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Abstract—A new Physically Unclonable Function (PUF) vari-
ant was developed on an FPGA, and its quality evaluated. It is
conceptually similar to PUFs developed using standard SRAM
cells, except it utilizes general FPGA reconfigurable fabric, which
offers several advantages. Comparison between our approach and
other PUF designs indicates that our design is competitive in
terms of repeatability within a given instance, and uniqueness
between instances. The design can also be tuned to achieve
desired response characteristics which broadens the potential
range of applications.

I. INTRODUCTION

A PUF is a device whose transfer function exploits physical
phenomena in a way that cannot be replicated, even if the
full design is known. It is also referred to as a physical one-
way hash function when implemented in a challenge-response
framework. PUFs reduce the ability of attackers to circumvent
security mechanisms, as these mechanisms are implemented
in tamper-resistant hardware [1, 2] rather than software. The
devices are unclonable in the sense that, although they may be
physically copied, this provides no advantage to an attacker,
because each copy will behave differently.

A variety of PUF designs have appeared over the past
decade–roughly one each year since 2000 [3]. The most well-
known delay-based PUFs are SRAM [4, 5], Butterfly [6], Ring
Oscillator (RO) [7, 8], and Arbiter [9, 10] and the FPGA-
specific Anderson PUF [11]. A more thorough survey that
includes some non-delay-type PUFs appears in [12].

The PUF designed for this paper is a delay-type PUF that
inherits the SRAM and Butterfly PUFs’ properties. Briefly,
compared to the most popular designs, the one proposed:
• Uses FPGA reconfigurable fabric, making testing easier

than for SRAM PUFs. The circuit can be reset without
requiring the whole device to be reset.

• Is simpler than the non-linear Arbiter PUFs. In addition,
unlike the arbiter PUF there have been no known model-
building attack against PUFs which are based on inde-
pendent cells.

• Intuitively has a lower power requirement than the RO
PUF, since it does not oscillate.

A disadvantage is size: an n-bit response requires at least n
cells. Additionally in their raw form this kind of PUF tends to
suffer from a slightly higher-than-average level of noisiness.

II. DESIGN AND IMPLEMENTATION

A. Principle of Operation

A memory-type PUF uses a small cell whose single-bit
value is not known until it has stabilized after reset. For
example, in Fig. 1a, if both switches are initially closed, then
the capacitors at Q1 and Q2 are both charged. Then at t=0,
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Fig. 1: PUF Design

the switches are opened and the circuit resolves to a stable
state which depends on the delay through the inverter and
interconnects, as well as the switching threshold of the logic.
If route R1 has a shorter delay, it will remain at logical 1 and
force Q2 to logical 0. If route R2 has a shorter delay, it will
remain at logical 1 and force Q1 to logical 0. Thus Q1 and Q2
will always resolve to opposing values, but which has which
value depends on the physical properties of the hardware. The
PUF design is shown in Fig. 1b. The switches are replaced by
combinational logic implemented in LUTs.

The function of the PUF based on the delay of a net
dN can be described as dN = dS + dR + dNOISE . dS
represents the static delay estimated by the design tool. dR is a
random variable representing the uncertainty in net delay due
to process variation. Finally, dNOISE is a dynamic random
variable representing the effects of temperature and voltage
variation as well as interaction between circuits. Both dR and
dNOISE may be either negative or positive.

Next, we can characterize the delay of the two nets, Q1
and Q2. Both dL1 and dL2 are additional random variables
representing the delay through the two LUTs employed by a
cell to create the necessary logic. They are always positive.

dq1 = dL1 + (dSq1 + dRq1 + dNOISEq1) (1)

dq2 = dL2 + (dSq2 + dSq2 + dNOISEq2) (2)

Ideally, the quantity ∆dS = (dSq1 − dSq2) should be 0 so
that the effect of the random LUT and route delay components
dominate. The difference between the delay of the routes, ∆d
(5), dictates the circuit outcome.

Finally, the PUF can be described by a pair of piecewise
functions depending on ∆d.

Q1 =

{
1 : ∆d < 0

0 : ∆d > 0
(4a)

Q2 =

{
1 : ∆d > 0

0 : ∆d < 0
(4b)



∆d = (dL1 − dL2) + (dSq1 − dSq1) + (dRq1 − dRq2) + (dNOISEq1 − dNOISEq2) = ∆dL + ∆dS + ∆dR + ∆dNOISE (5)
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(b) Portion of 128 cell PUF Array

Fig. 2: PUF layout in FPGA Editor

These functions are not completely defined. If ∆dR is 0, or
close to it (”critically matched”), Q1 and Q2 become random
variables due to ∆dNOISE . This is metastability.

A few properties can be deduced from this analysis:
1) ∆dS should be as close to 0 as possible.
2) ∆dNOISE should be as close to 0 as possible.
3) ∆dR � ∆dS and ∆dR � ∆dNOISE for reliability.

III. IMPLEMENTATION DETAILS

Ensuring symmetrical routing and identical PUF instances
on an FPGA is challenging. The Xilinx toolset includes FPGA
Editor which enables creation of hard macros. Figure 2a shows
a single PUF instance implemented as a hard macro on a
Spartan 3 FPGA. Figure 2b shows a grid of such instances.
Applying mapping constraints and hard macros maintains pin
placement across instances–a potential delay variable [13].

IV. EXPERIMENTATION AND EVALUATION

A. PUF Properties

For evaluation the following properties are assumed:
• Reliability: the output of the PUF is consistent.
• Uniformity: there is an equal distribution of 1’s and 0’s

in the output. Also called randomness [10].
• Uniqueness: For two instances of a PUF, the responses

to the same challenge are very different.
An additional property introduced in [14], is used:
• Autocorrelation: the response bits are uncorrelated.

B. Effect of Routing Skew

An experiment was performed on a Spartan 3E to verify the
delay equations. The lengths of the routes Q1 and Q2 were
adjusted by changing the LUT pins that were used, portrayed
in Fig. 4. Since the pins of the reset lines were kept fixed,
and each LUT has 4 inputs, a total of 9 routing configurations
were possible. The configured PUFs were read 100 times each
to obtain each data point. The results are shown in Fig. 3.

The skew values shown in Fig. 3 were calculated from the
static delay analysis tool. The values for HDINTRA, or the
error rate, and Uniformity, or the ratio of 1’s to 0’s, were
gathered empirically. Both of these terms are defined formally
in Section IV-D.

The apparent systematic offset from 0 ns in Fig. 3 may exist
for two reasons. First, there could be a systematic error in the
static timing analysis. Second, as reported by the timing tool,
there does exist a small fixed skew on the reset lines for each
configuration, which will create a bias in the response.
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(a) The highest error rate is seen when the routes are nearly
matched, since noise tends to dominate under such conditions.
Outside this region, the error rate is 0 since the response is fixed.

�

��

��

��

��

���

���

���� ���	 ���� ���� � ��� ��� ��	 ��� ��


�
�
��
�
��

��
	

�
�


�����
����
���

(b) As the skew increases, the Uniformity saturates at 100% (1’s
dominate) or 0% (0’s dominate).

Fig. 3: Effect of Routing Skew on HDINTRA and Uniformity
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(b) Due to FPGA routing constraints,
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Fig. 4: Effect of LUT Input Selection on Route Skew

The data that was gathered appears to support the delay
model. It is evidently not easy to optimize both HDINTRA

and Uniformity. For example, one configuration achieves an
error rate of 0% with a bias towards generating 1’s. Another
achieves a 0% error rate with a bias towards generating 0’s.
The configuration used for analysis was selected to avoid
these static behaviors. A more optimal configuration might
be available if an exhaustive search through the set of pin
permutations were performed, providing greater resolution.
This would include the permutation of the reset pins, which
were fixed. FPGAs using LUTs with more input pins would
provide even more data. Despite these limitations, the experi-
ment performed demonstrates the impact that tiny changes in
routing can have on PUF behavior, and the window of routing
skew for which the circuit will function as a PUF.

C. Error Correction

Similar to biometrics, PUFs typically require some form of
error correction to increase reliability. A simple scheme used
here is the majority vote. Two forms are known as temporal
majority voting, and spatial majority voting [15].

Temporal majority voting (TMV) is also sometimes referred
to as the repetition code. It involves making an odd-numbered
NT readings of the PUF, and then determining how many 1’s



TABLE I: Design Reliability

Device HDINTRA σ HDINTRA′ σ′
1 13.5 1.3 5.9 1.9
2 13.0 1.3 6.0 3.0
3 12.1 3.2 8.1 2.6

Average 12.9 1.9 6.8 2.5

were read. If more than MT = NT−1
2 1’s are read, the output

is considered a 1. This acts as a low-pass filter for PUF bits
that occasionally toggle. It improves the reliability, but at the
expense of the process taking NT times longer.

Spatial majority voting (SMV) involves logically grouping
NS PUFs for the purpose of generating a single bit. Each PUF
in a group produces a bit in parallel, and if the number of 1’s
exceeds threshold MS , the overall group is considered to have
produced a 1. This form of majority voting helps to move the
distribution of 1’s and 0’s in a string to uniformity. Like TMV,
there is a trade off in that NS times as many cells are required.

The post-processing that is applied in the following sections
below first applies TMV with NT = 3 and MT = 1,
and then applies SMV with NS = 2 and MS = 0 . A
number of potential configurations were compared and these
values appeared to produce the most improvement in both
Repeatability and Uniformity, while limiting overhead.

D. Suitability as a PUF

Each of a collection of three Spartan 3E FPGAs were
divided into 8 regions. In each region a PUF array is tested.

1) Reliability: The ideal PUF should exhibit perfectly con-
sistent, or reliable, output for a given instance. The extent
to which a PUF deviates from this property can be called
its error rate. A simple way to express the error rate, as
defined by [14], calculates the average intra-chip Hamming
Distance (HD) between a series of samples, for a particular
PUF instance i. A baseline n-bit response Ri is extracted from
the circuit, and compared to m further samples. The expression
to obtain a single value based on a set of intra-chip HD1

calculations is shown below.

HDINTRA =
1

m

m∑
t=1

HD(Ri, R
′
i,t)

n
× 100% (5)

For this experiment, m, the number of repetitions, is 100.
Table I shows the experiment results. In the ideal case this
value is 0%. The raw results show a relatively high error
rate, typical for memory PUFs [14]. With post-processing
(HDINTRA′) the error rate is improved. The standard de-
viation with (σ′) and without (σ) postprocessing are also
provided.

2) Uniformity: There should be a uniform distribution of
’0’s and ’1’s in a given response r for PUF instance i. This
metric can be expressed as follows.

Ui =
1

n

n∑
l=1

ri,l × 100% (6)

An ideal PUF shows a uniformity of 50%. Since the PUF
error rates are non-zero, the Uniformity is averaged over
100 responses. The results are shown in Table II. For the
raw circuit, the Uniformity is low suggesting bias towards

1This value is sometimes referred to as µintra

TABLE II: Design Uniformity

Device Ui σ Ui′ σ′
1 22.4 3.1 60.1 6.0
2 24.2 2.1 59.0 2.9
3 17.8 5.4 48.7 11.8

Average 21.5 3.5 55.8 6.9
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producing 0’s. After post-processing (Ui′), the output is closer
to uniformity, with a small bias towards producing 1’s.

3) Uniqueness: The uniqueness property is that a PUF
copied to another chip should produce a signature with a
Hamming Distance of near 50%, which means half the bits are
different. The following equation can be applied to determine
the uniqueness of a PUF across a population of k chips using
pairwise calculations of HD, called HDinter

2.

Uniqueness =
2

k(k − 1)

k−1∑
i=1

k∑
j=i+1

HD(Ri, Rj)

n
× 100%

(7)
For this experiment, first pairwise comparisons are per-

formed to determine the HD between all circuit instances.
With post-processing Uniqueness shifts closer to the ideal 50%
average HD–from 34.2 to 47.8.

In Fig. 5, the histograms of HDINTER and HDINTRA

are directly compared. The fact that they do not overlap is
significant–it indicates that within this population of 24 PUFs
it is possible to distinguish between a given PUF’s noisy
response, and the response of other PUFs. This means it is
possible to implement a detection algorithm to identify a given
device. We can also estimate the minimum number of unique
IDs that could be generated based on the test results. The
lowest HDINTER that was observed was 22%, suggesting
that in such a case around 28 bits were different between the
two signatures. The number of IDs whose HD is 28 from a
reference ID is C(128, 28), or around 1.3× 1028.

4) Correlation Between Bits: The autocorrelation test [14]
can be used to detect correlation between bits. Systematic
aspects to process variation may show up as significant corre-
lation at particular intervals. Because signatures are extracted
from a common fabric it is possible for spatial correlation to
appear due to gradients, seen in [13]. The equation is shown.

Rxx(j) =

n∑
t=1

xtxt−j (8)

The test is performed on a signature extracted from each
device. The 0’s in each signature were replaced by -1, so that

2This value is sometimes referred to as µinter



-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120

Device 1 Device 2 Device 3

Fig. 6: Autocorrelation

TABLE III: Performance Comparison

PUF Experiment Reliability Uniqueness
Proposed 24 128-bit arrays 6.8% 47.8%
Optical [1] 567 CRPs, 4 tokens 25.25% 49.79%
Coating [2] 31 CRPs, 36 ASICs < 5% ∼50%
Basic Arbiter [9] 10k CRPs, 37 ASICs < 5% 50%
Feed-forward Arbiter
[9]

10k CRPs, 37 ASICs 9.8% 38%

Basic RO [16, 17] Many CRPs, 4 FP-
GAs

∼0.01% ∼1%

RO with comparator [8] 1k loops, 15 FPGAs 0.48% 46.14%
SRAM [18] 65k CRPs on different

FPGAs
<12% 49.97%

Butterfly [6] 64 CRPs, 36 FPGAs <6% ∼50%
Anderson [11] 36 128-bit arrays 3.6% ∼48%

a correlation value of 0 indicates no correlation, and the values
1 and -1 indicate total correlation. Figure 6 shows the results.

The autocorrelation for interval length 0 is 1 for each device,
since each bit is totally correlated to itself. The results show
no clear patterns among the three devices, suggesting that
the physical configuration of the cells does not have a strong
impact on the signature. This appears to contradict the results
in [14], but the array used in that experiment is much larger, so
the effect of systematic process variation are more pronounced.

E. Performance Comparison

Due to the wide variety of testing procedures it is still
difficult to make direct comparisons between designs. Some
authors report results in raw PUF form, while others report
results with post-processing applied. Also, some works per-
form experiments based from the perspective of Challenge-
Response Pairs (CRP). Despite these limitations Table III
demonstrates that the proposed design is competitive. It is
also worth mentioning that the design is unoptimized, since
a comprehensive examination of the effect of LUT pin choice
on Uniqueness and Reliability was not performed.

F. Design Applicability

Applications related to secret-key generation in cryptogra-
phy [5, 19] require the error rate should be very close to 0.
However, applications related to authentication [20, 21] and
signature generation [22] are more tolerant to errors. The
design would be best relegated to such an application. In
particular the low power consumption makes it suitable for
embedded applications such as RFID or security tokens.

Another potential application is a random number generator.
As discussed in [23] a linear-feedback shift register (LFSR)
can be added to a PUF, using it as a seed. The relative noisiness
of the raw design could be leveraged in such a way. The LUT
pin configurations could be tuned to achieve good uniformity
but high error rate.

V. CONCLUSIONS AND FUTURE DIRECTIONS

Several qualitative tests have yet be performed on the PUF
design presented in this paper, such as measuring behavior
in the presence of varying temperature and voltage. It is
expected that this design will exhibit behavior similar to
existing designs, i.e. a slight increase in error rate. Future work
should also see a shift in focus to testing the design in higher-
level applications, such as a challenge-response framework.
The ability to adjust the relative lengths of the PUF routing
is a unique asset in that it can potentially be used to optimize
the circuit for different applications.
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