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Abstract—As FPGA sizes and densities grow, their manufac-
turing yields decrease. This work looks toward reclaiming some
of this lost yield. Several previous works have suggested fault
aware CAD tools for intelligently routing around faults. In this
work we evaluate such an approach quantitatively with respect
to some standard benchmarks. We also quantify the trade-offs
between performance and fault tolerance in such a method.
Leveraging existing CAD tools, we show up to 30% of slices being
faulty can be tolerated. Such approaches could potentially allow
manufacturers to sell larger chips with manufacturing faults as
smaller chips using a nomenclature that appropriately captures
the reduction in logic resources.

I. INTRODUCTION

Field Programmable Gate Arrays (FPGAs) are a reconfig-

urable platform that can be used for implementing digital

hardware quickly and inexpensively. An FPGA can be re-

programmed virtually limitlessly, and in a matter of seconds.

This capability makes them suitable for various fields where

application functionality is expected to change with time,

or in fields where volumes are not large enough to justify

the large initial costs associated with producing Application

Specific Integrated Circuits (ASICs). FPGAs are also a useful

prototyping tool that can be used for high fidelity modeling

of an ASIC’s functional behavior [1]. Technology advances

continue to enable larger and denser FPGAs to host more

complex applications. However as the density/size of chips

grow, their yields tend to decrease [2]. Methods to make

FPGAs usable despite the presence of some faults could

improve the profitability of manufacturers, and extend device

lifespans. In this work we evaluate a method that steps toward

reclaiming some fraction of FPGAs that would currently be

deemed as defective. Our method makes changes to the end

user toolchain flow to tolerate both manufacturing defects as

well as defects due to aging.

The two main contributions of this paper are 1) to quantita-

tively analyze a fault aware tool chain and 2) quantify the trade

offs between performance and tolerance of faults in such an

approach. Figure 1 gives an overview of the method evaluated

in this work.

The rest of this paper is organized as follows: Section II

gives related work from the fields of fault location and

fault tolerance. Section III introduces our proposed approach.

Section IV then describes the evaluation methodology used to

quantify the effectiveness of this approach. Section V discusses

the results of our evaluation experiments, and Section VI

presents our conclusions and avenues for future work.

II. RELATED WORK

This section is divided into two main parts, both closely

related to our work. The first discusses previously proposed

methods for fault location in FPGAs. Some of these methods

are potential candidates for use in the “Test FPGA” phase of

our modified tool flow shown in Figure 1(b). The second part

of this section reviews fault tolerance techniques for FPGAs,

and places our approach in context with respect to this existing

body of work.

A. Fault Location Methods

The configurability and inherent parallelism in an FPGA

allows for innovative methods for detecting and locating faults.

[4] [5] propose different methods of fault detection on an

FPGA by using the dynamic reconfiguration capability of

the FPGA and chaining CLBs together respectively. In [6],

Wang et al. suggest a method of fault location, and point

out that such a method could help tolerate faults in a chip.

Our approach can make use of their fault location method to

this end. The method proposed by Wang is a BIST technique

that uses regions of the FPGA to test other regions. The top

portion of Figure 1(a) illustrates this idea. By configuring the

FPGA multiple times, various parts are tested in turn. This

method uses the classical Preparata, Metze, and Chien (PMC)

model [7] to take into account that errors in the reconfigurable

fabric may be present in the areas being used to test other

areas.

Mishra et al [8] propose an approach very similar to what

we suggest in this paper, but restrict their evaluation to only the

testing of the FPGA. The use of the information gained from

testing to avoid faults is only mentioned without evaluation.

Rubin et al [9] propose a method for having alternative paths

in the bitfile and choosing at configuration time the one

that avoids the faulty areas. While this may be feasible for

small circuits, as circuit size increases the sheer number of

possibilities would make exhaustive enumeration infeasible.

B. Fault Tolerance Methods

In [10], Cheatham et al. present an excellent survey of

different fault tolerance techniques that have been applied to

FPGAs. They have classified these techniques into two broad

types: Device Level and Configuration Level techniques.



(a) Conceptual Idea (b) Modified Tool Flow (c) Example comparison to an existing fault tolerant
technique with respect to circuit critical path length

Fig. 1. (a) shows the high level conceptual view of our approach. (b) illustrates how our approach would be integrated into exiting tool flows. An additional
testing stage is run in parallel with synthesis to locate faults. These fault locations are passed to the toolchain in order to leverage their implementation
strategies to intelligently place the design while avoiding faults. (c) helps to illustrate the benefit of using existing place and route tools for fault tolerance as
opposed to larger granularity approaches. In this case a conceptual comparison to the pebble shifting technique [3] that reconfigures at a column granularity.

1) Device Level: These techniques are incorporated into

a device during manufacturing. Redundant resources such as

routing paths, and programmable logic blocks are added to the

device. In [11], Hatori proposes a technique that can tolerate

faults that are discovered during manufacturing by adding

redundant rows and selection logic to routing resources. In

this method the faulty rows are made invisible to the user by

routing around them. In [12], Kelly proposes a technique that

can mask faults even when they occur in the field. An onboard

router is added that on the basis of a stored “fault vector”

changes the routing of the design to avoid faulty areas. The

advantage of this method is it remains mostly transparent to

the end user software. In [13], Durand proposes a method that

can tolerate faults at run time. Extra resources are used to

continuously test the LUTs. When a fault is discovered, spare

resources are used to mask the fault.

2) Configuration Level: These techniques incorporate run

time fault tolerance into FPGAs. They first identify faulty

chip areas. Then by performing simple shifts of configura-

tion memory they use alternative resources to implement the

design. “Pebble Shifting” by Narasimhan [3] and the work

by Hanchek [14] are two examples of such techniques that

shift configuration memory when faults occur to attempt to

create a fault free implementation. Methods such as [15] by

Emmert et al. use heuristics to try to choose the best direction

for configuration memory shifts. In [16] FPGA slices are

partitioned into groupings, then the redundancy within these

groupings is used to maintain an error free operation. This

method requires all possible configuration files be generated,

which is infeasible for large circuits.

In summary device level methods find application in areas

where no new faults are expected to occur. They mask errors

at the manufacturing stage at the cost of additional chip-level

or board-level resources. Configuration level techniques are

useful in cases where new faults do occur on an FPGA, and

the implementation tool chain cannot be rerun. This is often at

the cost of a degraded circuit implementation as compared to

what the tool chain can implement (see Figure 1(c)). Current

FPGA tool chains do an excellent job of implementing cir-

cuits efficiently. We evaluate a method that incorporates error

information into the toolchain to intelligently avoid faults.

III. A FAULT AWARE TOOLCHAIN

This section first gives an overview of our proposed method.

Next the impact of our approach on the life cycle of an FPGA

is given, and possible usage models are presented. This is

followed by a discussion of an example nomenclature manu-

facturers could use to market FPGAs with faults. This section

concludes with a discussion of some concerns associated with

our approach.

A. Overview

Figure 1(b) shows a high level overview of our proposed

fault aware FPGA implementation toolchain flow. A design

goes through several stages while being implemented on an

FPGA. We propose an additional “Test FPGA” stage be in-

cluded that uses one of the fault location techniques discussed

in Section II. The information gained from this test stage can

then be fed back into the rest of the toolchain to implement

the design in a way that avoids faults. Thus as compared

to the previous methods discussed in Section II, our method

leverages the intelligence of mature place and route tools to

provide an efficient implementation of the design.

B. Applicability of Proposed Method

Two main usecases can be considered for the proposed

method 1) using erroneous FPGAs for mass production and 2)

rectifying FPGAs after a slice fault occurs. We discuss these

usecases in turn in this subsection:

Consider a company buying faulty FPGAs in order to

implement designs required for a product. As opposed to

creating a single bitfile for all the FPGAs, the manufacturer

would have to run the toolchain for each FPGA individually

since each would have errors in different locations. Although

this sounds unreasonable at first glance, it might turn out to be

economical depending on the savings from buying faulty chips

versus the increase in computing costs. In order to support such

a use case, the manufacturer would change the manufacturing

flow as shown in Figure 2(a). Curve 2 in figure 2(b) shows
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Fig. 2. (a) Changes in the manufacturing process needed to take advantage of a fault aware toolchain. These changes would increase effect chip yield
according to the formula discussed in Section V-B. (b) The impact a fault aware toolchain has on the well known bathtub curve for device failure rate.

the change in the number of devices that are discarded by the

manufacturer if such a method is used.

In the second use case, consider a company using fault-free

FPGAs to implement a design. These programmed FPGAs

are then used in end user products. When an end user product

malfunctions because of an error on the FPGA, rather than

discarding the FPGA, a technician could run the fault-aware

toolchain on the (now) faulty FPGA. This would create a new

bitfile of the design which would avoid the faulty areas. Curve

3 in Figure 2(b) shows the change in the number of FPGAs

discarded if this approach is used.

C. Error Grading

Due to variances in the manufacturing process, device

frequencies are not uniform for all chips and hence they are

branded with a speed grade to indicate this difference. A

similar concept could be used to mark chips with different

“Error Grades”. For example, the larger the error grade,

the more faulty slices in the chip. In addition to lose of

logic resources, as the number of faulty slices increases, the

maximum frequencies of operation decreases. This is due to

the place and route tools having fewer options from which to

choose during implementation (see Section V-B). Hence either

a separate error grade could be constituted or a composite

grading system taking both the percentage of errors and speed

into account could be created. Before shipping, the FPGAs

could be run through a fault location phase. Depending on

the number of faults detected, the chip could be discarded

or branded with a composite speed-error grade. A consumer

could then select a chip based on its error grading, the trade

offs associated with the error grading, and the requirements of

the design.

D. Some Concerns

In this subsection we discuss two concerns with respect to

our proposed approach.

1) Faulty Routing Resources: When a given area of the chip

becomes faulty it is likely the routing resources in that area

have become faulty as well. There are fault location methods

that can identify faulty routing resources. Such information

would need to be integrated into the tool flow in order to

make our approach more practical.
2) Location Constraints: In some FPGA designs certain

logic components are required to be locked to a specific

location (LOC), or must be placed at a location relative to

another component (RLOC). In the first case if the location to

which the component is LOCed is faulty, then there is nothing

our approach or any other approach can do to allow the FPGA

to be used. In the latter case, it may be possible to move the

RLOC origin to another point to satisfy the constraints.

IV. EVALUATION METHODOLOGY

In this section we describe the methodology used to evaluate

the effectiveness of our proposed fault aware toolchain. First

the fault model assumed by this work is given. Section IV-B

then presents our test flow, and the metrics that were used to

evaluate our approach. Section IV-C describes the benchmark

circuits that were used as a workload.

A. Fault Model

Faults occurring in a device can be divided into two main

types: those that occur as a result of the fabrication process,

and those that occur after the chip is manufactured due to

aging. These faults can occur either in the interconnects or

the logic elements. Further, when a fault occurs in a logic

element it can occur in a LUT, a flip flop, a multiplexer or

the combinational carry chain logic. In this work we have

abstracted away the details of the exact point of failure of the

chip by considering a slice as a whole to be either working

correctly or faulty. Another common classification of faults is

permanent or transient. This work assumes permanent faults.

The positioning and clustering of faults depend on the

reason/source of those faults. In this work we have assumed

faults have a uniformly random distribution.

B. Methodology

In this section we describe the criteria used to evaluated

the fault aware toolchain. Figure 3 shows a flowchart for our

testing procedure.



Fig. 3. The testing flow used to evaluate the proposed method.

1) Error Tolerance: This metric is used to evaluate the

degree to which our approach can tolerate faults. In order

to measure this metric, various percentages of the FPGA’s

slices were marked as faulty. A normally distributed random

variable was generated to represent the number of faulty

slices. These faults were then uniformly distributed across

the chip by appropriately marking an array that represented

each slice location. PROHIBIT constraints were generated to

restrict the tools from placing any components in the slices

that were selected to be faulty. The tools were then run on

the synthesized netlists to obtain a placed and routed (PAR)

design. The resulting implementation was analyzed to check

that it was still able to meet timing. If it did meet timing, then

the run was marked as a success for our proposed approach.

If timing was not met, then the run was marked as a failure

for our proposed approach. In order to obtain statistically

significant results, 100 iterations of the entire toolchain flow

were run for each fault level. A total of 75 computers were

used to complete our runs in a reasonable amount of time. An

automated test script ran these experiments for 2 full days. We

discuss the results of these experiments, as well as how this

metric relates to chip yields in Sections V-A and V-B.

2) Performance Degradation: We use this metric to inves-

tigate the relation between the percent of slices faulty on the

FPGA, and the performance degradation needed by the tools

to successfully implement a design. Section V-B evaluates our

approach with respect to this metric.

3) Comparison with smaller, fault-free chips: In order

to understand the trade offs between using a large FPGA

with faults, and a smaller fault-free FPGA, we implemented

benchmarks circuits on smaller fault-free chips and measured

the maximum frequency at which they could be implemented.

These frequencies were then compared to the ones obtained

for the larger faulty FPGA. Our findings are discussed in

Section V-C.

C. Circuit/Device Description

A subset of the benchmark circuits proposed by F. Corno

et al. in [17] were used to evaluate our approach. These

benchmarks were originally created to evaluate test pattern

generation methods for identifying stuck at faults. They easily

scale to occupy various percentages of an FPGA by replicating

the design. Since these designs are based on real world

circuits (e.g. processor cores), they form good test cases

for evaluating our approach. The selected benchmarks were

replicated multiple times to get utilizations of approximately

25%, 50% and 75%. The benchmarks chosen were:

1) b17: 3 subsets of the Intel 80386 processor.

2) b18: 3 Viper processors and 6 Intel 80386 processors.

3) b20: A Viper processor and a modified Viper processor.

4) b21: Two Viper processors.

5) b22: A Viper processor and 2 modified Viper processors.

The test circuits were deployed to a Xilinx Virtex-5 LXT

110[18]. This device has a total of 17280 slices and was

chosen because there are 4 smaller devices available in the

same family. This allowed us to compare a large faulty

FPGA’s performance against smaller fault free FPGAs (see

Section V-C).

V. RESULTS & ANALYSIS

The following section presents our findings for the ex-

periments we performed using the metrics and benchmarks

described in Section IV.

A. Error Tolerance

Figure 4(a) shows the success rate of the fault aware

toolchain at 25% utilization of the LX110T FPGA. As seen in

the figure, even with almost 75% of the chip empty, the designs

have a significant chance of not meeting timing when around

10% of the slices become faulty. The success rate reaches

0% when between 30% to 60% of the slices become faulty.

This can be explained with the very tightly constrained clock

on the original design. The tools were able to only just meet

the timing constraints without any faults, so as faults were

introduced it became more difficult for the tools to implement

the design while still meeting all constraints.

Figure 4(b) shows the success rate for 50% of the FPGA

being utilized. It can be seen that the designs start failing

timing much sooner for the higher 50% utilization case as

compared to the 25% utilization case. The success rates reach

0% when between 20-30% of the slices become faulty.

Figure 4(c) shows the success rate for 75% utilization of the

FPGA. For the b17 benchmark, it was not possible to achieve

an exact 75% utilization so it’s utilization was kept at 70%.

Hence the b17 benchmark success rate doesn’t fall to 0% at

25% errors, instead it does so at 30% errors.

The designs we experimented with were constrained to

within 0.2 ns of the smallest possible period, so these numbers

represent close to the worst case success rates of our proposed

approach. In many practical cases a design will not be required

to be run at the highest achievable frequency. Thus if a design

is more loosely constrained, then it would be expected the

fault aware tool chain would be able to tolerate more faults.

It can be seen that until about 10% of the slices become

faulty, the success rates are high. Thus even for designs that

cannot compromise on their frequency, it might still be cost

effective to buy larger chips with errors present, and discard

the small percentage of them that cannot meet timing. On

the other hand, if a frequency degradation is acceptable, then
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Fig. 4. The fault aware toolchain success rates for 25% - 75% device
utilization. These success rates are within 1% of their actual values at a 95%
level of significance.

it may be possible to tolerate a given fault level at the cost

of performance. The next section examines the amount of

frequency reduction necessary to implement the experimental

runs that failed at various error levels.

B. Degraded Performance

When the timing constraints could not be met for a given

run of a design, it was still possible to implement the design

at a degraded frequency. We used the negative slack times

reported by all the failed designs at various error levels, and

calculated the average percentage of the original frequency

for which the designs would still meet timing. This section

presents the results of that analysis. Table I summarizes a key

observation obtained from this evaluation that gives evidence

that our approach is quite tolerant of FPGA slice faults. It

shows that 30%, 30% and 20% slice faults can be tolerated in

designs using 25%, 50% and 75% of the chip respectively.

The success rate of our approach for a given percentage of

errors can be seen from Figure 4. Figure 5 must be looked at

in the context of Figure 4. For example, if for a utilization of

25% and 20% slice errors the success rate in Figure 4(a) is

70%, then 30% of the runs fail at the original frequency. It

(a)

(b)

(c)

Fig. 5. The design runs for which PAR fails for a given fault rate can still
be successfully implemented by lowering its frequency requirement. These
graphs show the amount of degradation required (as a % of the original
frequency constraint) to obtain a successful PAR at different error levels for
each design. The percentages are means that are within 4% of the actual value
at a 95% level of significance.

is these runs that require the frequency degradation shown in

Figure 5(a).

As can be seen from Figure 5(a) and Figure 4(a), at a

25% utilization and up to 15% errors, the designs can be

implemented in 67.5%-82.5% of the cases. When they cannot

be, they can be implemented after about a 1% degradation

in performance until about 15% errors. From 15% to 30%

errors all the designs can be implemented with a frequency

degradation of between 2%-7%. Thus the empirical evidence

suggests that for a design that utilizes only 25% of the chip,

our fault aware tool chain approach can tolerate up to 30% of

the chip being faulty at a reasonable performance cost (e.g. less

than the performance cost typically associated with stepping

down by a speed grade).

Similarly, from Figure 4(b) and Figure 5(b) between 32%-

56% of the designs successfully meet timing until about 20%

of the slices are faulty. Those that fail can meet timing with a

8%-10% frequency degradation, until about 30% of the slices

are faulty. Thus our experimental results suggest for a design

utilizing 50% of the chip, our approach can tolerate up to 30%



Fig. 6. This figure shows the ratio of the frequency at which the different
benchmarks could have been implemented on smaller fault-free chips as
compared to the maximum frequencies possible at various errors level on
the larger LX110T FPGA. These tests were run for benchmarks that utilized
25% of the LX110T

of the chip being faulty at a reasonable performance cost.

From Figure 4(c) and 5(c) it can be seen that there is

a knee point at an error level of 20%-25%, below which

approximately 90% of the time the designs are successfully

implemented. For the remaining 10% of the cases that the

designs fail timing, a 3%-5% frequency degradation allows

them to be implemented. This knee point varies with utiliza-

tion. In these graphs the knee point occurs when about 20%

of the FPGA is made faulty in the worst case (i.e. at 75%

utilization). If the design being implemented is smaller, then

up to 30% of the FPGA slices being faulty can be tolerated by

our approach for a maximum performance cost of 10%. (see

Table I)
If a manufacture were to choose an error threshold for

which any chip below this threshold was deemed appropriate
for market, then the manufacturer’s effective yields would
increase to that given in Equation 1. Where RBT (Rejected
Below Threshold) is the % of originally Rejected chips that
have an error level Below a set Threshold.

Eff Y ield = Old Y ield +
(100 − Old Y ield) ∗ (RBT )

100
(1)

TABLE I
PERCENT OF FAULTY SLICES THAT CAN BE TOLERATED WITH A

MAXIMUM COST OF 10% PERFORMANCE

Utilizations 25% 50% 75%

% of Faulty Slices 30% 30% 20%

C. Comparison with smaller, fault-free chips

Figure 6 shows the ratio of the possible frequency at each

error level in the larger chip (LX110T) with respect to the

frequency possible in smaller fault free FPGAs. A ratio of 1

indicates the same performance. As can be seen in Figure 6,

having up to 30% slice errors in the larger chip results in

approximately the same performance as a smaller fault free

chip. Thus a design that fits a smaller fault-free chip can be

efficiently implemented on a larger faulty chip having the same

number of fault free slices. This observation could be used by

manufacturers to help market chips with faults at a reduced

price.

VI. CONCLUSION & FUTURE WORK
We have put forth and evaluated an approach for developing

an FPGA implementation toolchain that is fault aware. We
have shown that this approach can tolerate a significant number
of errors (up to 30%) with a modest decrease in circuit
performance (10% or less). Our empirical evaluation suggests
that this approach is a step toward allowing manufacturers
to reduce the number of devices discarded due to faults.
Given our approach only considers a simplified fault model
(restricted to faults being in slices and uniformly distributed),
an important direction for this work is to extend the fault
model to take into account other resources such as routing,
DSP blocks, and hard-core processors. Another interesting
avenue for future work is investigating the distribution in
the number of errors that actually occur in FPGAs that are
discarded by manufacturers.
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