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Abstract—Software written in programming languages that permit manual memory management, such as C and C++, are often

littered with exploitable memory errors. These memory bugs enable attackers to leak sensitive information, hijack program control flow,

or otherwise compromise the system and are a critical concern for computer security. Many runtime monitoring and protection

approaches have been proposed to detect memory errors in C and C++ applications, however, they require source code recompilation

or binary instrumentation, creating compatibility challenges for applications using proprietary or closed source code, libraries, or

plug-ins. This paper introduces a new approach for detecting heap memory errors that does not require applications to be recompiled

or instrumented. We show how to leverage the calling convention of a processor to track all dynamic memory allocations made by an

application during runtime. We also present a transparent tracking and caching architecture to efficiently verify program heap memory

accesses. Performance simulations of our architecture using SPEC benchmarks and real-world application workloads show our

architecture achieves hit rates over 95 percent for a 256-entry cache, resulting in only 2.9 percent runtime overhead. Security analysis

using a software prototype shows our architecture detects 98 percent of heap memory errors from selected test cases in the Juliet Test

Suite and real-world exploits.

Index Terms—Memory allocation tracking, hardware architecture, range cache, vulnerability testing
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1 INTRODUCTION

SOFTWARE memory errors, such as buffer overflows and
use-after-free errors, are critical threats to computer sys-

tem security. Applications built using low level languages
that allow arbitrary pointer arithmetic, casting, and manual
memory management, such as C and C++, are particularly
susceptible to memory errors. Exploiting these errors ena-
bles attackers to read or write arbitrary memory locations,
alter control flow of a target application, or even take com-
plete control of a system. Numerous hardware and soft-
ware-based approaches to detect and prevent exploitation
of memory errors have been proposed, and several have
been integrated into modern systems [1], [2], [3]. However,
current protection mechanisms can still be circumvented as
shown by recent real-world exploits [4], [5], [6], [7].

Many runtime monitoring and protection approaches
have been proposed to detect memory errors in C and C++
software applications. Previous software-based techniques
monitor memory accesses by inserting checks into program
source code [8], augmenting compilers to insert checks at

compile time [9], [10], or instrumenting the application
binary to perform memory access checking at runtime [11],
[12]. Several new, memory safe programming languages
based on C and C++ have also been proposed [13]. Soft-
ware-based techniques can detect many classes of memory
errors and exploits, however, they require recompilation of
source code and impose large performance and memory
overheads that often outweigh the security protection
afforded by the technique.

Previous hardware-based approaches address the perfor-
mance limitations of software-based techniques with custom
memory checking architectures [14], [15], [16], [17], [18], [19],
[20], [21]. Although custom architectures significantly reduce
runtime overheads, they still require all source code to be
recompiled to make use of the special hardware. The source
code recompilation requirement, common to both hardware
and software approaches, is not practical with legacy soft-
ware or software that utilizes proprietary, third-party code,
libraries, plug-ins, or applications. These performance and
compatibility limitations have prevented the widespread
adoption ofmany proposed solutions.

This paper introduces a novel hardware architecture for
tracking dynamic memory allocations and securing heap
memory accesses that does not require recompilation of
source code or instrumentation of the target application. We
show how to leverage the calling convention of a processor
to track all dynamic memory allocations made by an appli-
cation during runtime. We detect memory errors by propos-
ing a caching architecture that verifies all heap memory
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accesses are to valid memory addresses allocated to the pro-
gram. We evaluate our architecture by creating a simulation
prototype using the Intel Pin framework. Performance tests
using SPEC 2006 benchmarks and real-world applications
show cache hit rates over 95 percent are achievable for a
256-entry cache, resulting in just 2.9 percent runtime over-
head. Security experiments using test cases from the NSA
Juliet Test Suite and real-world exploits show our architec-
ture successfully detects 98 percent of heap memory errors
spanning seven different classes.

The remainder of this paper is organized as follows.
Section 2 introduces our heap memory protection approach
and analyzes its security effectiveness using benchmarks
and real-world exploits. Section 3 describes the hardware
architecture that implements our heap memory protection
approach, and its performance is analyzed using SPEC
benchmarks and real-world application workloads. Section 4
discusses implementation considerations for integrating our
hardware into existing systems. Section 5 reviews related
work in the area of C and C++ software protection
approaches, and Section 6 offers our conclusion and out-
lines future work.

2 MEMORY PROTECTION APPROACH

In this section, we present problem constraints and assump-
tions for our memory protection approach. We describe
how to leverage a processor’s calling convention to track
dynamic memory allocations made using library functions
and system calls, and explain our technique for verifying
memory accesses at runtime. We also evaluate the security
effectiveness of our approach using benchmarks and real-
world exploits.

2.1 Constraints and Assumptions

The primary goal of this work is to develop a memory safety
solution that is fully compatible with existing software
applications, libraries, and plug-ins to facilitate widespread
adoption. To achieve this compatibility goal, potential solu-
tions will not require source code to be recompiled and
application binaries will not be instrumented or otherwise
modified. Binaries, libraries, and plug-ins may be parsed
and examined, but we assume any type of binary or source
code changes violate the compatibility constraint.

Our heap memory allocation monitoring approach
depends on two requirements essential for its operation.
First, the heap memory allocation monitor needs read-only
access to the processor’s instruction stream and architectural

register file. While specific registers within the register file
will vary depending on the processor’s instruction set archi-
tecture and calling convention, read access to registers con-
taining function arguments, return values, the stack pointer,
and the instruction pointer are required for heap memory
allocation tracking. Access to the processor’s instruction
stream is also required to capture system call instructions
andmemory access instructions.

The second requirement is the virtual memory addresses
of dynamic memory allocation functions, such as malloc

and free, are known at runtime. Applications that dynami-
cally link libraries containing dynamic memory allocation
functions at runtime will have these addresses resolved by
the dynamic linker. Locating function addresses in statically
compiled applications that have not been stripped of debug-
ging information, such as function labels or symbols, can be
achieved by inspecting the binary. Recent fingerprinting
and pattern matching techniques successfully locate library
functions, including malloc and free, in statically com-
piled binaries with debugging information removed [22].

To simplify the description of our heap memory alloca-
tion monitor as well as our prototype and experiments, we
make two assumptions about the instruction set architecture
and its calling convention. First, we assume that the instruc-
tion set architecture uses a hardware stack for subroutine
information storage. The hardware stack is contiguous in
memory, has a fixed base address, and an architectural stack
pointer register holds the address of the current end of the
stack. Second, we assume all arguments to dynamic mem-
ory allocation functions are passed in architectural registers,
including the return address for the dynamic memory allo-
cation function call.

2.2 Dynamic Memory Allocation Tracking

The high level state machine in Fig. 1 illustrates our heap
memory tracking approach for a dynamic memory alloca-
tion function that takes a single size argument, such as mal-
loc. Our tracking monitor begins in state S0 and waits to
receive the virtual address of the memory allocation func-
tion via the FuncAddr input. If the target application is
dynamically linked, then the dynamic loader supplies the
allocation function address after its location is initially
resolved. If the tracked program is statically linked, the ker-
nel program loader supplies the allocation function address
by parsing debug information in the binary or applying fin-
gerprinting techniques described in [22]. When the monitor
receives the allocation function’s virtual address, the
address is stored in the monitor’s target register, and the
monitor moves into state S1.

In state S1, the monitor waits for the target application to
make a dynamic memory allocation by continuously com-
paring the instruction pointer with the virtual address of
the allocation function stored in the monitor’s target register.
When the application calls the allocation function, the moni-
tor exploits the calling convention of the processor to deter-
mine the amount of memory requested by the target
program. For example, the size argument to the allocation
function is placed in the R0 register on 64-bit ARM
(AArch64) processors, the A0 register on 64-bit RISC-V pro-
cessors, and the RDI register for 64-bit x86 processors using
the System V AMD64 ABI. The monitor reads the size

Fig. 1. High level state machine depicting our dynamic memory alloca-
tion tracking approach.
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argument from the appropriate architectural register and
stores the value into its size register. The monitor also reads
the procedure return address from the correct architectural
register, such as the LR register on 64-bit ARM (AArch64)
processors or the RA register on 64-bit RISC-V processors,
and saves the address into its ret_addr register. Then, the
monitor moves into state S2.

In state S2, the monitor waits for the allocation function
call to return by comparing the instruction pointer with the
return address saved in the ret_addr register. When the call
to the allocation function returns, the monitor leverages the
calling convention of the processor to extract the virtual
address returned by the allocation function. For example,
the return value is placed in the R0 register on 64-bit ARM
(AArch64) processors, the A0 register on 64-bit RISC-V
processors, and the EAX register for 64-bit x86 processors
using the System V AMD64 ABI. Finally, the monitor calcu-
lates the virtual address range allocated to the application
using the virtual address in the return value register and
the previously saved size argument, outputs the lower and
upper addresses of the range, and returns to state S1.

Access to the processor’s architectural register file allows
the monitor to track other memory allocation functions with
multiple size parameters or size parameters that appear in
different locations in the function parameter list. For exam-
ple, the calloc memory allocation function requires the
number of elements and individual element size as function
parameters. Instead of reading a single argument register,
such as Arg0 shown in Fig. 1, the monitor computes the size
of the memory allocation by reading the first two argument
registers andmultiplying their values. Other memory alloca-
tion functions place the size parameter in different positions
in the parameter list. For example, the second parameter to
the mmap function is the allocation size parameter. Because
the monitor has read access to all processor registers, it can
be configured to read the appropriate register to obtain the
size of the allocation requested by the program.

Although it is not explicitly shown in Fig. 1, before the
monitor outputs a new range of allocated virtual addresses,
it validates the return value of the memory allocation or
deallocation function to verify the memory allocation was
successful. If an error value, such as a null pointer, is
returned by an allocation function, the monitor does not
output a virtual address range. This step is particularly
important for memory reallocation functions, such as
realloc, that can allocate, deallocate, and move virtual
memory regions depending on the arguments passed to
the function. By checking the arguments and return values,
the monitor determines the exact changes made to the
application’s heap memory region.

The monitoring approach can be slightly modified to sup-
port direct system calls. Modern applications tend to issue
system calls using wrapper functions instead of invoking the
kernel directly. However, it is common for the program
loader and dynamic linker to issue many direct system calls
during program start up and when mapping dynamically
shared libraries into a program’s virtual address space. To
track memory allocations made using direct system calls, the
monitor checks the processor’s instruction stream for a sys-
tem call instruction. The FuncAddr input in Fig. 1 is set to the
opcode of the system call instruction and is checked against
the opcode of the current instruction instead of the instruc-
tion pointer. The monitor is configured to read the register
containing the system call number along with the registers
containing allocation size arguments, and the system call
number is checked during themonitor’s verification stage.

Our heap memory tracking approach has several advan-
tages. Its flexible design enables monitoring of a diverse set
of dynamic memory allocation functions and system calls
with varied parameter lists. By tracking at the entry and exit
point of the initial memory allocation function call, our
monitoring approach is unaffected by implementation char-
acteristics of allocation functions such as memory pooling,
system calls, or recursion. Monitoring calls to common
dynamic memory allocation functions also enables tracking
of memory regions allocated by dynamically shared librar-
ies, plug-ins, or other dependencies loaded at runtime.
Most importantly, our heap memory tracking approach
transparently tracks the heap memory addresses allocated
to an application without source code modification, recom-
pilation, or binary instrumentation.

2.3 Validating Memory Accesses

Maintaining a list of all heap memory addresses allocated to
an application alone does not provide any additional secu-
rity against memory errors and exploits. To enforce memory
safety, we verify that all heap memory accesses are within
the bounds of a valid heap memory region currently allo-
cated to the application. A heap memory safety violation
occurs when a program reads or writes to a memory
address outside the bounds of all valid heap memory alloca-
tions and will trigger an exception.

Our heap memory checking approach is illustrated by
the high level state machine in Fig. 2. In state S0, the monitor
waits for the program loader to supply an opcode for a
memory access instruction, such as a load or store instruc-
tion. The monitor stores this opcode into its private op regis-
ter and proceeds to state S1. In state S1, the processor’s
instruction stream is inspected. When the opcode of the pro-
cessor’s current instruction matches the value stored in the
monitor’s op register, the monitor extracts the virtual mem-
ory address from the appropriate register (designated by
the instruction) and stores the address into its addr register.
In state S2, the memory address stored in the addr register is
checked against all valid dynamically allocated memory
regions recorded using our tracking approach. If the mem-
ory address is within the bounds of a valid heap memory
region, the monitor returns to state S1. Otherwise, a heap
memory safety violation is detected, and an alarm is raised.

The memory checking approach depicted in Fig. 2 veri-
fies memory accesses made by an application at runtime

Fig. 2. High level state machine illustrating our memory checking
approach.
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without source code modification, recompilation, or binary
instrumentation. However, checking memory accesses to
addresses that are not dynamically allocated will result in
false positive memory safety violations. To prevent excep-
tions from being raised by false positives, addresses located
in statically allocated memory regions should not be
checked. The monitor is made aware of these regions using
a set of filtering registers and by reading the processor’s
architectural registers. Memory addresses contained within
the filtered regions shown in Fig. 3 are excluded from heap
memory access checking.

As shown in Fig. 3, the program’s stack is a memory
region that is filtered. At startup, the program loader allo-
cates the application’s stack and supplies the base address
of the stack to the monitor, and the monitor stores the
address in one of its filtering registers. To determine the cur-
rent end address of the stack, the monitor reads the value in
the processor’s stack pointer register. Using its filter register
containing the stack base address and the processor’s stack
pointer register, the monitor filters memory accesses to
addresses residing on the program’s stack.

Memory accesses to the program’s text and data sections
are also filtered. Modern computing systems support Data
Execution Prevention or Write-XOR-Execute policies that
halt program execution when memory in the text section is
written. Although reads to the text section are still permitted,
the same information can be obtained by disassembling the
application binary. Static and global variables are stored in
the data section and should be accessible by the application
without generating false positive heap memory safety viola-
tions. Segments that support dynamic linking, such as the
Global Offset Table and the Procedure Lookup Table, are
also located in the program’s data section and are accessed
by the program and the dynamic linker at runtime. The ker-
nel program loader supplies the monitor with the upper and
lower addresses of the text and data sections for statically
compiled applications, and the dynamic linker supplies the
monitor with the location of the text and data sections for
dynamically compiled programs. The monitor places the
upper and lower address of the text and data sections into

four filter registers and excludes memory accesses to the text
and data sections from heapmemory checks.

In addition to excluding particular memory regions, we
also suspend memory checking during two points of pro-
gram execution. First, we do not check memory addresses
before entry into the program’smain function or after exiting
from the program’s main function. This allows the program
loader or dynamic linker to perform setup or teardown rou-
tines without raising false positives. It is common for these
routines to access memory regions beyond the end of the
stack to communicate with the operating system kernel. If
checked, these memory accesses raise exceptions related to
initialization and cleanup procedures instead of memory
safety errors caused by the target application.

Memory checks are also suspended during execution of
dynamic memory allocation functions. This allows alloca-
tion functions to manage internal information located in
regions not explicitly allocated to the target application
without raising any memory safety exceptions. Our tracking
monitor can be easily extended to set a flag while it waits for
an allocation function to finish.

2.4 Security Analysis

To test our dynamic memory allocation tracking and mem-
ory checking monitor, we developed a software prototype
using the Pin instrumentation framework [23] for 64-bit
Linux systems. We used Pin to locate the malloc, calloc,
realloc, free, mmap, mremap, and munmap functions in
the target application and replace the signature of each pro-
cedure with its own custom wrapper function. System calls
that dynamically allocate memory, specifically mmap, mre-
map, munmap, and brk, are also tracked using similar sys-
tem call wrapper functions. This instrumentation has the
effect of invoking the wrapper function when the applica-
tion calls a dynamic memory allocation routine, allowing
our prototype to capture size arguments, invoke the
wrapped routine, and record the address ranges of dynami-
cally allocated regions. To enforce memory safety, we used
the Pin framework to verify all committed memory instruc-
tions that access addresses outside of filtered regions are
within the bounds of a valid heap memory region allocated
to the program.

We analyzed the security protection of our monitoring
approach by testing the Pin prototype against test cases from
the National Security Agency’s (NSA) Juliet Test Suite for C/
C++ [24]. The results listed in Table 1 show our monitoring
approach detects all out of bounds memory accesses to
dynamically allocated buffers including buffer underwrites,
overreads, and underreads. Our prototype also detects

Fig. 3. Memory accesses to filtered regions are not checked for memory
safety violations.

TABLE 1
Security Results Using the Juliet Test Suite

CWE Description Detected # Tests

122 Heap-based Buffer Overflow 60 62
124 Buffer Underwrite 10 10
126 Buffer Overread 6 6
127 Buffer Underread 10 10
415 Double Free 17 17
416 Use-after-free 18 18
590 Free Memory Not on Heap 57 57
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several types of invalid memory deallocations, such as free-
ing memory not allocated on the heap and double freeing an
allocated memory region. The results also demonstrate our
approach catches temporal memory violations such as use-
after-free errors. In addition, our prototype did not generate
any false positivememory violations during testing.

In addition to the Juliet Test Suite, we also examined the
effectiveness of our memory monitoring approach in detect-
ing real-world attacks that exploit memory errors. Using
our Pin prototype, we monitored applications containing
the Heartbleed and GHOST vulnerabilities. These two vul-
nerabilities are significant because they are remotely
exploitable, reliable, and affected a large number of systems
for several years before being publicly disclosed [25], [26].
Exploiting the Heartbleed and GHOST vulnerabilities
requires reading and writing memory beyond the bounds
of a dynamically allocated buffer, respectively. Our soft-
ware prototype detected exploitation of both vulnerabilities,
suggesting that our memory protection approach can detect
attacks against real-world systems that exploit unknown or
undisclosed vulnerabilities in production software.

Although our memory protection approach detected
over 98 percent of memory errors during security testing,
our technique shares the same limitations as previously pro-
posed memory safety approaches. Our technique cannot
identify sub-object boundaries within a dynamically allo-
cated region of memory and therefore cannot detect mem-
ory errors that occur inside the tracked memory region.
This limitation is common to all protection approaches that
track allocations at object-bounds granularity and is the rea-
son for the two undetected memory errors in Table 1. Simi-
lar to previous temporal memory protection solutions,
memory accesses made by dereferencing dangling pointers
are not detected if the memory region to which they point is
reused. Finally, memory errors and attacks targeting filtered
regions, such as the stack or data section, will not be
detected by our monitoring approach.

3 HARDWARE ARCHITECTURE

This section introduces our hardware architecture that
implements ourmemory protection approach.We describe a
hardware design that tracks dynamic memory allocations
and checks memory accesses to allocated memory regions.
Profiling experiments used to design our architecture for
lowmemory and performance overheads are also presented.

3.1 Top Level Design

The top level design of our monitoring hardware imple-
mentation is illustrated in Fig. 4. The Config input accepts

configuration options for dynamic memory allocation track-
ing such as virtual addresses of allocation functions to mon-
itor, system call numbers, processor registers containing
relevant arguments, and allocation size computation. The
Config port also accepts commands that set up memory
access checking such as opcodes of memory instructions,
processor registers containing effective memory addresses,
and values to place in filtering registers. Configuration of
the monitor should only be allowed when the processor is
operating in a privileged state, such as kernel mode.

Other ports on our hardware monitoring implementation
include the Ins, IP, and RegFile inputs and the Alarm output.
The Ins input corresponds to the instruction currently being
executed by the processor and is used for tracking system
calls that dynamically allocate memory and checking
instructions that access memory. IP is the current value of
the instruction pointer register and is used by the memory
allocation tracking hardware to detect and record dynamic
memory allocations. To simplify our hardware design, we
require only committing instructions and instruction
pointer values to be placed on the Ins and IP inputs, respec-
tively. This prevents incorrect tracking of dynamically allo-
cated memory regions during speculative execution, and
also prevents false positive memory violations from being
raised during speculative memory accesses. The RegFile
input corresponds to the processor’s integer register file and
is necessary for capturing allocation function arguments,
system call numbers, and memory addresses. Finally, the
Alarm output is set when a memory access violation occurs.

The Memory Allocation Tracking component shown in
Fig. 4 contains several hardware submodules, each config-
ured for detecting dynamic memory allocations made by a
single function routine or system call. The Memory Access
Checking component also contains multiple submodules
that individually check the opcode of a single memory
access instruction. The Control unit shown in Fig. 4 is used
to configure the memory allocation tracking and memory
access checking hardware. The Control unit also regulates
access to the Allocated Memory Range Storage component con-
taining the virtual addresses of dynamically allocated mem-
ory regions, and sets the Alarm output when a memory
access violation occurs. The design of the memory tracking,
checking, and storage components is discussed in the fol-
lowing sections.

3.2 Memory Allocation Tracking Architecture

The top level memory allocation tracking component con-
tains several of the hardware submodules depicted in Fig. 5.

Fig. 4. Top level design of our hardware architecture. Fig. 5. Hardware architecture of a dynamic memory allocation tracking
submodule.
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Fig. 5 contains the necessary hardware elements to support
tracking all of the allocation functions and system calls used
in our software prototype. The Config input is used to config-
ure all fivemultiplexers and the value contained in the Target
register. Allocation functions can be tracked by placing the
virtual address of the function in the Target register and con-
figuring the vertical multiplexer to output the IP input. Sys-
tem calls can bemonitored by placing the system call opcode
in the Target register, writing the system call number of the
system call to monitor in the SysNum register, and configur-
ing the vertical multiplexer to output the Ins input.

The four horizontalmultiplexers located at the top of Fig. 5
are configured to capture the correct return address, return
value, and argument values from the processor’s register file.
The configuration of these multiplexers is ultimately deter-
mined by the processor’s calling convention. Themultiplexer
located above the Size register selects the proper computation
needed to determine the size of the dynamic memory alloca-
tion. Functions that have a single size argument, such as
malloc, are configured to propagate the value in Arg0 to the
Size register. The other input to the multiplexer is selected
when tracking allocations made using the calloc function
where the size is determined by multiplying the arguments
specifying the number of elements and the individual ele-
ment size.

In addition to configuring the module to properly track
a specific allocation function, the Control unit in Fig. 5 ena-
bles registers at the appropriate times to capture return
addresses, return values, and function arguments. It also
sets the Flag output high while an allocation routine is exe-
cuting to suspend memory checking, and when the alloca-
tion function completes, the Control unit sets the Valid
output high. Using the Op output, the Control unit reports
the type of memory operation performed (allocation, deallo-
cation, or reallocation) to facilitate proper modifications in
the allocated memory storage module. The High and Low
outputs contain the upper and lower virtual addresses of
the newly allocated region. The Arg output is necessary for
capturing arguments to deallocation routines, specifically
the base address of a memory region to be deallocated. In

the event that a reallocation routine results in the relocation
of a memory region, Arg outputs the base address of the
memory region prior to the relocation, allowing the storage
module to properly update its contents.

3.3 Memory Checking Architecture

Fig. 6 illustrates the hardware design of a checking submod-
ule contained within the top level memory access checking
module. The opcode of a memory access instruction is sup-
plied on the Config port, and the Control unit writes the
value into the Opcode register. The location of the source
register operand within the instruction is also specified
using the Config port. The address ranges of filtered mem-
ory regions are externally supplied using the Config input,
and the Control unit stores the upper and lower address of
each filtered region in a set of filter registers.

When enabled, the memory checking submodule moni-
tors the instruction stream for an instruction whose opcode
matches the value in the Opcode register. When a match
occurs, the Control unit reads the processor register specified
by the instruction’s source operand and stores the effective
memory address in theAddr register. Thememory address is
then checked against the ranges stored in the filter registers.
If the memory address is not in a filtered region, the Valid
output is set, indicating the value on the Addr output port
should be checked for amemory access violation.

It is important to note that for simplicity, Fig. 6 only
shows the hardware necessary for supporting register indi-
rect addressing. Because modern processors support many
different addressing modes, the logic for determining the
effective address can become quite complex. It may be more
efficient to implement a mechanism by which the processor
sends the effective address to the memory checking hard-
ware directly.

3.4 Allocated Memory Storage Architecture

The following sections describes the hardware architecture
for storing and retrieving addresses of dynamically allo-
cated memory regions. The process of selecting a storage
format with low memory overheads is presented, followed
by an explanation of our hardware architecture. Perfor-
mance experiments are carried out using different configu-
rations of our architecture, and the results are discussed.

3.4.1 Storage Format

Before designing a hardware architecture for storage and
retrieval of metadata describing dynamically allocated
memory regions, we experimentally selected a storage for-
mat for the allocation metadata that minimizes memory
overheads. The first format we considered stores a single bit
of metadata for every dynamically allocated byte of virtual
memory. This metadata bit approach has been used in pre-
vious work to store different types of metadata [11], [14],
[15], [21], [27]. The second format we considered stores a
lower and upper address pair that marks the start and end
address of a dynamically allocated range of memory.

To evaluate the amount of memory required for both
metadata bit and range pair storage formats, we created a
profiling tool using Pin. Similar to our software prototype
described in Section 2.4, our profiling tool wraps dynamic

Fig. 6. Hardware architecture of a submodule that outputs memory
addresses for checking.
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memory allocation functions and extracts the allocation size
information. For each invoked dynamic memory allocation
routine, the amount of overhead for storing metadata bits,
32-bit range pairs, and 64-bit range pairs is computed by the
profiling tool and added to a running total. The average
dynamic memory allocation size is also tracked to deter-
mine the storage format that requires less memory overhead
on average.

Using our profiling tool, we ran the SPEC 2006 integer
and floating point benchmarks and determined the total
memory overheads of each storage format [28]. The mem-
ory overhead of storing metadata bits is a function of the
size of the dynamic memory allocation, however, the over-
head of storing a pair of addresses is constant for each mem-
ory allocation. For example, storing two 32-bit addresses
requires 64 bits of memory overhead, and storing two 64-bit
addresses requires 128 bits of overhead. Therefore, we
expected the metadata bit format to require less storage
overhead for benchmarks whose average allocation size is
smaller than the constant amount required for storing a
range pair.

Fig. 7 provides a visual representation of the 32-bit and
64-bit range pair overheads normalized to metadata bit
overheads for each SPEC 2006 integer benchmark. The
range pair format requires less storage overhead for bench-
marks whose normalized value is less than 1.0, and the
metadata bit format has a smaller memory footprint for
benchmarks with a normalized value greater than 1.0. The
32-bit and 64-bit range pair format requires less storage
overhead than the metadata bit format for all integer bench-
marks except 400.perlbench. The average allocation size for
400.perlbench is close to the constant value required to store
a range pair, indicating that the benchmark makes many
small allocations that are more compactly represented using
the metadata bit storage format. The remaining benchmarks
have larger average allocation sizes and therefore have less
overhead when the range pair format is used.

Fig. 8 shows the normalized memory overhead of the
range pair storage format for each SPEC 2006 floating point
benchmark. Normalized values below 1.0 indicate the range
pair representation has a smaller memory footprint, and
storing metadata bits requires less memory overhead for
benchmarks with a normalized value above 1.0. The results
for 453.povray are similar to 400.perlbench in that the
benchmark has a small average allocation size and metadata
bits are therefore a more efficient storage format. The results

for 447.dealII show allocations are more compactly repre-
sented by 32-bit range pairs than metadata bits, but storing
metadata bits has a smaller memory footprint than 64-bit
range pairs. This outcome suggests 447.dealII makes a set of
allocations that are more compactly represented as 32-bit
range pairs but not 64-bit range pairs when compared with
the metadata bit storage format. The remaining floating
point benchmarks have a smaller memory footprint when
storing allocated range information in both 32-bit and 64-bit
range pair formats.

Overall, our profiling experiments demonstrate the range
pair storage format requires less memory overhead than
storing metadata bits for 91.3 percent of SPEC benchmarks.
Based on these results, we elected to store dynamically allo-
cated memory region information as a lower and upper
address pair marking the start and end address of an allo-
cated range of memory.

3.4.2 Range Cache Architecture

Before presenting our range cache architecture, we briefly
discuss allocated range storage and lookup methods we
decided not to pursue. Hashing approaches are not appro-
priate because a range lookup requires every memory
address in a range pair to collide when hashed. Developing
a hash function that produces collisions for arbitrarily sized
address ranges within a large virtual address space is diffi-
cult. We also investigated a hardware implementation of a
binary search tree. However, hardware search trees are not
especially favorable because they require longer average
lookup times than caches, and they typically do not exploit
any program locality when the same range pair is accessed
frequently. Previous work suggests that balancing and
modifying trees in hardware requires a significant amount
of control logic that increases the overall latency of the hard-
ware tree [29]. We elected to pursue a caching architecture
because caches exploit program locality that can improve
overall lookup performance, and the control logic to sup-
port range lookup and modification is not overly complex.

Fig. 9 illustrates how a search operation is performed in
our range cache architecture when checking a memory
address for a violation. Each cache entry consists of two
registers containing a lower and upper address of a range
pair. The range cache is fully associative, and a cache hit
occurs when the value of a checked address is between the
lower and upper addresses of an entry in the cache. A range
cache miss implies a memory access violation, however, not

Fig. 7. Memory overhead of the range pair storage format normalized to
metadata bit storage overhead for SPEC integer benchmarks.

Fig. 8. Memory overhead of the range pair storage format normalized to
metadata bit storage overhead for SPEC floating point benchmarks.
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all allocated memory range pairs may be present in the
range cache. If the cache misses, a second level range cache
may be searched, or a software handler may be invoked to
service the miss.

In addition to performing memory address searches, the
range cache also supports update operations including
range insertion, range deletion, and range modification.
Fig. 10 shows the relevant hardware that implements range
cache update functionality. The execution flow through the
hardware elements is slightly different depending on the
type of update operation. Range insertions write the new
lower and new upper address into the least recently used
(LRU) range cache entry in a single step. Range modifica-
tions are performed when an application invokes a dynamic
memory reallocation or deallocation routine, and modifica-
tions are carried out in two steps. In the first step, the range
cache is searched for the range entry to be modified, and the
most recently used (MRU) index is updated with the entry
that hit. In the second step, the MRU index is used to write
the new low and high values to the range cache entry that
hit during the first step.

Our range cache architecture is similar to a content
addressable memory (CAM) in that every entry is searched
in a fully associative manner [30]. However, the range cache
uses greater than or equal to and less than or equal to compari-
son logic instead of equal to comparisons used in CAMs. The
range cache also requires an additional AND gate for every
lower and upper address pair to detect a range cache hit.
Finally, CAMs can output a variable length list of storage
addresses or associated values for a given input key. Our
range cache architecture only outputs a single bit indicating
whether the input address falls within a range in the cache.

CAM implementations can be found in many modern
computing devices that require fast memory accesses. For
example, network routers and switches use CAMs to per-
form MAC address and IP address forwarding at physical
link speed and can store hundreds of thousands of IPv4 and
IPv6 routes [31]. In addition, fully-associative translation loo-
kaside buffers (TLBs) are often implemented as CAMs, such
as in the ARM Cortex-A9 [32] processor. However, TLBs are
much smaller than hardware routing tables and usually con-
tain 512 or fewer entries. As shown in the following section,
themaximum range cache sizewe propose is only 256 entries
which is comparable with typical TLB sizes. Therefore, we
believe a CAM-based implementation of our range cache
architecture is both practical and scalable.

3.4.3 Range Cache Configuration Experiments

After designing the range cache hardware architecture, we
analyzed the effect of different cache configurations on the
range cache hit rate using benchmarks and real-world appli-
cation workloads. Our Pin prototype was extended to simu-
late the range cache functionality, including search, insert,
update, and remove operations. We selected theMRU-based
pseudo-LRU cache replacement algorithm to replace range
entries in the cache because it can outperform the standard
LRU algorithmwhile requiring less hardware resources [33].
Using our extended prototype, we measured the hit rates of
different range cache configurations using SPEC 2006 bench-
marks and real-world application workloads. A subset of
SPEC benchmarks were used to reduce the simulation time
required for each experiment to complete, and the bench-
markswere selected using [34] as a guide.

Fig. 11 shows the hit rate results for SPEC benchmarks
using single level range cache configurations varying in
number of range entries. As shown in the figure, hit rates
increase until a range cache size of 64 entries, at which point

Fig. 9. Range cache hardware for search operations.

Fig. 10. Range cache hardware for update operations.

Fig. 11. L1 range cache hit rates for SPEC benchmarks.
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increasing the range cache size does not significantly
improve overall hit rates for the benchmarks. However, the
hit rate for 453.povray continues to improve as the size of
the range cache is increased beyond 64 entries. The sudden
increase in hit rate between 16-entry and 32-entry cache
sizes for 436.cactusADM suggests the benchmark has a
working set size larger than 16 but less than 32 dynamically
allocated memory ranges.

We also analyzed range cache performance using the
real-world application workloads listed in Table 2, and the
experimental results using single level range cache configu-
rations are shown in Fig. 12. All workloads achieve hit rates
over 90 percent using just a 32-entry range cache. Unlike
SPEC benchmarks, increasing the range cache size steadily
improves hit rates to over 98 percent for all real-world
application workloads using a 256-entry range cache.

We also estimated the impact of a range cache on overall
system performance and found the runtime overhead to be
quite low. First, we measured the runtime of a subset of
SPEC benchmarks by averaging several runs on a Linux host
using a Core2 Quad processor running at 2.0 GHz with 8 GB
of memory. Total execution times were collected from the
same subset of benchmarks used for our range cache hit rate
experiments. Next, we used the miss counts from our single-
level range cache experiments to calculate the amount of
additional runtime required to service range cache misses
for each benchmark. As we have previously mentioned, we
expect our range cache to have an implementation similar to
a fully associative TLB and therefore select a miss penalty of
20 cycles which is comparable to that of modern TLBs [32].
Assuming a clock speed of 2.0 GHz, we find the total runtime
overhead of a 256-entry range cache is only 2.9 percent for
the subset of SPEC benchmarks. However, we expect the
actual overhead to be lower because our estimation assumes
runtime resolution of range cache misses cannot be fully or
partially overlapped with any other processor operations,
such as resolving data cachemisses.

3.5 Armor Synthesis Experiments

To determine the hardware implementation cost of Armor,
we augmented the open-source Risc-V Rocket Core with the
proposed Armor design [35]. Rocket features an in-order
pipeline with branch prediction, virtual memory, and an
FPU. The core is part of a system on chip generator written
with Chisel.

We added the allocation checking unit to the write-back
stage so all register values setup for the function call are
committed before the checker finds a matching program
counter. Additional read ports were added to the register

file to allow Armor to latch needed values for the given
function call. Alternatively, required register values could
be tracked and recorded via snooping the data used in the
write-back stage to remove the need for additional register
file read ports. The memory checking unit was added as
part of the memory stage, continuously watching incoming
virtual memory addresses. When an incoming address is
not present in the range cache and not filtered, the unit will
raise an exception that will flush the pipeline and trap to the
operating system’s exception handler.

In addition to Rocket, we also added Armor to the open-
source Berkeley Out-of-Order Machine (BOOM) [36].
BOOM features a more modern out-of-order pipeline with
register renaming, multiple execution units, and a dedicated
load-store unit. We decided to add Armor at the commit
stage of BOOM since all instructions are committed in pro-
gram order. We set up several register tracking mechanisms
which monitor committing instruction’s logical register des-
tination and record any writes to relevant registers. These
mechanisms hold a snapshot of the committed state of the
desired registers.

The Load-Store Unit (LSU) operates as its own functional
unit. Incoming loads are serviced by memory as soon as
possible, meaning memory is read speculatively. Even in
this case, the LSU keeps track of the memory addresses in
the load queue until the corresponding instruction is com-
mitted. This means that Armor’s memory range validation
can check the load at commit and raise an exception if the
address turns out to be invalid. All dependent instructions
which wrongly used the loaded data are flushed and the
processor will trap to the exception handler. Stores are not
sent to memory until commit and the determination of
address validity can be done in the same way as loads.

We used the Rocket Chip SoC generator to create a Veri-
log implementation of our designs. We then synthesized
them with the Cadence RTL Compiler using the NanGate
15 nm Open Cell Library [37]. Table 3 shows the synthesis
results for our designs when targeting a 1 GHz clock
frequency.

For the Rocket core, we observed a modest 1.08x increase
in both area and power requirements. The largest contribu-
tor to the increase is the 256-entry range cache, accounting
for 6.6 percent of the total area and 1.1 percent of the power.
In both the unmodified and modified Rocket core, the criti-
cal path was observed in the floating point unit, giving
about 30 ps of slack.

TABLE 2
Real-World Applications and Workloads

Application Workload

Firefox Visit google.com
Evince Scroll through a PDF
SSH Client Execute ls -l on remote
VLC Media Player 30 seconds of MP3 playback
LibreOffice Calc View a spreadsheet
LibreOffice Writer View a word document
LibreOffice Impress View a presentation

Fig. 12. L1 range cache hit rates for real-world applications.
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For the BOOM core, we observed a 1.1x increase in area
and power. Again, the range cache accounted for most of
the increase. The range cache implemented in the BOOM
core required additional check ports to handle multiple
memory commits in the same cycle. This introduced dupli-
cate range checking hardware that increased the overall
gate count and power consumption compared to the imple-
mentation for Rocket. Relative to the size of BOOM, the
range cache only took 7.9 percent of the core area and
1.1 percent of the total power. Similar to Rocket, our synthe-
sized BOOM design observed its critical path in the floating
point unit, leaving about 1 ps of slack in both the unmodi-
fied and modified design.

4 IMPLEMENTATION CONSIDERATIONS

This section briefly discusses some of the implementation
considerations we identified during testing that would need
to be carefully examined when integrating our monitoring
approach into a real system.

First, additional operating system support is needed for
our hardware to monitor multiple processes. Target regis-
ters in the memory allocation tracking modules, filtering
registers in the memory checking hardware, and other con-
figuration registers must be saved during a context switch.
Currently, Linux’s task_struct contains between 1,000-2,000
bytes of data. To support the Armor configuration, approxi-
mately 88 bytes of information will need to be stored in this
struct and reloaded during a context switch. In addition, the
operating system could store the 256 range cache entries,
resulting in an additional 4,096 bytes of information to store.
Process identification values should also be assigned to
range cache entries to associate an entry with the correct
application. These additional requirements are necessary to
support monitoring multiple programs and have the poten-
tial to add extra latency when performing context switches
and range cache operations.

Multithreaded applications running on our monitoring
hardware may require additional software support depend-
ing on the threading library implementation. Our experi-
ments utilized the pthreads library, which uses mmap to
dynamically allocate a region of memory for a thread’s
stack. This region is detected by the memory allocation
tracking hardware, and every subsequent memory access
made to the thread’s stack is verified by querying the range
cache. Although this behavior does not generate false posi-
tives, it may create a performance bottleneck when checking
every stack memory access. To avoid this pitfall, the base

address of the thread’s stack can be written into the stack
base filtering register, effectively eliminating range cache
searches when the thread’s stack memory is accessed.

Reserved stack regions that do not lie between the stack
base address and the stack pointer also require modifica-
tions to our hardware design. For example, the red zone is a
128 byte region located below the stack pointer that a func-
tion can use as temporary storage and is mandated by the
System V AMD64 ABI. We observed false positive memory
access violations when applications accessed memory in the
red zone because the memory addresses are not filtered and
do not belong to any tracked dynamically allocated memory
regions. Additional hardware is needed that subtracts the
size of the red zone from the current stack pointer before
performing address range filtering.

Many operating systems place a limit on an application’s
stack size. False positives triggered by accessing reserved
stack memory regions, such as the red zone, can be elimi-
nated by using the stack size limit to determine the end
address of the stack instead of using the stack pointer register
to filter stack memory accesses. However, stack overflows
that occur between the stack pointer and stack limit address
will no longer be detected by our monitoring hardware. Fur-
thermore, some operating systems support unlimited appli-
cation stack sizes by implementing a linked list of several
smaller stack memory regions. Additional filtering registers
are needed to filter all contiguous stack memory regions in
the list, and the operating system must write these registers
when a new stack region is added to the linked list.

In addition to stack filtering considerations, monitoring
certainmemory allocation functions also presents challenges.
The virtual addresses of custom or non-standard memory
allocation functions must be located manually and supplied
to the program loader. Hardware configuration options for
custom functions, such as the arguments to capture, must
also be communicated to the program loader. Functions that
break a contiguousmemory region into two separate regions,
such as munmap, introduce several new options for a range
cache implementation. A hardware design may elect to place
the address pairs for both ranges into the cache, or only
one address pair may be inserted into the range cache. If one
address range is placed into the cache, selecting between the
two pairs is a design choice that may impact the hit rate and
warrants further experimental analysis.

Configuring Armor for a specific ABI would limit its sup-
ported operating systems. However, ABIs in common use
today, such as AArch64, Risc-V and System V, feature a call
convention. To enable Armor to be convention-agnostic, a
function table that includes additional software configured
metadata in addition to the function’s start addressed can
be added. This table would include information about
which register or which stack offset where relevant argu-
ments are stored, and an opcode indicating what type of
function it is (malloc, calloc, etc...). Since Armor has read
access to the instruction stream and architectural registers,
acquiring a register can be configured via software at run-
time. Methods discussed previously can be leveraged to
extract arguments from stack locations.

While testing our Pin prototype, we observed that jump
instructions were periodically used to return from alloca-
tion functions instead of explicit return instructions.

TABLE 3
Synthesis Results of Rocket and BOOM Augmented with Armor

Core Area (mm2) Slack (ps) Power (mW)

Rocket 479,960 29 153.0

Rocket+Armor 518,175 30 165.4
Range Cache 34,015 - 1.8

Boom 1,060,592 1 476.3

Boom+Armor 1,173,302 1 524.6
Range Cache 92,543 - 5.7

Values reported are estimates from RTL compiler. Time slack is given for a
clock frequency of 1 GHz and is only reported for overall critical path.
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Support for this type of execution behavior requires the
monitoring hardware to determine the allocation function’s
return address by reading the address in the processor’s
link register and also using the address in the instruction
pointer register. While the monitor waits for the allocation
function to complete, the instruction pointer should be com-
pared with both the saved return address from the link reg-
ister and the saved return address computed using the
value in the instruction pointer register. No changes are
needed to capture the return value from the function
because the processor’s calling convention is still followed.

Additional hardware modifications are needed when
implementing our monitor alongside a processor that
passes allocation function arguments on the stack. The most
straightforward solution is for the processor to communi-
cate the function allocation arguments to the monitor
directly. Another potential solution is implementing a hard-
ware shift register that stores several of the most recent val-
ues pushed onto the stack, and then reading allocation
arguments from the shift register. The monitor could also
delay capturing function arguments until the beginning of
the allocation routine provided that the arguments are
always popped off the stack into specific registers.

Many modern processors are capable of loading multiple
bytes from memory with a single instruction. As a result,
multiple address checks are necessary for each memory
instruction that accessesmultiple bytes in a dynamically allo-
cated memory region. The memory checking hardware may
need to output a size parameter or a lower and upper address
pair to allow the range cache to check all accessed addresses.

Finally, systems that do not have memory page protec-
tions can use our monitoring approach to protect the integ-
rity of application binaries with only a slight modification.
Removing thememory addresses of an application’s text sec-
tion from the hardware filtering registers enables the moni-
tor to detect attacks targeting the program’s instructions. We
note that loading an application’s instructions from memory
will not cause our monitor to produce false positive viola-
tions because instruction fetches do not use explicit proces-
sor instructions to perform the load frommemory.

5 RELATED WORK

In this section, we review previous hardware and software-
based memory safety approaches. We also discuss previous
metadata caches related to our architecture.

5.1 Memory Safety

Previous memory safety work focuses on detection and pre-
vention of spatial and temporalmemory errors. Spatial mem-
ory errors occur when a pointer accesses memory beyond the
bounds of the object towhich it points, and temporalmemory
errors occur when a program uses uninitialized memory or
accessesmemory that has already been deallocated.

Tripwire approaches enforce spatial safety by surround-
ing allocated objects in memory with special bytes that gen-
erate exceptions when accessed. Software implementations
of tripwires incur high runtime overheads, reaching 20x
slowdown in some cases [38]. SafeMem [38] and Mem-
Tracker [14] implement tripwires in hardware to reduce
runtime overhead to less than 5 percent. Although tripwires

are an efficient solution for enforcing spatial safety, an
attacker can bypass them by simply incrementing a pointer
past the tripwire bytes before dereferencing the pointer.

Coloring techniques implement spatial safety by tagging
pointers and their respective memory regions with unique
identifiers called colors. A dereferenced pointer’s color
must be the same as the color of the memory region to
which it points. Previous hardware implementations incur
10 percent runtime overheads [15]. The primary drawback
to coloring approaches is that the spatial protection is prob-
abilistic. With only a finite amount of unique colors, there is
always a chance that multiple memory regions will share
the same color. Spatial violations involving a pointer that
moves between memory regions with the same color will
remain undetected.

Fat pointers provide spatial memory protection by extend-
ing pointer representation to include the lower and upper
address information for the memory segment. When the
pointer is dereferenced, it is verified to be within the bounds
specified by the lower andupper addresses. Jim et al. propose
a new programming language, Cyclone, that incorporates the
use of fat pointers to ensure spatial memory safety [13]. Mile-
wicz et al. retrofit existing source code with fat pointer repre-
sentation and runtime checking of pointers [8].

Hardware implementations of fat pointers aim to further
reduce the performance and memory costs. Watchdog [16]
uses micro-operations to query a hardware bounds table,
resulting in 15-24 percent runtime overhead on average.
Intel Memory Protection Extensions (MPX) provide fat
pointer support starting with the Skylake microarchitecture
[3]. Fat pointers are an attractive solution because, unlike
tripwires and coloring, fat pointers provide complete spatial
memory protection. However, because they change the
representation of a pointer, fat pointers require recompila-
tion of all source code used by an application. To address
the compatibility challenges of fat pointers, object bounds
approaches trade a small amount of spatial safety for com-
patibility by storing memory bounds of an object in a dis-
joint memory space. Pointer arithmetic operations are
checked against bounds information to ensure pointers
point to their intended object.

AHEMS [18] implements object bounds checking in hard-
ware using an asynchronous coprocessor architecture. Run-
time overhead is only 10 percent on average, but the
asynchronous processing of object bounds creates a window
of time between a spatial violation and its detection that may
be large enough to carry out an attack. Although object
bounds techniques are compatible with unsupported or
third-party code and libraries, the approach does not provide
full spatial protection because memory inside objects (such
as sub-objects, arrays, or structures) cannot be protected.

Many software techniques have been proposed to
enforce temporal memory safety. Memcheck [12] imple-
ments temporal safety using the Valgrind dynamic binary
instrumentation framework. AddressSanitizer [9] detects
use-after-free vulnerabilities at just 73 percent runtime cost
but requires recompilation of source code. MemorySanitizer
[10] uses static compiler instrumentation to check for use of
uninitialized memory and has 2.5x runtime overhead.

Our monitoring approach provides temporal safety as
well as spatial safety at object bounds granularity, and
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unlike all previous work, our technique does not require the
monitored application to be recompiled or instrumented.

5.2 Metadata Caches

Metadata processing architectures associate configurable
metadata tags with various components of program execu-
tion to enforce different security, debug, or performance
policies. Similar to data caches, metadata tags are often
stored in caches to improve performance.

Venkataramani et al. [14] analyze different metadata
cache configurations and find a 2 KB two-way set-associa-
tive dedicated cache provides the best balance of perfor-
mance and area cost [14]. Other work has examined the
effect of shared cache configurations in lower level caches.
Venkataramani et al. find a dedicated first level metadata
cache and shared lower level caches have negligible impact
on performance [27]. The same metadata cache configura-
tions are used in [15].

Several unconventional cache architectures have also
been proposed. Similar to classical data caches, previous
metadata cache architectures use addresses to lookup cached
metadata tags. Harmoni [19] uses instruction opcodes to
lookup cached metadata tags. Dhawan et al. implement
metadata tag compression to better utilize cache space [20].

Tiwari et al. assign metadata tags to address ranges. The
first level cache is used to determine which range an
address exists in, and the second level cache is used to
access the metadata tag associated with the range. Range
coalescing is performed in hardware to maximize the effec-
tive cache capacity [21]. Our caching architecture stores
metadata in a range pair format similar to Tiwari et al. but
does not perform range coalescing.

6 CONCLUSION

In this paper, we introduced an architectural approach for
tracking dynamic memory allocations and securing heap
memory accesses that does not require recompilation of
source code or instrumentation of the target application. We
showed how our hardware leverages a processor’s calling
convention to track memory allocations and validate mem-
ory accesses at runtime. A software prototype of our
approach detected 98 percent of memory errors in security
test cases from the NSA Juliet Test Suite and two real-world
exploits, demonstrating our architecture is effective in prac-
tice. Simulation experiments of our range cache architecture
using SPEC 2006 benchmarks and real-worldworkloads pro-
duced hit rates over 95 percent for a 256-entry range cache,
and the additional runtime overheadwas only 2.9 percent.

Directions for future work include additional range
cache analysis, including measuring worst case perfor-
mance overheads using different range and data cache
configurations, and experimenting with different multi-
level range cache designs to obtain higher hit rates. Sup-
port for uninitialized memory checking can be added to
the monitoring hardware to detect a wider range of tem-
poral memory errors. Future work might also explore
different filtering approaches that support non-contigu-
ous stack memory used by multithreaded applications
and systems that support unlimited stack sizes. Finally,
constructing a full system prototype in reconfigurable

fabric may reveal additional implementation details not
identified in this work.
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