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A Fault-Aware Toolchain Approach for FPGA Fault Tolerance

ADWAIT GUPTE, SUDHANSHU VYAS, and PHILLIP H. JONES, Iowa State University

As the size and density of silicon chips continue to increase, maintaining acceptable manufacturing yields
has become increasingly difficult. Recent works suggest that lithography techniques are reaching their limits
with respect to enabling high yield fabrication of small-scale devices, thus there is an increasing need for
techniques that can tolerate fabrication time defects. One candidate technology to help combat these defects
is reconfigurable hardware. The flexible nature of reconfigurable devices, such as Field Programmable Gate
Arrays (FPGAs), makes it possible for them to route around defective areas of a chip after the device has
been packaged and deployed into the field.

This work presents a technique that aims to increase the effective yield of FPGA manufacturing by re-
claiming a portion of chips that would be ordinarily classified as unusable. In brief, we propose a modification
to existing commercial toolchain flows to make them fault aware. A phase is added to identify faults within
the chip. The locations of these faults are then used by the toolchain to avoid faults during the placement
and routing phase.

Specifically, we have applied our approach to the Xilinx commercial toolchain flow and evaluated its
tolerance to both logic and routing resource faults. Our findings show that, at a cost of 5–10% in device
frequency performance, the modified toolchain flow can tolerate up to 30% of logic resources being faulty
and, depending on the nature of the target application, can tolerate 1–30% of the device’s routing resources
being faulty. These results provide strong evidence that commercial toolchains not designed for the purpose
of tolerating faults can still be greatly leveraged in the presence of faults to place and route circuits in an
efficient manner.

Categories and Subject Descriptors: B.7.2 [Integrated Circuits]: Design Aids—Placement and routing; B.8
[Performance and Reliability]: Reliability, Testing, and Fault-Tolerance

General Terms: Reliability, Design, Experimentation, Performance

Additional Key Words and Phrases: Fault tolerance, reconfigurable hardware, design automation

ACM Reference Format:
Adwait Gupte, Sudhanshu Vyas, and Phillip H. Jones. 2015. A fault-aware toolchain approach for FPGA
fault tolerance. ACM Trans. Des. Autom. Electron. Syst. 20, 2, Article 32 (February 2015), 22 pages.
DOI: http://dx.doi.org/10.1145/2699838

1. INTRODUCTION

The computing industry has been able to leverage the scaling of transistors to ever-
smaller dimensions in accordance to Moore’s law for decades. The amazing ability to
keep pace with this law motivated the reprinting of Gordon Moore’s original 1965 pa-
per [Moore 1998, 2006]. However, there is strong evidence that suggests this era of
increasing computing performance by packing more transistors onto a device is com-
ing to an end. Typically, as the density and size of chips increase, their yields tend
to decrease [Gupta and Lathrop 1972]. The 2013 International Technology Roadmap
for Semiconductors (ITRS) suggests that, as fabrication technology continues to scale
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downward, detecting defects will become increasingly challenging [ITRS 2013b], and
that the boundary between what is considered process variation and defects is blur-
ring [ITRS 2013c]. This will result in larger numbers of undesirable structural defects,
such as open and short circuits, which in turn challenges the maintaining of high chip
yields.

Additionally, evidence has shown that chips associated with low yield batches have
an increased likelihood of having reduced lifetimes due to phenomena such as oxide
puncture [Kim et al. 2005]. Overall, lower chip yields and reduced device reliabilities
(e.g., reduced lifetimes) negatively impact the computing industry as a whole. From
a research perspective, these factors bottleneck the degree to which transistors can
be scaled, thus constraining the raw computing power that can be leveraged to solve
computationally intensive problems. From a business perspective, lower yields mean
more chips discarded, resulting in lower profit margins.

Solutions are being pursued on several fronts to help maintain high yields as fabri-
cation scales continue to decrease. Fabrication engineers are exploring new procedures
for fabrication [Khan et al. 2008], technology developers are experimenting with new
materials to replace or enhance the traditional metal oxide that is primarily used to-
day [Robertson 2007], and design architects are developing techniques to implement
fabrication time redundancies to combat increasing defect rates [Vial et al. 2008].

Combating Defects with Reconfigurability. Reconfigurable hardware technology, such
as Field Programmable Gate Arrays (FPGAs), shows promise in complementing some
of these solutions. FPGAs are devices that can be used to implement digital hardware
quickly and inexpensively. An FPGA can be reprogrammed virtually limitlessly and
in a matter of seconds. This capability makes them suitable for various fields where
application functionality is expected to change with time, or where volumes are not suf-
ficient to justify the large initial costs associated with producing Application-Specific
Integrated Circuits (ASICs). FPGAs are also a useful prototyping tool that can be
used for high-fidelity modeling of an ASIC’s functional behavior [Bing and Charoensak
2002]. Since the FPGA fabrication process has many similarities to the fabrication of
any other digital silicon-based device, they naturally also share many of the same chal-
lenges associated with maintaining yields and reliability as fabrication scales continue
to decrease [Gupta and Lathrop 1972; ITRS 2013b, 2013c]. However, unlike ASICs, the
reconfigurable nature of FPGAs intrinsically supports redundancy that can be lever-
aged to tolerate defects that occur at fabrication time or in the field. Their symmetric
architecture and reconfigurability can allow designs to be placed and routed around
defective areas of the chip after the device has been fabricated, packaged, and deployed
into the market.

Techniques to leverage the reconfigurability of FPGAs to allow them to be used
despite the presence of defects could help mitigate increasing defect rates in silicon
devices by: (1) encouraging industry to migrate more ASIC applications to FPGAs, and
(2) integrating aspects of FPGA architectures into their designs. More immediately,
such techniques would impact FPGA manufacturers by allowing them to increase
their effective chip yields and extending device lifespans.

Contributions. In our work, we evaluate a method that steps toward reclaiming some
fraction of FPGAs that would currently be deemed defective. Our approach introduces
lightweight modifications to the end-user FPGA toolchain flow to tolerate both manu-
facturing defects as well as those due to aging. The three core contributions of our work
are (1) a technique for leveraging existing commercial FPGA toolchains to make them
fault aware, (2) quantifying to what degree existing tools can tolerate both logic [Gupte
and Jones 2010] and routing faults, and (3) recognizing and quantifying the trade-off
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between the tool’s tolerance to faults and the frequency performance of the circuits it
can implement.

Organization. The remainder of this article is organized as follows. Section 2 gives
related work from the areas of defect quantification, fault location, and fault tolerance.
Section 3 introduces our proposed approach. Section 4 then describes the evaluation
methodology used to quantify the effectiveness of our approach. Section 5 discusses
the results of our evaluation experiments, and Section 6 presents our conclusions and
avenues for future work.

2. RELATED WORK

Fault location and fault tolerance in FPGAs are closely related to the work presented in
this article. This section first discusses previously proposed methods for fault location
in FPGAs. Some of the methods introduced are potential candidates for use during
the “test FPGA” phase we propose in our work (see Figure 2). The second part of this
section reviews fault tolerance techniques for FPGAs, and places our work into context
with respect to this existing body of research.

2.1. Fault Location Methods

The configurability and inherent parallelism of FPGAs allow for innovative methods of
detecting and locating faults, as compared to standard ASICs. For example, an FPGA
can be configured with circuits for detecting/locating faults and then, if deemed usable,
can be reconfigured to implement logic for a target application.

Logic Faults. In Wu and Wu [1999], the authors propose a method in which faults
can be detected on an FPGA by programming test circuits on it. They make use of
partial dynamic reconfiguration features to reconfigure different portions of the FPGA
to act as test circuits. This reduces the amount of time needed to test the entire
chip as opposed to reconfiguring the entire FPGA for each configuration of the test
circuits they wish to deploy. Reducing test time is especially important in large-scale
production environments, where each chip needs to pass through a testing phase before
being shipped.

In Inoue et al. [1998], the authors propose another method for testing FPGAs that
allows faults to be located at the granularity of a single configurable logic block (CLB).
The output of each programmed CLB is used as the input to another. This daisy chaining
of CLBs allows the relatively small number of FPGA I/O pins to be used to test a large
number of CLBs. By sequentially running this procedure on cascaded rows and then on
cascaded columns, they can identify individual CLBs that are faulty (e.g., CLBs at the
intersection of a given faulty row and column). In Lala and Burress [2003], the authors
present an approach for which, at synthesis time, CLB-level fault detection is infused
into a specific design for online fault detection. The authors of Tzilis et al. [2010] locate
logic faults at a finer than CLB granularity. By breaking a CLB into finer-grain faults
(in this case, 150), faulty CLBs can still be used in a gracefully degraded manner.

Wang and Tsai [1999] present a method of fault location and suggest that their
method could allow for faulty chips to be utilized in the field. A built-in self-test (BIST)
technique is proposed that uses some regions of the FPGA to test others. As illustrated
in the top portion of Figure 1, the FPGA is reconfigured multiple times so that various
parts of the chip take turns acting as the testing circuit versus acting as the circuit
under test. The classical Preparata, Metze, and Chien (PMC) model [Preparata et al.
1967] is used to account for potential errors in areas configured as test circuits. In Dutt
[2006], Dutt presents a method for detecting faults without the assumption of fault-free
resources.
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Fig. 1. Overview of the proposed method.

In Dutton and Stroud [2009a], the authors present a practical implementation of
BIST techniques for locating faults on the Xilinx Virtex-5 FPGA. A total of 17 different
configurations were developed that, together, achieve 100% coverage of the logic faults
that can occur. Similarly, Dutton and Stroud [2009b] identify a practical set of test
configurations for identifying I/O tile faults on a Virtex-5 FPGA.

Both logic and interconnect faults are detected by the approaches used in Hsu and
Chen [2009] and Tahoori [2011]. An overview of interconnect fault detection research
is presented next.

Routing Faults. In Campregher [2005], Campregher discusses the trend of commer-
cial FPGA architectures dedicating increasing amounts of silicon area to routing re-
sources, and indicates a consequent need to develop BIST techniques that concentrate
on identifying faulty interconnect resources in addition to faults in logic resources.
Almurib et al. [2014] provide a nice overview of research in this area. Most work in the
area of locating interconnect faults can be classified as either application-independent
or- dependent approaches.

Application-independent approaches [Renovell et al. 1999; Sun et al. 2000; Stroud
et al. 2002; Tahoori and Mitra 2005] are often referred to as manufacturing tests and
can be used by a manufacturer to check an entire device for faults. An emerging area in
this field is locating faults within FPGAs that have 3D interconnects [Peng et al. 2014].
The authors of Ruan et al. [2013] propose an abstract interconnect resource model to
help move interconnect fault location research from targeting a single specific FPGA
architecture to evaluating a given approach across many interconnect architectures.

A major concern in the testing of interconnect faults is the time required to load
test configurations to the FPGA under test. In a manufacturing usage model or when
trying to perform online fault tolerance, this can be a significant—if not primary—
fraction of fault location time. Application-dependent fault location [Das and Touba
1999; Tahoori 2011; Kumar and Lombardi 2013; Almurib et al. 2014] is one direction
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that has been taken to help decrease this overhead. By only testing those resources
that will be used by an application, which is often a small fraction of the available
interconnect resources, the number of test configurations and/or test vectors run on
each configuration can be reduced.

Performance Degradation. Work by Stott et al. [2010b, 2010c] used experimental
data to help quantify the rate at which FPGAs can degrade in performance. This
degradation can cause new faults to manifest over time. In Keane et al. [2010], the
authors propose the use of ring oscillators to act as a means of monitoring silicon device
performance degradation in real time. This type of monitor could be implemented using
FPGA resources (e.g., CLBs) and used to trigger a fault detection technique when a
given application-specific performance degradation threshold is surpassed. Amouri
et al. [2012] have explored FPGA aging dependence on device-level architecture and on
how a design is mapped [Amouri and Tahoori 2012]. In Amouri and Tahoori [2013b],
the authors propose sensors for monitoring FPGA aging, and in Rao et al. [2013] and
Amouri and Tahoori [2013a] the authors additionally examine mitigating the impact
of aging.

2.2. Fault Tolerance Methods

The researchers Stott et al. [2008, 2010a] and Cheatham et al. [2006] present excellent
surveys of different FPGA-based fault tolerance techniques. The latter classify the
various techniques into two broad types: device- and configuration-level techniques.

2.2.1. Device Level. These techniques are incorporated during the manufacturing stage
of a device, for example, redundant resources such as routing paths and programmable
logic blocks are added. One could further classify these into what this article will refer
to as direct and indirect fault-tolerant methods where, in a direct method, redundant
resources are only used when a fault occurs, while in an indirect method fault tolerance
is indirectly achieved through the innate structure of an architecture.

Direct Methods. In Hatori et al. [1993], the authors propose a technique that tolerates
faults discovered at the manufacturing stage by adding redundant rows and selection
logic to routing resources. Faulty rows are made invisible to the user by routing around
them. Kelly and Ivey [1994] propose a technique that can mask faults even when they
occur in the field. An on-board router is added that, on the basis of a stored “fault
vector”, changes the routing of the design to avoid faulty areas. The advantage of this
method is that it remains mostly transparent to the end-user software. Durand and
Piguet [1994] propose a method that can tolerate faults at runtime. Extra resources are
used to continuously test logic resources. When a fault is discovered, spare resources are
used to mask the fault. In Emmert et al. [2007], an online technique that additionally
allows spares to be faulty lookup tables used in nonfaulty modes, and in Agarwal et al.
[2013] the authors propose allocating unused resources as spares in a nonuniform
application-specific manner.

Indirect Methods. In Roy and Nag [1995], routing architectures were evaluated for
their intrinsic routablity in the presence of defects. In Huang et al. [2005], models of
commercial and academic FPGA switch matrices were developed. Simulations were
run with these models to evaluate the effect of routing faults on a circuit’s routablity.
In Maidee and Bazargan [2006], various amounts of redundancy were added to an
FPGA architecture to quantify the impact of redundancy on a circuit’s routablity in
the presence of faults. FPGA logic blocks and switch matrices were modeled and Ver-
satile Place and Route (VPR) was run to quantify this relationship. The results of
their experiments showed that adding one extra interconnect per switch lane was the
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most effective amount of redundancy to add. They found this to be true across several
generations of fabrication technology.

A common drawback of device-level techniques is the necessity of additional chip or
board-level resources to support them.

2.2.2. Configuration Level. These techniques first identify faulty areas of the chip and
then, by performing simple shifts of configuration memory, use alternative resources
to implement the design. Methods such as those described by Narasimham et al.
[1994] and Hanchek and Dutt [1996] rely on shifting the configuration memory when
faults occur to obtain a fault-free implementation. Methods such as described by
Emmert and Bhatia [1997] apply heuristics to decide the best direction for these shifts.
Howard et al. [1994] present a configuration-level approach that works at a higher level
of abstraction than shifting bits. Subcircuits of a design are moved from one “block”
location to another to avoid faulty areas.

These configuration-level methods have the common drawback of degrading the place
and route (PAR) quality of the original circuit provided by PAR tools. In other words,
since these techniques typically only use local information to adjust a design’s con-
figuration, there may be more optimal PAR solutions that could be achieved if global
information were utilized.

2.2.3. A Classic Work. In Culbertson et al. [1997], the authors present a classic work
closely related to our research. They design and implement a custom reconfigurable
platform composed of a hierarchy of elements that were engineered to efficiently sup-
port defect tolerance. The platform, called Teramac [Amerson et al. 1995], was devel-
oped to accelerate large-scale architectural design exploration [Culbertson et al. 1996].
A driving design principle of their system was Rent’s Rule Landman and Russo [1971],
which relates the number of gates in a partition to the number of signals that intercon-
nect this partition with others. Richard Rent observed that, for a partition consisting
of N gates, roughly

√
N (i.e., ∼Ne, where e is typically between .4 and .7) signals

interconnected this partition with others.
The primary components of their system were: (1) custom fabricated FPGAs mounted

to (2) custom Multichip Modules (MCMs) that were mounted to (3) custom printed
circuit boards (PCBs), which were interconnected using ribbon cables. At each level of
the hierarchy, they conformed to Rent’s Rule in terms of routing resources. Additionally,
for the purpose of tolerating defects, they identified and attempted to minimize the
area of what they call critical areas at each hierarchical level. For example, within
their custom fabricated FPGA, state machines responsible for configuring the FPGA
were deemed critical. At manufacturing time, the critical areas for each component
were thoroughly tested before being assembled into the system.

Conceptually, the toolchain flow Culbertson et al. implement to automate defect-
tolerant mapping of user applications to the Teramac platform matches our approach.
In summary, this flow consists of: (1) detecting defective resources, (2) storing these
resources into a database, and (3) removing them from the set of resources avail-
able to the toolchain. Our work differentiates from that one in the following ways:
(1) while their work is an excellent case study of their custom end-to-end operational
system, we have focused on quantifying the defect tolerance of a widely used com-
mercial toolchain over a wide range of defect levels, and (2) we analyze the trade-off
between the toolchain’s defect tolerance and the frequency performance of the circuits
it can implement.

Summary. In summary, current FPGA fault tolerance methods typically try to either
mask faults, by adding redundancy during the manufacturing stage (device level) at
the cost of resource overhead, or try to rectify them in the field by updating the FPGA’s
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configuration (configuration level) at the cost of circuit performance. In domains where
low-latency recovery is needed, many of these approaches are a good fit however, for
use-cases where recovery time is not a factor, we propose an approach with zero device
overhead that provides a routed circuit of high quality. Current FPGA toolchains do
an excellent job of optimizing the way in which a design is implemented. The solutions
they arrive at are typically fairly optimized. This work proposes a method that inte-
grates information about faults into standard FPGA toolchains, thus leveraging their
optimization capabilities for the purpose of fault tolerance. This article is an extension
of our previous work [Gupte and Jones 2010], that only considers logic faults. In this
work, we additionally consider routing faults and present an approach for emulating
routing faults for the purpose of fault tolerance evaluation.

It should be noted that Xilinx Corporation provides a service called EasyPath [Xilinx
2011] that is closely related to our approach. A fundamental difference between
EasyPath and our approach is that ours allows the toolchain to avoid faults, while
EasyPath checks whether a given design will work on a given FPGA without knowledge
of fault locations. In short, with EasyPath, if a given design works on a given FPGA,
then it ships and, not, then the FPGA is not used. There is no attempt to replace and
reroute the design to account for errors on the chip.

3. FAULT-AWARE TOOLCHAIN

This section provides an overview of our proposed method for integrating fault informa-
tion into an FPGA toolchain flow. The impact of the proposed approach on the life cycle
of an FPGA is discussed, and possible usage models are presented. This is followed by
an example nomenclature that manufacturers could use to market FPGAs with faults.
The section concludes with a discussion of some concerns that need to be considered
when using our approach in practice.

3.1. Overview

Figure 1 succinctly summarizes the essence of this article. One of the methods from
Section 2 can be used to identify faulty sections of the FPGA. The lower part of the
figure shows how the identified faults can be avoided by using a modified toolchain
that is fault aware. Proposing such a toolchain and evaluating its effectiveness is the
primary thrust of this article.

Figure 2 shows a high-level overview of the proposed fault-aware FPGA toolchain
flow. A design goes through several standard stages while being implemented on an
FPGA. An additional “test FPGA” stage is proposed that may use any of the fault
location techniques discussed in Section 2. The information gained from this test stage
can then be fed back into the rest of the toolchain to implement the design in a way that
avoids faults. The synthesis phase involves translating the HDL design description into
netlists. This translation tends to take at least a few minutes for any nontrivial design,
so the testing of the FPGA can be done in parallel. Since the test stage is performed in
parallel with the synthesis step, the additional time overhead to the implementation
process will be small (e.g., a total testing time of 160 seconds is estimated for an XC4025
device [Itazaki et al. 1998]). As compared to the previous configuration-level methods
discussed in Section 2, our proposed method leverages the intelligence of mature place-
and-route tools to provide an efficient implementation of designs in the presence of
faults.

Figure 3 gives an example of the placement obtained by the proposed method as
compared to one obtained with the “pebble shifting” method presented by Narasimham
et al. [1994]. The “pebble shifting” method avoids an entire column even if only a single
logic slice in that column is faulty. The resulting circuit has longer paths than those
of the method we propose. To inform the toolchain of slice logic faults, our approach
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Fig. 2. A fault-aware toolchain flow that tests the FPGA in parallel with the synthesis stage, and then feeds
fault information to the remaining stages.

Fig. 3. An example comparison to an existing fault tolerance technique with respect to a circuit’s critical
path length. We illustrate the benefit of using existing place-and-route tools for fault tolerance as opposed
to larger-granularity approaches. In this case a conceptual comparison is made with the pebble shifting
technique [Narasimham et al. 1994] that reconfigures at a column granularity.

uses the PROHIBIT constraint available in Xilinx tools that allows certain logic sites
to be forbidden for the purpose of placing components. For informing the toolchain
of routing faults, a more involved approach is needed as described in Section 4.4. In
short, low-level design mechanisms are used to effectively block the tools from using
targeted switch matrices. Although our two techniques for passing fault information to
the toolchain are effective, a more integrated method of integrating fault information
into the toolchain is desirable. One simple approach could be to have a separate “error
file” that would be consulted during the implementation process.

3.2. Applicability of the Proposed Method

Two main use-cases can be considered for the proposed method: (1) using FPGAs with
defects in mass production and (2) rectifying FPGAs after a fault occurs. These use-
cases are discussed next.
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Fig. 4. Comparison between current manufacturing flow and our proposed flow.

Consider a company buying faulty FPGAs in order to implement designs required for
a product. As opposed to creating a single bitfile for all the FPGAs, the manufacturer
would have to run the toolchain for each FPGA individually since each would have
errors in different locations. Although this sounds unreasonable at first glance, it might
turn out to be economical depending on the savings from buying faulty chips versus
the increase in computing costs. In order to support such a use-case, the manufacturer
would change the manufacturing flow as shown in Figure 4. Curve 2 in Figure 5
shows the conceptual change in the classic probability-of-failure bathtub curve (i.e.,
top curve) [Klutke et al. 2003], if the customer implemented our approach.

In the second use scenario, consider a company using fault-free FPGAs to implement
a design. These programmed FPGAs are then used in end-user products. When an end-
user product malfunctions because of an error in the FPGA, rather than discarding the
FPGA, a technician could run the fault-aware toolchain on the (now) faulty FPGA. This
would create a new bitfile of the design that would avoid the faulty areas. Curve 3 in
Figure 5 shows the conceptual change in the probability of FPGAs being discarded if
this approach is used.

3.3. Error Grading

Devices are currently tested after they are manufactured to determine their maximum
operating frequency. Due to variances in the manufacturing process, this frequency is
not uniform for all chips and hence they are branded with a speed grade to indicate this
difference. A similar concept could be used to mark chips with different “error grades”.
For example, the larger the error grade, the more faults in the chip. Also as the error
grade increases, the maximum frequency of operation decreases. This is due to the
place-and-route tools having fewer options from which to choose during implementation
(see Section 5.2). Thus, either a separate error grade could be constituted or a composite
grading system taking both the percentage of errors and the speed into account could be
created. Before shipping, the FPGAs could be run through a fault location phase. Then,
depending on the number of faults detected, the chip could be discarded or branded
with an error grade/composite speed-error grade. A consumer could then select a chip
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Fig. 5. The top curve (Curve 1) depicts the classic probability-of-failure bathtub curve [Klutke et al. 2003]
of a device. Curves 2 and 3 illustrate conceptually how this curve would change if a fault-tolerant toolchain
was used. Curve 2, shows when the device is only programmed before deployment, and Curve 3 shows a
usage model where the device can also be reprogrammed after deployment.

based on its error grading, the trade-offs associated with the error grading, and the
requirements of the design.

3.4. Some Concerns

Implementing fault tolerance in FPGAs requires that certain common obstacles be
considered along with issues specific to the nature of the applied approach. In this
section both kinds of issues are discussed with respect to our proposed approach.

Critical Resources. The scope of this work is to faults for which place-and-route tools
are inherently tolerant. However, as the percentage of these types of faults increases,
so too does the chance, a critical resource (e.g., that power line or clock generator) has
a fault which could render a device inoperable. One approach to address this issue,
taken by the Teramac custom computer in Culbertson et al. [1997], is to thoroughly
test for critical faults before spending time locating tolerable ones. In a case study of
the Teramac platform [Culbertson et al. 1997], the average number of logic cell faults
in their 865 FPGA prototype was about 10%, however, they do not report the number
of rejected FPGAs due to critical faults.

Other Faulty Resources. Many modern FPGAs have other resources such as block
RAMs, DSP slices, clock management tiles, hardcore microprocessors, etc. Our ap-
proach does not evaluate fault tolerance for these resources. In many cases, extending
this work to examine these other resources is possible by using the same approach we
use for emulating logic slice faults.

Location Constraints. In some FPGA designs, certain resources are required to be
locked to a specific location (LOC) or must be placed at a location relative to another
component (RLOC). In the first case, if the location to which the component is LOCed
is faulty, then there is nothing this approach, nor any other approach, can do to allow
the FPGA to be used for this design. In the latter case, it might be possible to move the
RLOC origin to another point to satisfy the constraints.

Mass Production Viability. When FPGAs are a part of a mass-produced product,
using faulty FPGAs would require rerunning the tools for each individual FPGA. Cost
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analysis must be performed to determine whether the amount of time and resources
spent rerunning the tools for each FPGA is offset by the reduced bill of materials
resulting from using cheaper, faulty FPGAs.

4. EVALUATION METHODOLOGY

In this section we describe the methodology used to evaluate the effectiveness of our
proposed fault-aware toolchain. First, the fault model assumed by this work is given.
Section 4.2 then presents our test flow and the metrics used to evaluate our approach.
Section 4.3 describes the benchmark circuits that were used, and in Section 4.4 we
discuss how fault emulation was implemented.

4.1. Fault Model

Faults occurring in a device can be divided into two main types: those that occur as a
result of the fabrication process, and those that occur after the chip is manufactured
due to aging. These faults can occur either in the interconnects or the logic elements.
Further, when a fault occurs in a logic element, it can occur in a LUT, a flip-flop, a
multiplexer, or the combinational carry-chain logic. In this work, we have abstracted
away the details of the exact point of failure of the chip. For the case of logic faults,
we consider a slice as a whole to be either working correctly or as faulty. For the case
of routing faults, we take a pessimistic view that a given switch matrix is, as a whole,
functional or not.

Another common classification of faults is as either permanent or transient. This
work assumes permanent faults. In addition, the positioning and clustering of faults
depend on the mechanism causing these faults (e.g., dust particles during lithography,
radiation exposure, thermal cycling, electron migration). In this work, we have eval-
uated our approach under pessimistic conditions for which fault sizes and rates are
much greater than typically found in industry, thus we have used a simple uniformly
random distribution of faults. There are a number of works that focus on accurately
modeling fault sizes, rates, and distributions [Stapper 1983; Campregher et al. 2005a,
2005b; ITRS 2013a] showing that, under nominal conditions, defects tend to cluster.

4.2. Methodology

Figure 6 illustrates our evaluation flow. For each experimental run, the first step “gen-
erate uniformly distributed errors” creates a defect map. This defect map is generated
using a seeded random number generator, allowing us to reproduce fault patterns
across benchmark circuits. The fault types and locations are then passed to the Xilinx
toolchain via its user-constraint-file (UCF). In general, the UCF file is a mechanism
that allows user-specific constraints to be defined. In our case, we use this file to keep
the tools from using those resources that our defect map indicate are faulty.

From here, the toolchain runs as normal. At the end of each run, the toolchain
generates its standard reports that indicate whether it was able to route the design
and meet the specified timing requirements.

This test procedure was repeated for various fault levels, FPGA utilization levels,
and benchmarks (see Section 5). Each combination of the parameters tested were run
approximately 200 times for different random fault patterns. A set of 200 runs took
approximately 9 hours to complete, typically spread over 75 CPU cores.

Next we describe the metrics used to evaluate our proposed fault-aware toolchain
approach.

Error Tolerance. This metric is used to evaluate the degree to which our approach
can tolerate faults. In order to measure this metric, various percentages of the
FPGA’s resources were marked as faulty. A normally distributed random variable was
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Fig. 6. The testing flow used to evaluate our proposed approach.

generated to represent the number of faulty resources, and these faults were then
distributed across the chip as described in Section 4.4.

The tools were then run on the synthesized netlists to obtain a placed-and-routed
(PAR) design. The resulting implementation was analyzed to check that it was still able
to meet timing. If so, the run was marked as a success for our proposed approach and if
not, then the run was marked as a failure. We discuss the results of these experiments
as well as how this metric relates to chip yields in Sections 5.1 and 5.2.

Performance Degradation. We use this metric to investigate the relation between the
percentage of faults on the FPGA and the performance degradation needed by the tools
to successfully implement a design. For designs that fail to place and route during the
“error tolerance” evaluation, the negative slack time in the PAR report was recorded.
This slack was then used to calculate the maximum frequency at which that design
could have been implemented by the tools (see right side of Figure 6).

These results are used to show that, even in cases where it is not possible to imple-
ment the design with the specified timing constraints, a small performance decrease
may be enough to make the design implementable on the faulty chip. Thus, in addition
to having fewer resources, a faulty chip may also degrade in performance. Section 5.2
evaluates our approach with respect to this metric to determine the error threshold
that our approach can tolerate for given performance degradation levels.

Comparison with Smaller, Fault-Free Chips. In order to understand the trade-offs be-
tween using a large FPGA with faults and a smaller fault-free FPGA, we implemented
benchmark circuits targeting smaller fault-free chips and measured the maximum fre-
quency at which they could be implemented. These frequencies were then compared to
those obtained for the larger faulty FPGA. Our findings are discussed in Section 5.4.

4.3. Circuit/Device Description

A subset of the benchmark circuits proposed by Corno et al. [2000], was used to eval-
uate our approach. These benchmarks were originally created to evaluate test pattern
generation methods for identifying stuck-at faults and easily scale to occupy various
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percentages of an FPGA by replicating the design. Since these designs are based on
real-world circuits (e.g., processor cores), they form good test cases for evaluating our
approach. The selected benchmarks were replicated multiple times to obtain utiliza-
tions of approximately 25%, 50%, and 75%. The benchmarks chosen were:

(1) b17—three subsets of an Intel 80386 processor;
(2) b18—three Viper processors and six 80386 processors;
(3) b20—a Viper processor and a modified version of the Viper processor;
(4) b21—two Viper processors; and
(5) b22—a Viper processor and two modified versions of the Viper processor;

For evaluating slice logic faults, all five of the prior benchmarks were used. For
evaluating the impact of routing faults, only benchmarks b17, b18, and b20 were used.
For evaluating routing faults, benchmark b20 provided a test case made up of many
small and relatively loosely coupled cores, and b17 provided a test case for larger cores
(i.e., the 80386 cores are much larger than the Viper cores). The implications of these
different characteristics are discussed in our results section with respect to the tool’s
ability to tolerate routing faults. Additionally, it should be noted that, since the results
for b17 and b18 were similar, only b17 is discussed in detail.

The benchmarks did not include a constraint file and hence constraints had to be
provided for the evaluation. A feature of these benchmarks is that they use a single clock
constrained to within 3% of the highest frequency that the tools could successfully place
and route a benchmark on a nonfaulty FPGA. When the benchmarks were replicated,
their outputs were ORed together to deal with mapping them to the limited number of
I/O ports available on the actual FPGA device.

The test circuits targeted a Xilinx Virtex-5 LXT 110 [Xilinx 2014]. This device has a
total of 17280 slices and was chosen because there are four smaller devices available in
the same family. This allowed us to compare a large faulty FPGA’s performance against
smaller fault-free FPGAs (see Section 5.4).

4.4. Fault Implementation

Here we describe how logic slice and routing faults were emulated.

Logic slice faults. Emulation of logic slice faults was a fairly straightforward process.
The Xilinx toolchain provides an attribute called PROHIBIT that can be associated
with a specified logic slice. This attribute indicates to the toolchain that a particular
logic slice is not allowed to be used in the design being implemented. Based on the
defect map generated by the “generate uniformly distributed error” step of Figure 6,
PROHIBIT attributes are appropriately added to the tool’s user constraint file (UCF).

Routing faults. Emulating routing faults was more challenging. We used a combi-
nation of Xilinx FPGA Editor, XDL (Xilinx Design Language), and DIrect RouTing
(DIRT) constraints to generate a circuit that utilized all of the output ports of a single
switching matrix (see Figure 7). With all the output ports used, the tool was kept from
routing through the targeted switch matrix, thus emulating a faulty switch matrix. We
then replicated and instantiated this fault as directed by our generated defect map.

5. RESULTS AND ANALYSIS

This section presents the findings from the experiments described in Section 4. First, we
examine the error tolerance of our proposed method. Next, we quantify the percentage
of errors that can be tolerated if the frequency of a design is allowed to degrade by a
given amount. We then discuss differences between the tool’s tolerance to logic slice
faults versus routing faults. Section 5.4 presents our findings with respect to the idea
of using larger faulty FPGAs as equivalent small nonfaulty FPGAs, and this section
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Fig. 7. Routing fault emulation shows the FPGA Editor view of a Virtex-5 switching matrix and associated
CLB. The darkened traces indicate the switch matrix output ports, all of which were manually blocked in
order to emulate a faulty switch matrix.

Fig. 8. Success rate when varying error rates for a device utilization of: (a) 25%; (b) 50%; (c) 75%. All data
points are within a 10% confidence interval at a confidence level of 90%.

concludes with a discussion of the sensitivity of our approach to the tightness of timing
constraints.

5.1. Logic Slice Error Tolerance

Figure 8(a) shows the success rate of the fault-aware toolchain at 25% utilization of
the LX110T FPGA. As the figure shows, even with almost 75% of the chip empty, the
designs have a significant chance of not meeting timing if approximately 10% of the
logic slices are faulty. The success rate is 0% when 30–60% of the logic slices are faulty.
This can be explained by the tightly constrained clock in the original design. The tools
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Table I. Percent of Faulty Logic Slices that can be
Tolerated for a Maximum Frequency Performance

Cost of 10%

Utilizations 25% 50% 75%
Percent of Faulty Logic slices 30% 30% 20%

were barely able to meet the timing constraints without any faults so, as faults were
introduced, it became more difficult for the tools to implement the design while still
meeting all constraints.

Figure 8(b) shows the success rate when 50% of the FPGA is being utilized. It can be
seen that the designs start failing timing much sooner for the higher 50% utilization
case as compared to the 25% one. The success rates reach 0% when 20–30% of the logic
slices become faulty.

Figure 8(c) shows the success rate for 75% utilization of the FPGA. For the b17
benchmark, it was not possible to achieve an exact 75% utilization so its utilization
was kept at 70%, thus the b17 benchmark success rate does not fall to 0% at 25% errors;
instead it does so at 30% errors.

The designs experimented with were constrained to within 0.2ns of the smallest
possible period, so these numbers represent close to the worst-case success rates of the
proposed approach. In many practical cases, a design will not be required to be run at
the highest achievable frequency. Thus, if a design is more loosely constrained, then it
would be expected that the fault-aware toolchain would be able to tolerate more faults.

From the figures it can be seen that the success rates are high until about 10% of
the logic slices become faulty. Thus, even for those designs that cannot compromise on
their frequency, it may still be cost effective to buy larger chips with errors present and
discard the small percentage of them that cannot meet timing. On the other hand, if
frequency degradation is acceptable, then it may be possible to tolerate a given fault
level at the cost of performance. The next section examines the amount of frequency
reduction necessary to successfully place and route the experimental runs that failed
when no frequency degradation was allowed.

5.2. Logic Slice Fault Tolerance when Degraded Performance is Permitted

When the timing constraints could not be met for a given run of a design, it was still
possible to implement the design at a degraded frequency. The negative slack times
reported by all designs that failed at various error levels were used to calculate the
average percentage of the original frequency for which the designs would still meet
timing. This section presents the results of that analysis. Table I summarizes the
key observations obtained from this evaluation that give evidence that our proposed
approach is quite tolerant of FPGA logic slice faults. It shows that designs using 25%,
50%, and 75% of the chip can tolerate 30%, 30%, and 20% logic slice faults, respectively.

The success rate of the proposed approach for a given percentage of errors can be
seen in Figures 8(a), 8(b), and 8(c). Figures 9(a), 9(b) and 9(c) must be looked at in
the context of Figures 8(a), 8(b), and 8(c) respectively. For example, if, for a utilization
of 25% and 20% logic slice errors the success rate in Figure 8(a) is 70%, then 30% of
the runs fail at the original frequency. These runs require the frequency degradation
shown in Figure 9(a).

As can be seen from Figures 8(a) and 9(a), at a 25% utilization and up to 15% errors,
the designs can be implemented in 67.5–82.5% of the cases. In those cases where
this is not possible, they still can be implemented after about a 1% degradation in
performance, until about 15% of the logic slices are faulty. From 15–30% errors, all
the designs can be implemented with a frequency degradation of between 2–7%. Thus,
the empirical evidence suggests that, for a design that utilizes only 25% of the chip,
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Fig. 9. Degradation in frequency required for test runs that failed for the circuit’s original timing constraint
at device utilizations of: (a) 25%; (b) 50%; (c) 75%. All data points are within a 7% confidence interval at a
confidence level of 90%.

our fault-aware toolchain approach can tolerate up to 30% of the chip being faulty at a
reasonable performance cost (e.g., less than the performance cost typically associated
with stepping down by an FPGA speed grade).

Similarly, from Figures 8(b) and 9(b), it can be seen that between 32–56% of the
designs successfully meet timing until about 20% of the logic slices are faulty. Those
that fail can meet timing with an 8–10% frequency degradation, until about 30% of the
logic slices are faulty. Thus, the experimental results suggest that, for a design that
utilizes 50% of the chip, the proposed approach can tolerate up to 30% of the chip being
faulty at a reasonable performance cost.

From Figures 8(c) and 9(c) it can be seen that there is a knee point at an error level
of 20–25%, below which approximately 90% of the time the designs are successfully
implemented. For the remaining 10% of those cases where the designs fail timing, a
3–5% frequency degradation allows them to be implemented. This knee varies with
utilization. In these graphs the knee occurs when about 20% of the FPGA is made
faulty in the worst case (i.e., at 75% utilization). If the design being implemented is
smaller, then up to 30% of the FPGA logic slices being faulty can be tolerated by the
proposed approach for a maximum performance cost of 10% (see Table I).

5.3. Routing Faults Compared to Logic Slice Faults

In Rubin and DeHon [2009], the authors state that 80–90% of an FPGA’s area is
allocated to routing resources. Thus, it is important to evaluate our proposed approach
in the presence of routing faults in addition to logic slice faults. Figures 10(a) and 10(b)
show that routing faults can have a much larger impact on the toolschain’s ability to
tolerate faults as compared to logic slice faults.
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Fig. 10. Comparing logic slice and routing faults: (a) connectivity versus percentage of faults; (b) percentage
degradation of circuit frequency for b17 using 25% of the FPGA.

Figure 10(a) quantifies at what fault level the toolchain can no longer route (i.e.,
fully connect) the design. This concept did not exist when only logic slice faults were
emulated, since 100% of the routing resources were available for constructing any
given signal’s path. However, now that routing resources are being reduced (i.e., re-
moving available switch matrices), the tools quickly run into issues fully connecting
(i.e., routing) the design. In this case, even with only 25% of the FPGA being utilized
and when just over 1% routing faults are present, approximately 15% of the designs
are not connectable by the toolchain, whereas, for fault scenarios made up only of logic
slice faults, the toolchain could route designs up until the point where there were not
enough fault-free logic slices to implement the design.

In addition to the primary observation in Figure 10(a) that circuit connectivity
is more sensitive to routing faults than when only logic slice faults are present,
Figure 10(b) illustrates that, compared to logic slice faults, routing faults cause a
greater degradation in frequency for those designs that can be routed.

Loosely Coupled vs. Tightly Coupled Cores. We investigate how the relative degree of
coupling within a design impacts the toolchain’s ability to successfully and efficiently
place and route designs. Section 4.3 provides an overview of the benchmarks compared
and explores why, relative to one another, they are considered tightly versus loosely
coupled.

Figure 11(a) examines benchmark b17, which consists of relatively large densely
routed cores. For most cases, before routing faults reach 2%, over 30% of the designs
are not even connectable by the toolchain. Furthermore, Figure 11(c) shows that, even
for just 1% routing faults, the designs for these same fault emulation experiments are
already quickly degrading in operating frequency performance.

However, benchmark b20, which is composed of smaller loosely coupled cores, gives
very different behavior. Figure 11(b) shows that the toolchain can fully connect the
design, even as the number of routing faults reaches 30% or more. In addition,
Figure 11(d) shows that for b20 the toolchain can tolerate up to 25% routing faults
before degrading operating frequency by more than 10%.

These results clearly show that the toolchain can better tolerate routing faults when
implementing designs made up of small loosely coupled cores as opposed to those
composed of large densely routed cores.

5.4. Comparison with Smaller, Fault-Free Chips

Figure 12(a) shows the ratio of the maximum frequency at each error level in the larger
chip (LX110T) with respect to the frequency possible in smaller fault-free FPGAs. A
ratio of 1 indicates the same performance. As can be seen in Figure 12(a), having up to
30% logic slice errors in the larger chip results in approximately the same performance
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Fig. 11. It can be seen that designs made up of small loosely coupled cores allow the toolchain to tolerate
routing faults significantly better than designs composed of large densely routed cores.

Fig. 12. (a) Ratio of the frequency at which different benchmarks could have been implemented on smaller
fault-free chips as compared to the maximum frequencies possible at various error levels on the larger
LX110T FPGA. These tests were run for benchmarks that utilized 25% of the LX110T, (b) sensitivity analysis
as success rate at various error percentages with different timing constraints in nanoseconds (benchmark
b17, 25% utilization).

as a smaller fault-free chip. Thus, a design that fits a smaller fault-free chip can be
efficiently implemented on a larger faulty chip having the same number of fault-free
logic slices. This observation could be used by manufacturers to help market chips with
faults at a reduced price.

If a manufacturer were to choose an error threshold below which any chip is deemed
appropriate for market, then the manufacturer’s effective yields would increase to those
given in Eq. (1), where RBT (Rejected Below Threshold) is the percentage of originally
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rejected chips that have an error level below a set threshold.

Ef f ective Yield = Old Yield + (100 − Old Yield) ∗ (RBT )
100

. (1)

5.5. Timing Constraint Sensitivity

All benchmark designs were constrained to within approximately 0.2ns of their min-
imum fault-free periods. In order to get an idea of how sensitive success rate was to
how tightly the design was constrained, we ran tests to constrain benchmark b17 from
7ns (∼minimum fault-free period) to 7.4ns. Figure 12(b) shows the findings for this
experiment. As can be seen in the figure, the tools are quite sensitive to how tightly the
design is constrained, thus it seems reasonable that relaxing the timing constraints by
just 10% (∼.7ns) allows the tools to tolerate a significant number of faults.

6. CONCLUSION

We have presented and evaluated an approach for developing an FPGA toolchain flow
that is fault aware. Our results have shown this approach can tolerate a significant
number of logic slice faults (up to 30%) with a modest decrease in circuit frequency
performance (10% or less) for the Virtex-5 LX110T. With respect to routing faults, it
was found that designs made up of small loosely coupled modules could tolerate up to
approximately 30% faults as well. However, for designs composed of large and tightly
coupled cores, only about 1% routing faults could be tolerated (a factor of 30 less).

Even for designs in which only 1% of routing faults could be tolerated (which is still
a significant number of faults), it is worth recalling that in our experiments we defined
a single routing fault to be an entire unusable switch matrix. This is an extremely
pessimistic routing fault model. It is expected that the tools would perform much
better if only a couple of routes within a switch matrix were marked faulty.

We have also proposed the idea of establishing an equivalence between larger, faulty
FPGAs and smaller, nonfaulty ones. Our results show that for logic slice faults such an
equivalence is feasible.

It has been clearly shown that, while FPGA toolchains were not designed to avoid
faults, they show an impressive capability to do so. If fault information could be coupled
more tightly with the tool’s underlying routing algorithm, it is expected that even more
impressive performance could be obtained. Our results provide strong motivation for
further exploration of such research directions. A vehicle for future investigation is the
open-source VPR place-and-route tool that is used widely by academia for advancing
computer-aided design [Betz and Rose 1997; Rose et al. 2012; Hung et al. 2013].
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