2: for (i ¼ 0; i < lengthðreadsÞ; iþþ) do
3: r reads½i�; " Stage 1
4: h hashðr; seed ¼ 0Þ; " Stage 2
5: ivalue intermediateTable½h�;
6: if (ivalue is an offset) then " Stage 3
7: index hashðr; seed ¼ 0Þ þ ivalue;
8: else
9: index hashðr; seed ¼ ivalueÞ;
10: end if
11: entry hashtable½index�;
12: check genome½entry:index�; " Stage 4
13: if (r ¼¼ check) then " Stage 5
14: results½i� entry;
15: else
16: results½i� NULL;
17: end if
18: end for
19: end procedure

When the pipeline is full, each stage loads or stores data to
its memory controller ports on every clock cycle. Much of the
combinatorial logic, such as address calculations can occur
at the same frequency. The exception is the hardware hash
functions, each of which is a 34 stage pipeline. By allowing
each portion of the pipeline to perform some part of the
alignment on every clock cycle, we efficiently utilize resour-
ces and are able to achieve a theoretical throughput of 150
million reads per second per application engine (i.e., total of
600 million reads per second). In practical tests, the align-
ment speedwas approximately 350million reads per second.

In addition to the hardware aligner, which can only per-
form exact matches in its current implementation, the soft-
ware aligner can be configured to split long reads into
smaller parts, each part returning its own index of occur-
rence. If any indices match, a comparison is done between
the entire read and the genome at the matching index

Fig. 12. Pipeline 5 streams in the entire set of keys (unique indices), loads the genome to retrieve the read, hashes to retrieve the intermediate value,
rehashes, and finally stores the data from stage 2 into the table.

3038 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 10, OCTOBER 2016

allowing for mismatches. This allows the ability of finding
matching locations in the reference genome that could be
possible locations of the read data. The software aligner
takes the following arguments: read length (default = 25),
key length (default = read length), and offset (default = key
length).

The read length is the length of the read data in bytes. The

aligner assumes that the read data is 8-byte aligned. For

example, if using the default 25 byte read size, each read will
occupy 32 bytes (the last 7 bytes are left empty) in order to

align to an 8 byte boundary. The key length is the size of the

key in bytes used for creating the hash table. The offset is

used by the software aligner to perform more or less hashes

in order to improve sensitivity. The RAMPS software aligner

tool can run in one of three settings: exactmatches, amedium

sensitivity setting, and a higher sensitivity setting.
For example, using the medium sensitivity setting with

the human genome (human g1k v37), the read length is the
default of 25 bytes, while the hash table was created using 8
byte words from the reference genome (32 base pair). The
technique used was to take three 32 bp chunks out of the
100 bp read, take the index that was in the majority out of
the three chunks, and do a comparison between the genome
at that index allowing for up to 5 mismatches. Though num-
bers will vary based upon the quality of read data used, this
procedure was able to increase the number of reads aligned
by about 20 percent up to 75 percent, whereas the number
of reads containing exact alignments was 52 percent.

5 RESULTS

5.1 Preprocessing Runtime

Most short read aligners perform preprocessing of the refer-
ence genome into a more suitable data structure that sup-
ports faster queries. Traditionally, it is faster to download
the preprocessed data structure that someone else has cre-
ated than to build your own. Using the index build times
listed on various project websites and in papers, we com-
pare the preprocessing time required before doing align-
ment to a certain reference genome.

Table 1 compares the preprocessing runtime and space
requirement of RAMPS against the popular short read
aligners Bowtie [13] and BWA [40]. RAMPS’s preprocessing
time in hardware is orders of magnitudes faster than other
approaches. While other hardware hash functions exist and
hash tables with billions of entries have been created,
RAMPS is comparatively much faster in hardware. RAMP’s
preprocessing step requires 20 GB memory space for storing
the resulting hash table, 20 GB for determining the unique
keys, 10 GB for storing a list of indices, and 10 GB for storing
a list of collisions. Table 2 compares the preprocessing run-
time of RAMPS against other popular implementations of
the minimal perfect hash algorithm.

It is important to note that the reported preprocessing run-
time doesn’t include the time to copy data to co-processor
memory and the time to reconfigure between creation per-
sonalities. Since this overhead is not dependent upon the

Fig. 13. RAMPS’s hardware hash table lookup pipeline is broken into five stages, shown here flowing left to right.

TABLE 1
Preprocessing Runtime Comparison of

Popular Short Read Aligners

Algorithm Platform Preprocessing Memory (GB)

Bowtie [13] CPU 4-5 hours 16
BWA [40] CPU 3 hours 2.5
RAMPS CPU 2-3 hours 60
RAMPS Convey 90 seconds 60

TABLE 2
Runtime Comparison of Popular Minimal

Perfect Hash Algorithms

Tool Platform Keys/second

CHD [33] CPU 770,000
BPZ [33] CPU 910,000
RAMPS CPU 260,000
Botelho [32] 14 CPU Cluster 4,000,000
RAMPS Convey 30,000,000

NELSON ETAL.: RAMPS: A RECONFIGURABLE ARCHITECTURE FOR MINIMAL PERFECT SEQUENCING 3039

number of reads processed, this time gets lost asymptotically.
Also, It should be noted that the preprocessing runtime is not
an entirely fair comparison. In the sense that RAMPS per-
forms the extra steps of removing duplicates from the
genome, indirectly referencing the keys in the genome via
index, and processed 2.8 billion keys. Both CHD and BPZ
were being tested on a set of 20millionURLs.

5.2 Alignment Runtime

Our short read aligner’s runtime is 895 milliseconds for
processing 284,881,619 short read sequences from the
NA06985 individual [41] and using human reference
genome g1k v37 [31]. The timer starts before the reads begin
streaming to the hardware pipeline, and ends after the last
read’s index and count are written to the result array.
Table 3 compares the alignment runtime of RAMPS against
other short read aligners using the alignment speeds from
[42], [43], and other previous work.

RAMPS’s runtime omits the one time costs associated
with loading and preprocessing both the 22.5 GB hash table
and the 780 MB reference genome. In addition, the stated
runtime does not include the time it takes to load the reads
from disk into memory. Convey’s internal benchmarking
puts the bandwidth from host memory to coprocessor mem-
ory at 2.4 GB/second. Since the aligner’s pipeline can han-
dle approximately 10 GB/second of read data, the host to
coprocesser memory bandwidth is currently RAMPS’s bot-
tleneck. With an estimated world sequencing output of 15
quadrillion base pairs per year [4] (40 GB/s in compressed
form), a single RAMPS machine would be able to process
all the data in roughly seven days.

The work in [27] is the closest to our implementation. The
authors developed a two-level hash-index based algorithm

on the Convey HC-1ex system. As shown in Table 3,
RAMPS performs thousands times faster using 1 PE per
FPGA than their proposed implementation, which uses 16
PEs per FPGA. While RAMPS utilizes multiple MCs per PE,
the authors in [27] employ only one MC per PE where every
PE aligns a different read which leads to higher probability
of racing conditions and consequently a poor utilization
memory bandwidth.

5.3 Hardware Usage

Another consideration was RAMPS’s use of available hard-
ware resources on the Xilinx Virtex 5 LX330 [44]. Each of the
four FPGAs on the Convey system has 288 36Kbit of Block
RAM, 207,360 Slice LUTs, and 207,360 Slice Registers. The
data in Table 4 was collected from the map and place &
route reports created after building the various bit files. It
should be noted that a significant portion of the FPGA
resources are used by Convey’s optional memory compo-
nents, such as the read order queue, crossbar switch, and
write complete interface.

To estimate the amount of resources used by Convey’s
hardware interfaces to the memory controllers and applica-
tion engine hub, a superfluous control personality, named
Simpleton, was created. The Simpleton personality includes
Conveys read order queue, crossbar switch, and write com-
plete interfaces. It increments (reads and writes) a single
address frommemory on all thememory controller ports and
nothing else. Table 4 shows the hardware usage of each pipe-
line. All designs utilize the crossbar switch and read order
queue, but those pipelines that utilize the write complete
interface are labeled. Additionally, the number of ports used
for read operations and write operations are given; if one of
the operations is tied to zero, some of the logic used for con-
trolling read ordering is optimized out of the design. All
memory controller write ports are utilized in the MPH crea-
tion pipelines 1-4 because these pipelines implement an eras-
ing function in addition to theirmore complex pipelines.

RAMPS’s alignment runtime, like many of the other
short read aligners, is memory bound. The current design
uses 12 out of the 16 available memory controller ports.
Putting multiple pipelines on a single AE in order to use all
available memory bandwidth would increase complexity
and lead to only a marginal improvement of performance.

5.4 Alignment Percentage (Sensitivity)

RAMPS’s hardware package is currently designed for a con-
stant read length, though there are simple tweaks that could
be used to support creating a hash table for read lengths less
than 100 base pairs. RAMPS’s software package includes

TABLE 3
Performance Comparison of Popular Short Read Aligners

Tool Platform Speed (reads/s) Memory (GB)

MAQ [9] CPU 50 1.2
SOAP CPU 70 14.7
SOAP2 [11] CPU 2,000 5.4
Bowtie [13] CPU 2,500 2.3
BWA [40] CPU 10,000 3.5
PerM [27] Convey HC-1ex 109,606 14.0
SOAP3 [43] GPU 200,000 3.2
BFAST [21] CPU Cluster 700,000 24.0
BWA-Convey Convey 350,000 -
BWT-GPU [19] GPU 400,000 10.0
RAMPS CPU 800,000 23.3
RAMPS Convey HC-2 315,000,000 23.3

TABLE 4
Hardware Resource Usage Per Application Engine

Personality Block RAM LUTs Flip-Flops MCs (Rd-Wr) Write Complete

Simpleton 20% 32% 39% 16-16 Yes
Aligner 30% 43% 45% 11-1 No
MPH Create 1a/b 32% 68% 72% 12-16 Yes
MPH Create 2a/b 28% 54% 60% 7-16 Yes
MPH Create 3 44% 81% 85% 8-16 Yes
MPH Create 4 23% 29% 35% 3-16 No
MPH Create 5 28% 43% 45% 8-1 No

3040 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 10, OCTOBER 2016

options to create hash tables based on any length of read that
is a multiple of 4 (so as to align to the byte boundary). When
performing alignments, long reads can be split into smaller
parts, each part returning its own index of occurrence. If any
indices match, a comparison is done between the entire read
and the genome allowing formismatches.

In Table 5, the read length is 25 bytes (100 base pairs).
The hash table was composed of all 32 base pair words in
the human genome, and alignment would divide each read
into three parts: bytes 0-7, 8-15, 16-23. By reanalyzing the
reads that didn’t have exact matches, we can improve the
alignment percentage beyond exact matches:

The hardware (FPGA) implementation performs only
exact matches, while the software aligner allows up to five
mismatches, though it is not guaranteed to find the best
location or report all locations. By fundamentally changing
the preprocessing time, we can encourage the use of refer-
ence genomes that more closely match the read data; e.g. by
using a parent or relative’s DNA. Combined with an
increase in read quality, RAMPS can align more of the data.

6 CONCLUSION

RAMPS offers the bioinformatics community a new tool for
fast exact match short read alignment with minimal prepro-
cessing time. RAMPS is both the first known implemen-
tation of a generalized minimal perfect hash creation
algorithm using FPGAs and an award winning, first place,
exact match short read aligner [30].

Currently, the number of mismatches between the refer-
ence genome and read sequences occur from both imperfect
read quality and genetic differences between individuals.
The DNA of two individuals differs by roughly 0.1 percent,
or about one base pair out of a thousand [30]. With minimal
preprocessing, we fundamentally change the computational
problem. Instead of using a generic human reference
genome, people may now be able to use the DNA sequence
of a blood family member as a reference in order to increase
the percentage of exact matches. Higher quality sequencing
machines already produce data sets that contain more than
60 percent exact matches. Thus, as quality improves and
with the ability to use references that contain nearly identi-
cal DNA, exact match read aligners like RAMPS will be able
to handle a larger share of the data.

6.1 Future Work

The alignment part of the problem disappears from the run-
time when using approaches like RAMPS. Future work will
be needed to pull reads from disk or the network at speeds

near 10 GB/s in order to keep such a hardware pipeline
busy. While RAMPS offers the potential of increasing the
speed of exact matches by orders of magnitude, work still
needs to be done for inexact matching allowing mismatches
and indels. One could also perform a comparative power
study between the various aligners, though the results
would likely be moot. FPGAs are known to be power effi-
cient; their custom hardware means more energy is spent
solving the problem and less energy is wasted. The RAMPS
architecture spends such a small fraction of time performing
alignments and runs at a clock frequency of 150 MHz, and
would likely consume a fraction of the energy compared
with other aligners.

Additionally, there are other application domains in
which the RAMPS architecture could prove useful with
minimal modification. In 2011, Google developed their own
hash function, CityHash [45], to improve the speed of their
hash table lookups at their data centers. A package similar
to RAMPS, but allowing for variable length keys, would
have been orders of magnitude faster. Minimal perfect
hashing is an ideal answer for transforming URLs, which
are normally static, into integers in a fixed range. Instead
of using B-trees for databases numbering in the billions,
minimal perfect hashing could provide solutions for new
frontiers of database applications.

ACKNOWLEDGMENTS

This work has been partially supported by the National Sci-
ence Foundation (NSF) under awards CNS-1116810 and
CCF-1149539.

REFERENCES

[1] (2012, Oct.). Illumina inc. sequencing portfolio [Online]. Avail-
able: http://www.illumina.com/systems/sequencing.html

[2] A. Pollack. (2011). “DNA sequencing caught in deluge of data,”
The New York Times [Online]. Available: http://www.nytimes.
com/2011/12/01/business/dna-sequencing-caught-in-del uge-
of-data.html

[3] (2012, Nov.). BGI. Beijing genomics institute [Online]. Available:
http://www.genomics.cn/en/index

[4] M. C. Schatz and B. Langmead, “The DNA data deluge,” IEEE
Spectr., vol. 50, no. 7, pp. 28–33, Jul. 2013.

[5] (2012, Nov.). A. Burke. DNA sequencing is now improving faster
than Moore’s law [Online]. Available: http://www.forbes.com/
sites/techonomy/2012/01/12/dna-sequencing-is-now-improv-
ing-faster-than-moores-law/

[6] G. E. Moore, “Cramming more components onto integrated
circuits,” Electronics, vol. 38, no. 8, 1965, pp. 114–117.

[7] C. Nelson, K. Townsend, B. S. Rao, P. Jones, and J. Zambreno,
“Shepard: A fast exact match short read aligner,” in Proc. Int.
Conf. Formal Methods Models Codes., Jul. 2012, pp. 91–94.

[8] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman,
“Basic local alignment search tool,” J. Molecular Biol., vol. 215,
no. 3, pp. 403–410, 1990.

[9] H. Li, J. Ruan, and R. Durbin, “Mapping short DNA sequencing
reads and calling variants using mapping quality scores.” Genome
Res., vol. 18, no. 11, pp. 1851–1858, 2008.

[10] T. F. Smith and M. S. Waterman, “Identification of common
molecular subsequences,” J. Molecular Biol., vol. 147, no. 1,
pp. 195–197, 1981.

[11] R. Li, C. Yu, Y. Li, T.-W. Lam, S.-M. Yiu, K. Kristiansen, and
J. Wang, “SOAP2: An improved ultrafast tool for short read
alignment.” Bioinformatics, vol. 25, no. 15, pp. 1966–1967, 2009.

[12] H. Li and R. Durbin, “Fast and accurate short read alignment with
burrows-wheeler transform.” Bioinformatics, vol. 25, no. 14,
pp. 1754–60, 2009.

TABLE 5
Alignment Comparison of Popular Short Read Aligners

Tool Platform Max Alignment %

MAQ [9] CPU 93.2
SOAP CPU 93.8
SOAP2 [11] CPU 93.6
Bowtie [13] CPU 91.7
SOAP3 [43] GPU 96.8
RAMPS CPU 75.4
RAMPS FPGA 52.4

NELSON ETAL.: RAMPS: A RECONFIGURABLE ARCHITECTURE FOR MINIMAL PERFECT SEQUENCING 3041

[13] B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg, “Ultrafast
and memory-efficient alignment of short DNA sequences to the
human genome,” Genome Biol., vol. 10, no. 3, pp. R25:1–R25:10.
2009.

[14] P. Ferragina and G. Manzini, “Opportunistic data structures with
applications,” in Proc. Annu. Symp. Found. Comput. Sci., 2000,
pp. 390–398.

[15] M. Burrows and D. J. Wheeler, “A block-sorting lossless data com-
pression algorithm,” Digital Equipment Corporation, Tech. Rep.
124, 1994.

[16] A. Arbabi, M. Gholami, M. Varmazyar, and S. Daneshpajouh,
“Fast CPU-based DNA exact sequence aligner,” in Proc. Int. Conf.
Formal Methods Models Codes., 2012, pp. 95–98.

[17] S. Aluru and N. Jammula, “A review of hardware acceleration for
computational genomics,” IEEE Des. Test, vol. 31, no. 1, pp. 19–30,
2014.

[18] A. Aji, L. Zhang, and W. chun Feng, “GPU-RMAP: Accelerating
short-read mapping on graphics processors,” in Proc. Int. Conf.
Comput. Sci. Eng., 2010, pp. 168–175.

[19] J. Torres, I. Espert, A. Dominguez, V. Garcia, I. Castello, J. Gimenez,
and J. Blazquez, “Using GPUs for the exact alignment of short-read
genetic sequences by means of the burrows-wheeler transform,”
IEEE/ACM Trans. Comput. Biol. Bioinformatics, vol. 9, no. 4,
pp. 1245–1256, Jul. 2012.

[20] C.-M. Liu, T. K. F. Wong, E. Wu, R. Luo, S.-M. Yiu, Y. Li, B. Wang,
C. Yu, X. Chu, K. Zhao, R. Li, and T. W. Lam, “SOAP3: Ultra-fast
GPU-based parallel alignment tool for short reads.” Bioinformatics,
vol. 28, no. 6, pp. 878–879, 2012.

[21] N. Homer, B. Merriman, and S. F. Nelson, “BFAST: An alignment
tool for large scale genome resequencing,” PLoS ONE, vol. 4,
no. 11, Nov. 2009.

[22] Convey Computer. (2011). Convey’s new burrows-wheeler align-
ment delivers 15x increase in research efficiency [Online]. Avail-
able: http://www.conveycomputer.com/files/3713/5095/9172/
BWA.Final.NR.10.11.1 1-1.pdf

[23] Convey Computer. (2011). Convey computer smith-waterman
personality [Online]. Available: http://www.conveycomputer.
com/files/1113/5085/5467/ConveySmithWaterman6202011.pdf

[24] H. Waidyasooriya and M. Hariyama, “Hardware-acceleration of
short-read alignment based on the Burrows-Wheeler transform,”
IEEE Trans. Parallel Distrib. Syst., Jun. 2015. Available: http://
www.computer.org/csdl/trans/td/preprint/07122348-abs.html

[25] H. M. Waidyasooriya, M. Hariyama, and M. Kameyama, “FPGA-
accelerator for DNA sequence alignment based on an efficient
data-dependent memory access scheme,” in Proc. Int. Symp.
Highly-Efficient Accelerators Reconfigurable Technol., 2014, pp. 127–
130.

[26] E. Fernandez, J. Villarreal, S. Lonardi, and W. Najjar, “FHAST:
FPGA-based acceleration of Bowtie in hardware,” IEEE/ACM
Trans. Comput. Biol. Bioinformatics, vol. 12, no. 5, pp. 973–981,
Sep. 2015.

[27] G. Tan, C. Zhang, W. Tang, and N. Sun, “Accelerating irregular
computation in massive short reads mapping on FPGA co-
processor,” IEEE Trans. Parallel Distrib. Syst., Jun. 2015. Available:
http://www.computer.org/csdl/trans/td/preprint/07122363-
abs.html

[28] J. Watson and F. Crick, “Reprint: Molecular structure of nucleic
acids,” Ann. Internal Med., vol. 138, no. 7, pp. 581–582, 2003.

[29] K. Mullis. (2012, Nov.). Polymerase chain reaction [Online]. Avail-
able: http://www.karymullis.com/pcr.shtml

[30] S. A. Edwards, “MEMOCODE 2012 hardware/software codesign
contest: DNA sequence aligner,” in IEEE/ACM Int. Conf. Formal
Methods Models Codes., Mar 2012, pp. 85–90.

[31] (2012, Mar.). 1000 genomes project: Human reference genome g1k
v37 [Online]. Available: ftp://ftp-trace.ncbi.nih.gov/1000genomes/
ftp/technical/reference/human% _g1k_v37.fasta.gz

[32] F. C. Botelho and N. Ziviani, “Near-optimal space perfect hashing
algorithms,” Ph.D. dissertation, Federal Univ. Minas Gerais, Belo
Horizonte, MG, Brazil, 2008.

[33] D. Belazzougui, F. C. Botelho, and M. Dietzfelbinger, “Hash, dis-
place, and compress,” in Proc. Eur. Symp. Algorithms, 2009,
pp. 682–693.

[34] M. L. Fredman, J. Koml�os, and E. Szemer�edi, “Storing a sparse
table with O(1) worst case access time,” in Proc. 23rd Annu. Symp.
Found. Comput. Sci., 1982, pp. 165–169.

[35] K. Fredriksson and F. Nikitin, “Simple compression code support-
ing random access and fast string matching,” in Proc. 6th Int.
Workshop Exp. Algorithms, 2007, vol. 4525, pp. 203–216.

[36] J. Ziv and A. Lempel, “A universal algorithm for sequential data
compression,” IEEE Trans. Inf. Theory, vol. 23, no. 3, pp. 337–343,
May 1977.

[37] B. Jenkins. (2012, Sep.). Spookyhash: A 128-bit noncryptographic
hash [Online]. Available: http://burtleburtle.net/bob/hash/
spooky.html

[38] S. Hanov. (2011, Mar.). Throw away the keys: Easy, minimal per-
fect hashing [Online]. Available: http://stevehanov.ca/blog/
index.php?id=119

[39] T. Brewer, “Instruction set innovations for the Convey HC-1 com-
puter,” IEEE Micro, vol. 30, no. 2, pp. 70–79, Mar. 2010.

[40] H. Li. (2012, Nov.). Manual reference pages - bwa [Online]. Avail-
able: http://bio-bwa.sourceforge.net/bwa.shtml

[41] (2012, Nov.). Sequence read for individual NA06985 [Online].
Available: ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/data/
NA06985/sequence_rea d/ERR050082.filt.fastq.gz

[42] O. Knodel, T. Preusser, and R. Spallek, “Next-generation mas-
sively parallel short-read mapping on FPGAs,” in Proc. Int. Conf.
Appl.-Specific Syst., Archit. Processors, Sep. 2011, pp. 195–201.

[43] T. Lam, T. Wong, Y. Li, P. U, and R. Li. SOAP3 alignment time
[Online]. Available: http://www.cs.hku.hk/2bwt-tools/soap3-
dp/

[44] Xilinx. (2009, Feb.). Virtex 5 family overview [Online]. Available:
http://www.xilinx.com/support/documentation/data_sheets/
ds100.pdf

[45] G. Pike and J. Alakuijala. (2011, Apr.). Introducing cityhash
[Online]. Available: http://google-opensource.blogspot.com/
2011/04/introducing-cityhash.html

Chad Nelson received the BS degree in com-
puter engineering from the Iowa State University,
in 2010, and the MS degree in computer engi-
neering from the Iowa State University, in 2012.
He is currently a Software Subject Matter Expert
at the PreTalen. His research interests include
CPU/GPU architecture, embedded systems,
reconfigurable computing, and hardware/soft-
ware co-design.

Kevin R. Townsend is currently working toward
the PhD degree and joined Iowa State for the
same, in 2011. He is the current expert on the
Convey Computer (HC-2ex) the RCL group uses.
He lead the team that won the 2014 Memocode
competition, a one month application accelera-
tion competition. He also played a critical role in
winning the 2012 Memocode competition for the
Iowa State University. He is currently researching
methods to accelerate sparse matrix vector multi-
plication using FPGAs. After graduation, he will

be joining Google. He is a student member of the IEEE.

Osama G. Attia received the BS degree in com-
puter and systems engineering from the Man-
soura University, Egypt, in 2010, and the MS
degree in communication & information technol-
ogy from the Nile University, Egypt, in 2012. He is
currently working toward the the PhD degree in
computer engineering and joined Iowa State Uni-
versity for the same in the Fall of 2012. His
research interests include reconfigurable com-
puting, hardware acceleration for graph process-
ing algorithms, embedded systems, and wireless

networks. He is a student member of the IEEE.

3042 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 10, OCTOBER 2016

Phillip H. Jones received the BS degree in 1999
and the MS degree in electrical engineering from
the University of Illinois, Urbana-Champaign, in
2002. He received the PhD degree in computer
engineering from the Washington University, St.
Louis, in 2008. He is currently an assistant pro-
fessor in the Department of Electrical and Com-
puter Engineering, Iowa State University, Ames,
where he has been since 2008. His research
interests are in adaptive computing systems,
reconfigurable hardware, embedded systems,

and hardware architectures for application-specific acceleration. He is a
member of the IEEE.

Joseph Zambreno received the BS degree
summa cum laude in computer engineering, in
2001, and the MS degree in electrical and com-
puter engineering, in 2002. Prior to joining the
ISU, he was at the Northwestern University,
Evanston, IL, where he graduated with the PhD
degree in electrical and computer engineering in
2006. He has been with the Department of Elec-
trical and Computer Engineering, Iowa State Uni-
versity since 2006, where he is currently an
associate professor. His research interests

include computer architecture, compilers, embedded systems, reconfig-
urable computing, and hardware/software co-design, with a focus on
run-time reconfigurable architectures and compiler techniques for soft-
ware protection. He is a senior member of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

NELSON ETAL.: RAMPS: A RECONFIGURABLE ARCHITECTURE FOR MINIMAL PERFECT SEQUENCING 3043

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

