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Abstract—Current research on State-of-Charge (SOC) track-
ing for rechargeable batteries focuses primarily on analyzing
batteries consisting of a single cell, or otherwise treat a set
of series-connected cells as a homogeneous unit. Yet, as the
number of series-connected cells per battery increase, so does
the challenge of ensuring safe and efficient operation over a
potentially long period of deployment. Cell-level energy balancing
is commonly proposed as a means to address the effects of cell
property mismatch. However, no comprehensive solution exists
addressing the need to maintain SOC accuracy over the full life
of a large battery, while also managing the energy imbalance
which develops between cells. If poorly managed, this imbalance
can reduce usable capacity and lifespan. This paper proposes an
integrated solution to these various issues by tracking SOC on a
per-cell basis and applying SOC to a cell-balancing application.
The effectiveness is demonstrated using a custom test platform.

I. INTRODUCTION

Batteries using high energy density cells such as NiMH
or Li-ion require some degree of automated management to
meet the goals of maximal capacity availability, maximal
longevity, and maximal safety and fault tolerance. A significant
research challenge in meeting these goals using automated
systems is that the difficulty tends to increase as a function
of the number of cells within a battery due to a well-known
phenomenon: the mismatch of constituent cell properties [1].
Initially, each cell in a string of cells is manufactured with
slightly different parameters, resulting in an overall pack
capacity that is constrained by the weakest cell in order to
ensure a safe operational range. Furthermore, over time, cell
properties diverge as a product of their environment and usage
pattern [2, 3]. The general effect is that the accessible battery
capacity declines more quickly than the rating provided by
the cell manufacturer after original testing at the factory. If
one could maintain each cell’s state at roughly the same level,
the behavior of the pack as a whole will much more closely
resemble that of an individual cell.

To guide the actions of any battery management system,
typically a simple, static model is derived from the cell
datasheet at system design time as a means to estimate battery
State of Charge (SOC) and State of Health (SOH). We use
these terms to indicate a 0% to 100% fuel-gauge of the energy
contained in the cell, and the current capacity of the cell
(based on its age), respectively. Two (not mutually-exclusive)
means to determine SOC are Coulomb Counting and model-
based approaches, of which here only the Kalman Filter is
considered. Broader coverage of these topics appears in [4].

A. Coulomb Counting

Coulomb-counting is by far the most popular method to
estimate SOC due to its conceptual simplicity and minimal

hardware requirements. Typically it involves periodically tak-
ing a measurement of the current flowing into or out of the
system. In software these measurements are summed over
time, thereby approximating the integration of instantaneous
current over time. If one knows the initial cell capacity in
amp-hours, one need only divide the summation value at that
instant by the initial capacity to estimate SOC.

This method is easy to implement but suffers from several
major problems. Errors in the assumed initial capacity, errors
due to sensor offset or nonlinearity, and errors due to discrete-
time approximation will never be corrected due to the open-
loop nature of the mechanism. Differences in cell parameters
due to manufacturing variation, and temperature differences
among cells are additional complications which cannot easily
be accounted for [5, 6].

This method is quite useful for checking other methods
over shorter periods of duration. However, if we want to
design a cell-balancing system which can remain effective over
years and under unpredictable conditions without corrective
maintenance, this is an unacceptable margin of error. Over
time, a system basing its operations on such input may in fact
accelerate the degradation of the cells that it was designed
to maintain due to its inability to correctly derive the current
state of the cells.

B. Model-based SOC Tracking

A number of papers have been published which apply
Kalman filters to estimate state of charge [7, 8, 6]. However,
the current body of research has several limitations.

1) To our knowledge, these previous approaches do not
elaborate on how their techniques might extend from
a single cell model to a large battery pack.

2) Papers published so far do not adequately consider the
impact of variation of parameters within a pack. For
example [7] measures the SOC of the pack as a whole,
which is only a trustworthy metric when assuming the
SOC of each internal cell is equal.

3) There is limited research on the effects of realistic mea-
surement and system noise. Some adaptive techniques
have appeared such as [7].

4) There is also limited research on the effect of system
sample rate and jitter.

This paper is primarily concerned with addressing items
1 and 2. We show how SOC can be tracked for each cell
individually in a four-cell battery, and how these results can
be used in the context of cell balancing.

The rest of the paper is organized as follows. In Section
II we describe our choice of cell model, our test platform,



testing methodology, and how to characterize the two major
components of a cell’s behavior. In Section III we discuss
the Kalman Filter approach to SOC monitoring, develop a
complete system model, and test the real-world performance
of the filter. In Section IV we demonstrate the use of SOC
monitoring in a cell balancing application. In Section V we
present some overall analysis of the work, and finally in
Section VI we discuss future goals.

II. CELL MODEL AND PARAMETER EXTRACTION

The second-order cell model shown in Fig. 1 is well-
rationalized in [6]. This model strikes a good balance be-
tween model complexity and model accuracy. The elements
R1, R2, C1, and C2 determine the transient response of the
cell, while R0 is primarily responsible for the “voltage sag”
of a cell under load. This element has a value which changes
as the cell ages and thus is often used as a means to determine
the cell’s health–for example, in [7]. Here R0 is assumed
constant. Also note that although Voc is shown as a simple
voltage source it is actually a complex non-linear function.

Voc

C1 C2

R0
R1 R2

V+

V-Bulk Storage voc(t)

Dynamic Response vd(t) V(t)

Fig. 1: Cell Model with Second-Order Dynamic Response

Once a cell model is identified, some specific parameters
for that model need to be extracted for the cells under
consideration. We treat this as two separate tasks: one for the
dynamic response, which responds to cell load, and one for
determining the SOC-OCV (open circuit voltage) curve for the
bulk energy storage of the cell. This is independent of load
but depends on factors such as ambient temperature and the
number of times the cell has been cycled.

A. Test Platform

The test platform illustrated in Fig. 2 was developed to
facilitate parameter extraction, test the performance of the
Kalman filter, and test battery balancing algorithms. Voltage
sense lines between each cell are not shown to maintain clarity.
The major components are listed below.

1) Linear Technology’s LTC6803, which is a 12-channel
SPI-controlled battery monitor. The device also includes
outputs for controlling one switch per cell.

2) A current source and a current sink to emulate cell
charging and discharging as in the context of a real
application.

3) A serial-based command interface for controlling the
internal board signals and reading sensor data. This
interface allows the board to be integrated with Mat-
lab or other PC scripts and controlled in real-time–for
example individual discharge resistors can be activated
or deactivated remotely.

For this platform we use just a single LTC6803 which allows
monitoring and balancing of up to 12 cells. However, it is
also possible to daisy chain the LTC6803 devices for a highly
scalable solution. In the application, current-mode signaling is
used between the bottom device and all upper devices rather
than CMOS signaling. Additionally, each upper-level device is
referenced to the top of the cell just below it, which limits the
common-mode voltage that any channel input sees. Commands
and data passes through each device from and to the main
controller like a long shift register. This configuration allows
one to manage a potentially unlimited number of cells.

B. Method
In order to identify the system, we pulse-tested the cells as

proposed by the Hybrid Pulse Power Characterization (HPPC)
scheme, described in [9] and illustrated in Fig. 3. This consists
of a 18 second discharge pulse, followed by a brief rest period,
followed by a 10 second charge pulse. The battery starts fully
charged, and this sequence is repeated for every 10% SOC
discharged (discharging at C/1 between sequences), and after
a 1 hour rest. The magnitude of the pulses are dependent on
the maximum values specified by the manufacture. The only
deviation from the HPPC scheme here is that we use C/1 for
discharging and 0.75C for charging since we are not interested
in testing maximum power.

The advantage of using the HPPC scheme is that we can
use the resultant data to find both the SOC-OCV curve (by
checking Voc during the rest periods) and also identify the
dynamic system behavior (though the high-current charge-
discharge pulses).
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Fig. 3: Cell Characterization Current Profile (Pulse Heights
Not To Scale)

C. Characterizing Dynamic Response
Fortunately, it is not necessary to explicitly determine in-

dividual component values from our model in Fig. 1. If we
think of the cell as a simple system with one input (the current
which is loading it or charging it) and one output (the external
terminal voltage), then by using system-identification tools,
one can determine the transfer function from collected data.

Here we use the Autoregressive Exogenous (ARX) method
of system identification, popularized in [10], to find a transfer
function for the part of our cell model involving transient be-
havior. The general ARX model is shown, with y representing
the output and u representing the input.
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Fig. 2: Data Collection Hardware

y(t) + a1(t− 1) + . . .+ anay(t− na) =

b0u(t) + b1u(t− 1) + . . .+ bnb
u(t− nb) + e(t)

(1)

For our second-order model, since i(t) is our input and
Vd(t) is our output, we get the following:

(1+a1q
−1+a2q

−2)Vd(t) = (b1q
−1+b2q

−2) ·i(t)+e(t) (2)

The algorithm for finding system-specific constants
a1,a2,b1, and b2 given input and output data will not be
covered in detail here, but tools to find them are included
in many math packages such as Matlab.

1) Results: The ARX algorithm is applied to the mean of
the four cell voltage responses. This ensures we can generate a
“typical case” system model rather than one that is specific to
an individual cell. The extracted values for our cells are a1 =
−0.8835,a2 = −0.007928,b1 = 0.02707, and b2 = −0.02219.
The results can be expressed in the form of a standard transfer
function:

G(s) =
0.02707− 0.02219s

s2 − 0.8835s− 0.007928
(3)

The ARX model fit is evaluated using a dataset separate
from the training data. The input is a simple, repetitive charge-
discharge cycle, shown in Fig. 7b, and the ARX model is
used to run a simulation using only this input. A portion
is highlighted in Fig. 4a (with DC component removed for
clarity). The plot in Fig. 4b shows an error typically less than
1.5mV with noise spikes where the input transitions sharply.

D. SOC-OCV Curve

In order to determine the SOC-OCV curve for our four
cells, all cells are initially charged to 4.1V (100% SOC)
and balanced to +/-5mV. Then the same scheme described
in Section II-B is followed. The cells are considered fully
depleted at 3.1V. SOC is tracked by using classic Coulomb
counting and assuming nominal 2.4Ahr capacity. The result is
a curve with 10 data points, and simple linear interpolation is
used to estimate between data points.

III. KALMAN FILTER

At the core of the Kalman filter is a state-space model for
the system in question. Our system fits fairly well into the
traditional state-space model, which is shown below. Vector
xk is the state vector, uk is a system disturbance, wk is
the variance-covariance matrix for (assumed white Gaussian)
system noise, and vk is the variance-covariance matrix for
(assumed white Gaussian) measurement noise [11].

xk+1 = Akxk +Bkuk + wk (4)

yk = Ckxk +Dkuk + vk (5)

The one non-linear component for our system is the SOC-
OCV curve. An Extended Kalman Filter (EKF) is a Kalman
Filter which includes non-linear terms–typically the notation
is modified by absorbing matrices A and B into function g(k)
and C and D into function h(k).

xk+1 = f(xk, uk) + wk (6)

yk = g(xk, uk) + vk (7)

A. System Equations

With the general state-space model in mind we develop
our system equations. Our model consists of three states: the
current SOC, the current value for Vd, and the previous value
for Vd (as it is a second-order ARX model). We can write this
in vector form:

x =

 SOC(k)
Vd(k)

Vd(k − 1)

 (8)

The recursive computation for SOC shown below is similar
to that from the Coulomb Counting method: ηi is the cell’s
Coulombic Efficiency (we use 1 ), ∆t is our simulation
timestep (ie sensor sample period), and Ck is the nominal
cell capacity. Each of these are treated as constants. Finally
i(k) is the battery current.

SOC(k + 1) = SOC(k) +
ηi∆t

Ck
i(k + 1) + ws(k + 1) (9)
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Fig. 4: ARX Model Validation

The dynamic part of the cell model is decribed next. Note
that this scheme requires us to store the previous value of the
loading current i:

Vd(k+1) = −a1Vd(k)−a2Vd(k−1)+b1i(k)+b2i(k−1)+wvd(k)
(10)

The third state equation is fairly trivial:

Vd(k) = Vd(k) + wvd
(k − 1) (11)

Finally the output expression is:

y(k) = Voc(sk) + Vd(k) + v(k) (12)

Putting together Equations 9, 10, and 11, we develop the
matrix form of the state-space model: SOC(k + 1)

Vd(k + 1)
Vd(k)

 =

 1 0 0
0 −a1 −a2
0 1 0

 SOC(k)
Vd(k)

Vd(k − 1)


+

 ndt
C 0 0
0 b1 −b2
0 0 0

 i(k + 1)
i(k)

i(k − 1)

+

 ws(k + 1)
ws(k)

ws(k − 1)


(13)

For an EKF algorithm itself we must also define the
following. These do not appear in the state-space model but
are needed in the EKF algorithm.

Âk =
∂f(xk, uk)

∂xk

∣∣∣∣
xk=x̂+

k

(14)

Ĉk =
∂g(xk, uk)

∂xk

∣∣∣∣
xk=x̂−

k

(15)

Considering Equation 14 we note that our A matrix consists
of a linear combination of parameters, so the result of the
partial derivative is simply A. For Equation 15, the expression
for Vd(k) is also a linear combination of parameters, so we
need compute the derivative of Voc(SOCk). Since SOC(k)
consists of a set of measured data points, this task is equivalent
to finding the derivative of a set of line segments. The
initialization values for the various Kalman matrices are shown
in Table I.

B. Kalman Algorithm

In terms of computation, the Kalman filter involves the
repeated application of the following steps:

1) Estimate state
2) Calculate error covariance
3) Calculate Kalman gain
4) Update state estimate based on measurement
5) Update error covariance based on measurement
This process is shown more formally in lines 5 through 9

of Algorithm 1.

Algorithm 1 Kalman Filter

1: procedure INITIALIZE
2: x̂+0 ← E[x0]
3: Σ+

x̃,0 ← E[(x0 − x̂+0 )(x0 − x̂+0 )T ]

4: procedure UPDATE
5: x̂k ← f(x̂+k−1, uk−1)

6: Σ−
x̃,k ← Âk−1Σ+

x̃,k−1Â
T
k−1 + Σw

7: Lk ← Σ−
x̃,kĈ

T
k [ĈkΣ−

x̃,k + Σv]−1

8: x̂+k ← x̂−k + Lk[yk − g(x̂−k , uk)]
9: Σ+

x̃,k ← (I − LkĈk)Σ−
x̃,k

C. State Initialization

The system state will eventually settle on the true SOC
value even when it is initialized poorly. However, if the
sample rate is low, for example once per second, this can
drastically increase the delay before the SOC measurement is
ready for use by the system. As seen in Fig. 5a, when all
cells are incorrectly initialized at 0.20 SOC, at 1s sampling,
cell 1 takes almost 30 minutes to reach steady-state. The
state initialization vector should thus be saved in non-volatile
memory periodically and then recovered at system reset to
minimize startup delay. As seen in Fig. 5b, even initializing
the states to 0.70 reduces the time to steady-state to less than
20s. Conveniently, since the Kalman Error Covariance matrix
is updated each iteration, it is also possible to determine when
SOC has been acquired when the uncertainty reduces to a
given threshold. The uncertainty (variance) for each state is
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Fig. 5: Impact of SOC state initialization over time

contained in the diagonals of the matrix. The plot in Fig. 6
shows how the uncertainty reduces over the first 10 iterations
(seconds) of the algorithm. The bounds represent two standard
deviations. Unfortunately, it is possible to make the state “over
confident” by underestimating the system noise.

D. Performance Analysis

In Matlab we track the SOC of each cell simultaneously by
maintaining an array of structures, one per cell. The various
fields are shown in Table I. The column “shared” indicates if
a field is common among all cells or is single-instance.

As in Section II-C1 we test our system equations on a
separate dataset. Fig. 7b shows the system impulse while
Fig. 7a compares the SOC computed by the Kalman filter
to a an SOC profile which is generated by simple Coulomb-
counting (e.g. integrating current over time).

The maximum error for all cells was 0.0041 and the highest
Mean Squared Error was 4.8291× 10−6.

IV. CELL BALANCING USING SOC

Compared to directly using terminal voltage, SOC is a
superior control variable for input to for battery balancing, as
by design, it ignores much of a cells dynamic behavior. Fig. 8

0 1 2 3 4 5 6 7 8 9
−1

−0.5

0

0.5

1

1.5

S
O

C

time (s)

Fig. 6: Reduction in State Uncertainty Over Time

TABLE I: Kalman Filter Variables

Field Formal Meaning Shared Initialization

A A From state-
space model

Y

 1 0 0
0 −a1 −a2
0 1 0


B B From state-

space model
Y

 ndt
C

0 0
0 b1 b2
0 0 0


C C From state-

space model
Y

 Voc(SOC(0))
1
0


D D From state-

space model
Y 0

Q Σw System Noise
Covariance

Y

 1−6 0 0
0 1−3 0
0 0 1−3


R Σv Measurement

Noise
Covariance

Y 1·10−4

P Σ+
x̃,k Error

Covariance
N

 0.25 0 0
0 0.25 0
0 0 0.25


x x̂k System state N

 IE(SOC(0))
0
0


y yk System output

(Estimated
V(t))

N N/A

z zk System input
(Measured
V(t))

N IE(V (0))

u uk System distur-
bance i(t)

Y

 i0
0
0



shows the initial 2000 seconds of the four initially unbalanced
cells being brought into balance. The discharge resistor which
can be placed in parallel with each cell by the controller has
a value of 33Ω, which typically translates into a discharge
current of around 150mA (around C/4).

The balancing algorithm is fairly simple: find the cell
with the maximum SOC and activate its discharge resistor.
The algorithm terminates when the difference between the
maximum and minimum SOC is 0.005 (above our maximum
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Fig. 8: Cell Balancing using SOC

expected error), at which point all discharge resistors are
deactivated. Cell 1 and 4 are balanced after around 200s, these
two cells were balanced with Cell 2 at 800s, and all cells were
balanced by around 6000s. Balancing speed has an inverse
relationship with the value of the discharge resistor, with the
side-effect of higher heat generation at higher rates.

V. ANALYSIS

There are a few limitations with the process as described in
this work. For one, the cells are assumed to have a fixed, equal

capacity and internal resistance R0. Not only do these two
parameters vary from cell to cell, but also tend to decrease and
increase, respectively, as a cell is repeatedly cycled. Second,
temperature was excluded as an input. It is known that the
SOC-OCV curve varies with temperature and has also been
shown to contribute to cell imbalance [12].

VI. FUTURE WORK

The next major consideration for this project is how to
develop a fully-embedded architecture. Hardware implemen-
tations of Kalman filters have the advantage of faster update
time, lower update jitter, and lower power consumption than
the equivalent microprocessor implementation [13].

The Kalman filter implementation is extends that proposed
in [14]. This approach folds a typical 2-D systolic array onto
a 1-D array to reduce resource requirements. There are more
compact implementations, such as that proposed in [13], with
the tradeoff of increased design complexity. A full treatment
of this topic, including implementation details, is left to future
work.
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