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Abstract—A hardware/software configurable architecture for
Linear Quadratic Gaussian (LQG) control is presented, which is
a combination of a Linear Quadratic Regulator (LQR) control
law with a Discrete Kalman Filter (DKF) state estimator. LQG
controllers are ideal candidates for hardware acceleration, since
the DKF algorithm requires matrix inversion, which is time
consuming and potentially parallelizable. In this design, a func-
tionally equivalent DKF method, called the Sequential Discrete
Kalman Filter (SDKF), is used to transform the matrix inversion
into an iterative scalar inversion. The proposed design acts as
an Intellectual Property (IP) Core, where the user can adjust
scaling parameters in hardware and configuration parameters
in software to tailor the given architecture to a wide range of
physical systems. This differentiates the proposed design from
other LQG implementations since it is not application specific; in
fact, this architecture, which was targeted for a Xilinx Zynq-7020
FPGA, allows for systems of state size 4 to 128 and achieves a
speedup of 23.6 to 167 over a 2.7GHz quad-core processor. The
goal of this approach is to support a design methodology for
bridging the gap between control theory and embedded systems
applications. For evaluation, this architecture was compared to a
pure software LQG implementation. Additionally, the approach
and results of recent LQG and LQG-related hardware designs
were analyzed and compared to the proposed design.

Index Terms—FPGA, LQG, Kalman Filter, HW/SW co-design

I. INTRODUCTION

As technology advances, Cyber Physical Systems (CPS) are
becoming common among many different research domains
[1]. However, since CPS involve intricate knowledge of both
the physical system and the computational device, we assert
that collaborations among researchers of varying backgrounds
are becoming more and more necessary. One helpful tool
for connecting engineers of many backgrounds are field-
programmable gate arrays (FPGAs), which are frequently used
to prototype algorithm acceleration.

Due to the increasing complexity of state-of-the-art con-
trollers, control engineers have turned to FPGAs to accelerate
these computationally intense algorithms to yield practical
controllers [2]–[6]. FPGAs are ideal candidates due to the
immense opportunity for parallelism, which can lead to faster
controller update rates. Additionally, a hardware-software
codesigned FPGA controller can allow for a partitioning of
system requirements among the collaborating engineers (i.e.,
the workload of a controller design can be separated into
specialized tasks suited for each engineer).

Without this collaboration among different disciplines, im-
plementing such an algorithm on an FPGA would become a

difficult endeavor, especially for those unfamiliar with hard-
ware design. One control algorithm that is a prime target for
hardware acceleration is the Linear Quadratic Gaussian (LQG)
control algorithm. The LQG controller is composed of an
optimal state-feedback control law and a Kalman Filter state
estimator. Kalman Filters are computationally intense, so soft-
ware implementations for high-order systems are infeasible,
due to resulting in slow sample rates [7]. To this end, we have
developed a software-configurable FPGA-based co-processor
architecture that implements an LQG control algorithm for a
wide range of systems. This design is intended to be used
as an Intellectual Property (IP) Core, similar to those created
by Xilinx and Altera. To implement this IP core, a control
engineer would need to provide system specifications (state
size, sample rate, etc.) to generate a customized architec-
ture. A hardware engineer could then integrate this custom
IP core with the peripherals for the system (sensor inputs,
actuator outputs). Lastly, the software engineer would update
the remaining system parameters (controller gains, weighting
matrices) via software configurable registers.
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Fig. 1. An example system-level schematic showing how the hardware
controller would interface with the software, Plant-on-Chip (PoC), and a
variety of physical system.

A system-level overview of the proposed system is pre-
sented in Fig. 1. The intent of this design is to allow rapid
prototyping of an LQG controller among a variety of physical
systems, which can be emulated for correctness using a Plant-
on-Chip (PoC) [8]. The PoC is a hardware model of the
physical system that would allow the user to verify their
controller design before interfacing with the physical plant.

Contributions. There are three primary contributions of this
paper: 1) the design of a software-configurable LQG controller,
with single-precision floating point accuracy, 2) the design of
a modified multiply-accumulate structure to allow for reuse
of the adders when performing matrix addition, and 3) the



implementation of a scalable LQG controller in hardware
using the Sequential Discrete Kalman Filter.

Organization. The paper is organized as follows: Section
II overviews the related work in hardware implementations
of matrix inversion algorithms, Kalman Filters, and software-
configurable control algorithms. Section III introduces the
concept of state-space modeling as well as the LQG, LQR,
and SDKF algorithms. Section IV gives a detailed description
of the proposed design. Section V presents the evaluation of
the design against a pure software approach as well as against
other closely related architectures. Section VI concludes the
paper and details avenues for future work.

II. RELATED WORK

This section consists of three parts: 1) an overview of
common ways matrix inversion (which is typically the bot-
tleneck of LQG computations) is performed in hardware, 2)
a summary of recent hardware implementations of Kalman
Filters (a core component of LQG control), and 3) a survey
of control algorithms in FPGAs.

Matrix Inversion in Hardware: There are many ways to
solve for the inverse of a matrix. The standard analytical
definition of a matrix inverse (i.e., the adjoint divided by
the determinant) can be efficiently implemented in hardware
for matrices with low dimensionality [9]. However, as dimen-
sionality increases, this solution becomes infeasible, since the
computations grow exponentially. Another approach for solv-
ing matrix inversion is the modified Gram-Schmidt algorithm,
which is based on QR decomposition. Irturk et al. took this
approach in [10] and performed matrix inversion for up to an
8-dimensional matrix. Additionally, a common practice is to
use a systolic array based on the modified Faddeev algorithm
[7], [11]. Xu et al. proposed the SPMI algorithm in [12], which
is based on the Cholesky decomposition.

Kalman Filters in Hardware: Due to hardware’s ability to
exploit the parallelism available in matrix inversion, plenty
of applications of Kalman filters have been implemented in
FPGAs. Several designs for low-order systems have been
produced [7], [13], [14], with the implementation in Phuong
et al. [13] achieving sample rates as low as 5µs for a 3rd-
order system. However, these designs are application specific
and use high level design suites (LabView), which remove
the user from the intricacies of the hardware design. Johnson
et al. developed a Kalman Filter implementation in [11] for
image denoising, where he used a systolic array structure built
for a 3rd-order system as a sliding window to scan through
images, reporting a 512×512 image scan period of 33ms.
Their approach to handled matrix arithmetic using a systolic
array based on the modified Faddeev algorithm. Kettener and
Paolone proposed using a Sequential Discrete Kalman Filter
(SDKF) in [15] for state estimation, which replaces the matrix
inversion present in DKF with a sequential sequence of scalar
inversions. One common assumption must hold true for SDKF
to be equivalent to DKF: the sensors are uncorrelated (i.e.,
the act of taking a measurement from one sensor does not
impact the measurement of another sensor) [15]. This is a

reasonable assumption, since most sensors are uncorrelated;
however, Kettener and Palone go on to make a few more
simplifying assumptions that limit the scope of their design
to their specific application.

Control Algorithm Architectures: Since hardware designs
are often application-specific, implementing these computa-
tionally intense controllers in hardware is time consuming.
To help decrease the hardware design time, tools have been
created to generate HDL from high-level applications, such as
Matlab and LabView, which have been successfully used to
accelerate application specific control systems [16], [17]. In
fact, these high-level applications have been recently used to
implement LQG controllers [2], [5]. However, few controllers
have been presented that accelerate a control algorithm for a
variety of applications. One example is a software configurable
coprocessor for LQR control [18]. This configurable design
yields a 100× factor speedup over an ARM processor; how-
ever, this design uses a Luenburger observer in conjunction
with the LQR controller, which is susceptible to noisy sensor
information. Our work presents a software configurable co-
processor for LQG control.

III. LQG ALGORITHM

A linear quadratic gaussian (LQG) controller is the combi-
nation of an optimal state-feedback control law and a least-
squares regression state estimator. This section will lightly in-
troduce these concepts. First, an overview of state-space mod-
eling will be presented followed by a summary of the well-
known linear state-feedback control law, the linear quadratic
regulator (LQR). Lastly, a variation of a discrete Kalman
Filter, the sequential discrete Kalman filter (SDKF), will be
introduced. The LQG controller presented in this paper is a
combination of an LQR control law and SDKF state estimator.
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Fig. 2. The block diagram for a LQG controller.

A. State-Space Modeling

A discrete state-space model is a set of linear equations that
define the future dynamics of the system based on the current
dynamics as well as the current input to the system. The linear
discrete time-invariant state-space model is defined as:

xk+1 = Axk +Buk (1)

yk = Cxk +Duk (2)

Where
• xk is the state of the system at time k



• uk is the input(s) to the system at time k
• yk is the output(s) of the system at time k
• A is a n× n matrix that describes the internal dynamics

of the system
• B is a n×m matrix that describes the effect of the input(s)

upon the system
• C is a p× n matrix that describes how the states of the

system effect the outputs
• D is a p ×m matrix that describes the direct effect the

input may have on the outputs of the system
• n is the number of states of the system
• m is the number of inputs to the system
• p is the number of outputs from the system
With respect to a closed-loop control system, the state

update equation (1) defines how the system transitions from
state-to-state based on the systems dynamics (matrix A) and
the systems response (matrix B) to inputs. Equation (2)
describes the sensed outputs (yk) with respect to the system
dynamics (matrix C) and any feed-forward input (matrix D).

B. Linear Quadratic Regulator (LQR)

An LQR controller is an optimal state-feedback controller
which computes the inputs to the system (uk) by (3), where
K is a static gain matrix that allows uk to minimize the cost
function (4) [19].

uk = Kxk (3)

J(u) =

∞∑
k=1

xTkQxk + xTkNuk + uTkRuk (4)

The matrices Q, N , and R are known as weighting matrices
and are tuned to obtain the desired state-cost, state-input cost,
and input-cost, respectively [19]. By tuning these matrices, a
control engineer can obtain the corresponding K that meets
their control specifications (e.g., steady-state error, overshoot,
settling time). Since K is obtained from optimizing a cost-
function, it is said to be an optimal control law.

Combining (1) and (3), we obtain the closed-loop equation
for the system

xk+1 = (A−BK)xk (5)

One should take note that an assumption was made: all
states of the system are readily available for the control law
to use. In most circumstances, this is not the case, due to the
cost or impracticality of having a physical sensor for each
system state. However, if the system meets the requirements
for observability [19], a state estimator can be designed to
estimate the unknown states of the system.

C. Sequential Discrete Kalman Filter (SDKF)

A Kalman Filter algorithm is an optimal state estimator that
recursively minimizes the error of a random variable, in this
case, the states of a system [20]. The algorithm consists of
two stages: the prediction stage and the estimation stage. In
the discrete Kalman Filter (DKF) algorithm, the estimation
stage involves a (p× p) matrix inversion. Thus a variation of
the DKF, the Sequential Discrete Kalman Filter (SDKF), was

derived such that matrix inversion is avoided by sequentially
iterating through the estimation stage to produce the state
estimate using scalar inversion (for a proof of equivalence
between the DKF and SDKF, see [15]).

A Kalman Filter model (6-7) is a slight variation of the
equations given in (1-2).

xk+1 = Axk +Buk + wk (6)

zk = Hxk + vk (7)

The key difference is the addition of two Gaussian white
noise vectors: process noise (wk) on the state update equation
and measurement noise (vk) on the output equation. Notice
that the output of the system now is labeled zk, which is the
measured states of the system. Additionally, any feed-forward
component of the system has been absorbed into the state
equation and matrix H is usually equivalent to C in (2).

The noise vectors of the model are assumed to be zero-
mean, normally distributed, uncorrelated spectral white noise
[20]. As such, the following can be defined

wk ∼ N(0, Qk) vk ∼ N(0, Rk)

Qk = [wkw
T
k ] Rk = [vkv

T
k ] E[wkv

T
k ] = 0

where ∼ N(µ, σ2) stands for normally distributed with µ
mean and σ2 variance, E[·] is the expected value, and Qk

& Rk are the process and measurement covariance matrices,
respectfully, which are different than the weighting matrices
specified in (4).

It is also necessary to distinguish between the true state of
the system (xk) and the estimated state of the system (x̂k).
Additionally, the Kalman Filter estimates the states in two
stages: a prediction stage (x̂−k ) and an estimation stage (x̂+k ).
Thus, two different errors (e−k , e

+
k ) can be defined as well as

the error covariance matrices (Pk,
− , P+

k ):

e−k = xk − x̂−k e+k = xk − x̂+k
P−k = E[e−k (e

−
k )

T ] P+
k = E[e+k (e

+
k )

T ]

For both the DKF and SDKF algorithm, the prediction stage
of the Kalman Filter algorithm is defined as

x̂−k = Ax̂+k−1 +Buk−1 (8)

P−k = AP+
k−1A

T +Qk (9)

For the SDKF algorithm’s estimation stage, let i = {1, , p},
where p is the number of sensors/measurements taken, be the
index for an iteration, then the following are defined as

zk,i = (zk,i) Hk,i = rowi(Hk) Rk,i = diag(Rk)

With the initial values given in (10), (11-13) are iteratively
repeated to obtain the final state estimate and error covariance
matrix.

x̂+k,0 = x̂−k P+
k,0 = P−k (10)

Kk,i = P+
k,i−1H

T
k,i(Hk,iP

+
k,i−1H

T
k,i +Rk,i)

−1 (11)

x̂+k,i = x̂+k,i−1 +Kk,i(zk,i −Hk,ix̂
+
k,i−1) (12)



P+
k,i = P+

k,i−1 −Kk,iHk,iP
+
k,i−1 (13)

A key assumption is that the measurement covariance matrix
(Rk) is diagonal (i.e., there is no correlation among the
sensors of the system). This assumption is reasonable, since
the reading of one sensor rarely impacts another sensor’s value.

Choosing a sequential method for hardware implementation
may seem counterintuitive since this may remove opportunities
for parallelism; however, the parallelism leveraged in this
design comes from the individual matrix and vector compu-
tations, not necessarily the LQG algorithm. Thus, the choice
to use SDKF over the DKF was two-fold: 1) scalar inversion
is easier to implement than matrix inversion and 2) having a
scalar inverse allows for the opportunity to create a scalable
architecture to exploit the parallelism of matrix operations.

IV. ARCHITECTURE

This section details the hardware architecture used to im-
plement the LQG controller using SDKF. First, a high-level
overview of the architecture is presented, followed by a
description of the individual components.
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Fig. 3. Top-level schematic of the proposed architecture for the LQG
controller IP Core.

A. Overview

Fig. 3 illustrates our architecture for the HW/SW config-
urable LQG controller. There are three main components: 1)
the multiply-accumulate tree, 2) the scalar-adder and inverter,
and 3) the memory management architecture. Lastly how
software is used to configure the parameters of the system,
such as those referenced in Section III-A, will be described as
well as how sensors will interface with the LQG controller.

Table I shows the scheduling of (3), (8-9), and (11-13) into
individual matrix operations. The mapping of the states to
equations is as follows: states 1-2 correspond to the SDKF
prediction equations (8-9), states 3-5 to the SDKF estimation
equations (11-13), and state 6 to the LQR control-law in
(3). Notice that the states are separated into the three modes
of the multiply-accumulate tree: matrix-vector multiplication,
scalar multiplication, and element-wise addition/subtraction.
The LQG equations were arranged this way to maximize
the throughput of the pipeline by minimizing the number of
transitions between modes.

TABLE I
LQG EQUATION SCHEDULING DETAILS

State A B Op. Result
1.a Pk AT × T0,B
1.b A x̂k × T1,A
1.c B uk × T1,B
1.d A T0,B × Pk

2.a Pk Q + Pk

2.b T1,A T1,B + x̂k
3.a Pk Hk,i × T3,B
3.b Hk,i T3,B × S.A.1
3.c Hk,i xk × S.A.2
3.d Ri S.A.1 + Inv.
3.e zk,i S.A.2 − T2,B
3.f Inv. 0 ÷ T2,A
4.a T2,A T3,B × T1,A
4.b T1,A T3,B × T0,B
4.c T1,A T2,B × T1,A
5.a T1,A x̂k + x̂k
5.b Pk T0,B − Pk

6.a Klqr x̂k × uk

B. Multiply-Accumulate Tree

A multiply-accumulate structure is well suited to perform
matrix-vector and matrix-matrix multiplication; however, the
LQG control algorithm also requires scalar-matrix multipli-
cation and element-wise addition. To avoid implementing
another arithmetic structure, the multiply-accumulate tree was
modified by fanning out the outputs of all multipliers and
adders to their respective BRAMs as well as by multiplexing
the adder inputs to allow for element-wise addition/subtraction
(see Fig. 4). While this causes an increase in control logic, this
reuse of the adders exploits the parallelism of the element-
wise addition/subtraction while decreasing the overall size of
the design.

The multiply-accumulate structure has three modes: 1)
matrix-vector multiplication, 2) scalar multiplication, and 3)
element-wise addition/subtraction. The first mode is the stan-
dard multiply-accumulate tree for matrix-vector multiplication,
as seen in the bottom-left of Fig. 4. Notice that it can also
be used for matrix-matrix multiplication, though the time it
takes to perform this operation increases by a factor of n.
Additionally, if the number of rows (n) is less than the number
of multipliers, the multiply-accumulate structure will need
additional circuitry to accumulate the partial sums produced
by the lack of multipliers. Reduction circuits are incorporated
to accumulate these partial sums. As shown in Fig. 4, the
required number of reduction circuits, k, can be calculated by

log2(i) + k ≥ log2(n) (14)

where i is the number of multipliers in the multiply-
accumulate tree and n is the number of columns in the matrix.

The second mode is for scalar-matrix multiplication, which
is used in state 4 (see Table I). Rather than pad the standard
multiply-accumulate tree with zeros, the multiplier’s outputs
are fanned out of the structure early and fed back around to
their respective BRAMs, which reduces the latency to that of
the floating-point multipliers.

The third mode enables the reuse of the adders within the
multiply-accumulate tree, which is done by multiplexing the
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Fig. 4. Schematic of the proposed multiply-accumulate structure. Note that
while it is not shown in the diagram, all floating-point multiplier & adder
outputs are fanned out of this structure and fed to their respective BRAMs.
Additionally, the three operating modes of the circuit are shown, where the
data path for each mode is the dashed line.

inputs to the adders with the inputs to the multipliers. Since the
multiply-accumulate tree has one less adder than the number
of inputs, an additional adder is incorporated by generating
at least one reduction circuit. While it may be unnecessary
for matrix-vector multiplication, having the number of adders
equivalent to the number of inputs avoids multiplexing every
adder output to every Bloack RAM (BRAM), thus simplifying
the control logic and allowing faster system clock rates.

The notation of the multiply-accumulate tree’s Depth refers
to the layers of addition within the tree, as seen in Fig.
4. For this design, Xilinx floating-point v7.1 IP cores were
used for floating-point addition/subtraction, multiplication, and
scalar division in this design, with latencies of Lat+ = 12,
Lat× = 9, and Lat÷ = 30, respectively. Notice that if
reduction circuits are needed, then they will add additional
delay to the pipeline depth. By design, the pattern emerges
that a reduction circuit produces valid sums every 2k clock
cycles, where k is the index of the reduction circuit. Therefore
the multiply-accumulate tree’s pipeline depth (P.D.) can be
calculated by (15).

P.D. = Lat× + Lat+(log2n) +

log2n−Depth∑
k=1

2k (15)

With (15) defined, the timing of the states in Table I can be
calculated using the equations in Table II.

TABLE II
LQG STATE TIMING DETAILS

State Number of Clock Cycles
1 2n3+n2+nm

2Depth + P.D.

2 n2+n
2Depth + Lat+

3 n2+n
2Depth + 2(P.D.) +max{ n2

2Depth , (Lat+ + Lat÷)}
4 n2+2n

2Depth + Lat×

5 n2+n
2Depth + Lat+

6 mn
2Depth + P.D.

C. Scalar-Adder & Inverter

Among the equations performed in Table I, one should
note that 3.d & 3.e are scalar addition (S.A.) & subtraction,
respectively. Thus, using the pipeline to perform these scalar
operations, a single floating-point adder is included outside
of the multiply-accumulate tree to increase the parallelism of
the system. Additionally, the scalar inversion (3.f) (Inv) is
performed on the result of the scalar addition (3.d), so the
output of this scalar-adder is fed into a floating-point scalar
inverter, as seen in Fig. 5. With reference to Fig. 3, both the
output of this adder and inverter are fed into the multiplexer
so that the results may be stored in memory.

BRAM_SA

BRAM_SA_InData

RC_Out

1

SA_Out

Inv_Out

BRAM_SA_OutData

Fig. 5. Schematic of the scalar-adder & inverter. Having a scalar-adder &
inverter increases the system’s parallelism and avoids implementing a separate
matrix inversion architecture.

Additionally, since the measurement covariance matrix
(Rk,i) and the sensor inputs (zk,i) are only used 3.d and 3.e of
Table I, a specific BRAM, BRAM SA, is used to store these
values.

D. Memory Management Architecture

BRAMs are used to store the constants and temporary (T )
values used in the Table I equations. For each multiplier
there are two BRAMs, BRAM A and BRAM B, as seen in
Fig. 6. This was done to denote their correspondence to their
particular input to the multiply-accumulate structure.
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Fig. 6. Schematic of the memory management system. The multiplexed
outputs of the BRAMs allow for zeroes to be fed into the multiply-accumulate
tree when not reading from memory.

There were several memory storage issues to consider when
designing the controller. The first was determining which
outputs of the multiply accumulate tree should be fed back
into each BRAM. Another was determining how to schedule
the constants and temporary variables in memory. Lastly, a
mechanism for coordinating matrix-matrix multiplication as
well as matrix-addition was needed.

The first design challenge was determining the inputs to
each BRAM. As seen in Fig. 6, the output of each BRAM’s



corresponding adder and multiplier are fed back to allow
for addition/subtraction and scalar-matrix multiplication (e.g.,
Add(0) & Mult(0) are inputs to BRAM A(0) & BRAM B(0)).
The output of the multiply accumulate tree (RC Out) is
fed back to every BRAM to store of the results of matrix-
vector and matrix-matrix multiplication. Additionally, the AXI
interface is an input into the BRAMs so that they can be
initialized via software. BRAM A also has the output of the
inverter and BRAM B has the output of the scalar adder.

Another consideration was which constants and temporary
variables to put into each BRAM. Table III shows the break-
down for which constants were stored in which BRAM and
gives the formulation for the size of the variables given the
parameters n, m, p, and Depth.

TABLE III
BRAM CONSTANT AND VARIABLE MEMORY ALLOCATION

BRAM A BRAM B
A = n2

2Depth AT = n2

2Depth

Pk = n2

2Depth T0,B = n2

2Depth

T1,A = n
2Depth T1,B = n

2Depth

T2,A = 1 T2,B = 1
Hk = np

2Depth Hk = np
2Depth

B = nm
2Depth Qk = n2

2Depth

Klqr = mn
2Depth T3,B = n

xk = n
2Depth

uk = m
2Depth

Notice that T3,B is of size n. This is due to state 4.b of
Table I, which calculates the outer product (i.e., a (n × 1)
vector is multiplied by a (1 × n) vector to create a (n × n)
matrix). Note that the outer product requires each element of
the vector to be multiplied by each element of the other vector.
Rather than constructing a resource heavy cross-bar between
the BRAMs and the inputs to the multiply-accumulate tree,
every BRAM B holds the complete (n × 1) vector PkH

T
k,i

in T3,B . While this design choice requires additional logic
to perform the computations in states 3.b & 4.a, this is a
much more advantageous design choice since an n2 crossbar
is avoided and this method helps to equalize the number of
memory locations used in both BRAM A and BRAM B.

The last design consideration was how to store the matrices
across multiple BRAMs. Intuitively, there were two logical
ways to serially store matrices: 1) row-major order or 2)
column-major order. A method for switching between these
two storage mechanisms is needed to perform both matrix
addition and matrix multiplication. The mechanism used for
storing matrices is shown in Table IV. This switching mecha-
nism is utilized in state 1.d of Table I to align Pk for matrix-
addition.

E. Software & Peripheral Interface

Software is used to allow the user to input the system
parameters, i.e., dimensions of the system (n, p, and m) and
the system matrices (A, B, Klqr, etc.). The dimensions of the
system will be used in the software to calculate the timing

TABLE IV
BRAM MANAGEMENT MECHANISM

BRAM WriteAddr(i) ← BaseAddr +j
Procedure Switch Storage Scheme
If ((i ≥ 2Depth − 1)&&(k ≥ n2−1

2Depth ))

i = 0; j = l + 1; k = n
2Depth ; l = l + 1;

Else
j = k + l;
If(k ≥ n2−1

2Depth )

i = i+ 1; j = l; k = n
2Depth ;

End if;
k = k + n

2Depth ;
End if;
Procedure Maintain Storage Scheme
If (i ≥ n

2Depth )

i = 0;
If (j ≥ n2

2Depth )

j = 0;
Else
j = j + 1;

End if;
Else
i = i+ 1;

End if;

of the FSM and configuration of the hardware (e.g., how
to configure the multiplexers between reduction circuits). To
initialize the hardware controller, the calculated configuration
values will be loaded into software-configurable registers that
interface with the hardware and the matrix coefficients will be
loaded into the BRAMs.

Additionally, physical sensors must interface with the con-
troller. Sensor values must be regularly converted from raw
sensor data into their floating-point values and stored into
BRAM SA. This can be done in software or hardware, though
the user will need to consider their design constraints to choose
which method is better suited for each particular sensor input.

V. HARDWARE IMPLEMENTATION AND ANALYSIS

A. Evaluation Methodology

Our software configurable LQG controller was designed in
VHDL using the Vivado 2017.1 Design Suite. The prototype
target was a Zedboard with a Xilinx Zynq FPGA (XC7Z020).
The Zync FPGA consists of a reconfigurable fabric for custom
designs as well as a dual-core ARM Cortex-A9 processor
with configurable clock frequency of 100-667MHz. The LQG
algorithm presented in Table I was verified for a inverted
pendulum system in Matlab. The results of our LQG controller
were equivalent to the results obtained via Matlab, validating
that the LQG control algorithm was implemented correctly.

Two sets of experiments were performed. First, the LQG
with SDKF was implemented in C. Varying the number of
states, the amount of time to complete one iteration of the LQG
controller was experimentally obtained for an ARM processor
(with varying clock frequencies) and a 2.70GHz quad-core
processor. These results were compared to the hardwares
analytically calculated timing results for varying state size
and pipeline depth. The second was to compare the timing
calculations and size of design against that of other reported
controllers and Kalman filters of similar state dimensions.



TABLE V
SOFTWARE LQG W/ SDKF ITERATION TIME

Cortex-9
ARM Dual- Size (n = m = p)
Core CPU
Clock Rate 4 8 16 32 64 128
100 MHz 830µs 4.30ms 28.5ms 225ms 1.80s 15.3s
333 MHz 251µs 1.29ms 8.57ms 67.5ms 540ms 4.65s
667 MHz 128µs 662µs 4.39ms 34.6ms 277ms 2.38s
AMD FX-9800
2.70GHz - - - 3.00ms 32.0ms 199ms
Quad-Core

B. Software Comparison

Tables V and VI report the amount of time it takes for the
software and hardware to complete one iteration of the LQG
equations, respectively. With the hardware running at 100MHz,
the results show that there is a 15.5 to 2017 factor speed-up
over the embedded ARM processor running at 667MHz, with
n = 4 to n = 128 states, respectively. Compared with a quad-
core processor running at 2.7GHz, the results show a 23.6 to
167 factor speed-up, with n = 32 to n = 128, respectively.

TABLE VI
HARDWARE ITERATION TIME

Depth Size (n = m = p)
4 8 16 32 64 128

1 9.41µs 31.5µs 150µs 949µs 6.94ms 53.8ms
2 8.27µs 23.2µs 91.3µs 510µs 3.55ms 27.0ms
3 - 19.1µs 62.1µs 291µs 1.85ms 13.7ms
4 - - 47.5µs 182µs 1.00ms 7.01ms
5 - - - 127µs 582µs 3.68ms
6 - - - - 671µs 2.01ms
7 - - - - - 1.18ms

Additionally, one will note that in Table VI, the timing
equations for a system with more multipliers than the number
of states is not reported. This is due to the design choice of
not allowing every stage of the multiply-accumulate tree to
fan out back to the BRAMs. The routing for longer depth
pipelines would consume a large amount of resources, due to
the additional multiplexers needed at the input to the BRAMs,
which will decrease the system clock frequency.

TABLE VII
HARDWARE LQG RESOURCE UTILIZATION (ZYNQ - 7020)

SystemSize LUTs FFs BRAMs DSPs Max. fclk .
Depth # of × 53, 200 106, 400 140 220 MHz
2 4 4,682 4,698 10 20 150.128
3 8 7,052 7,726 18 44 145.349
4 16 11,675 13,762 4 76 145.285
5 32 21,903 25,833 66 140 138.045

C. Comparison Among Related Work

There are four main works that will be used for comparison:
1) a LQG controller implemented using Matlab HDL Coder
[2], 2) a DKF implementation using a systolic array [11],
3) another SDKF algorithm implementation [15], and 4) the
Software Configurable LQR controller [18].

An application of a LQG controller was presented in [2].
While their focus is on sensor selection, they implement a
LQG controller for their 3rd-order system using Matlab’s HDL
Coder. When compared with our fully-pipelined system with
n = 4, we achieve similar results in terms of sample rates
and resources consumed. This result validates that our design
could behave as an IP core in this application.

A DKF for image denoising using a systolic array is given
in [11]. Their approach implements a (3× 3) DKF and report
a 310MHz clock frequency with a 112ns latency to produce a
single denoised pixel, after an initial 270µs latency to fill the
pipeline. Since it was designed for a specific purpose (image
processing), their focus was on improving throughput (i.e.,
how quickly can they iterate through a small dimensional (3×
3) Kalman Filter). While their design is efficient for their 3rd-
order system, this is a highly specialized design which would
require a large amount of time to tailor towards a different
size system.

As presented in [15], a SDKF state estimator was designed
and implemented; however, several differences exist between
their design and the proposed one. First, they limited the
scope of their application to systems with a state transition
matrix A = In×n and input matrix B = 0. Additionally,
since they were only filtering their data, they did not have
a LQR gain matrix Klqr. For their largest system (n = 256),
they had a pipeline depth of 6 (i.e., 64 multipliers wide) and
reported using 262 BRAMs with an execution time of 35ms
[15]. Should our design match their proposed system (i.e.,
n = 256 and Depth = 6) we would consume approximately
768 BRAMs and get a sample rate of 14.0ms (assuming a
clock frequency of 100MHz). The reason our design requires
so much memory is that our design is more general, i.e., we
did not limit our design to systems with A = In×n and B = 0.

For the software configurable LQR controller in [18], the
authors reported for a configuration of n = m = p = 4 and
a pipeline depth of 1 (i.e., two multipliers), one control-loop
iteration took 0.73µs. For n = m = p = 128 and a pipeline
depth of 7 (i.e., 128 multipliers), they reported one iteration
of their control loop took 3.73µs. Based on these results, this
LQR implementation has a 12.9 to 316 factor speedup over
the LQG computation. Intuitively, it makes sense that the LQR
computations should take far less time than the LQG, since
the an LQR control law is one small computation within the
LQG. However, several design considerations are needed when
choosing between an LQR and an LQG controller. The main
difference between the two is that LQG models and filters out
sensor and system noise whereas the LQR does not. So, if the
system is susceptible to noise, an LQG controller will have
better control performance than an LQR controller. Another
design consideration should be minimum sample rate. If a
small sample rate is desired, then the LQR controller may be
better suited for that system than the proposed LQG design.

VI. CONCLUSION

A hardware/software configurable LQG controller was pre-
sented that leveraged the sequential discrete Kalman Filter



TABLE VIII
HARDWARE RESOURCE UTILIZATION AND TIMING BETWEEN RELATED WORK

Method Data Format FPGA Series System Size Max. fclk LUTs FFs DSPs BRAMs Min. Tsamp

LQG Floating-Point Zynq-7020 n = 4 150MHz 4,682 4,698 20 10 6.78µs
This Paper LQG Floating-Point Zynq-7020 n = 32 138MHz 21,903 25,833 140 66 447µs

LQG Floating-Point Zynq UltraScale+ n = 128 161MHz 81,013 98,175 524 258 15.7ms
[2] LQG Fixed-point Virtex-6 n = 3 25MHz 4,012 2,410 73 3 10µs
[11] DKF Fixed-Point Virtex-6 n = 3 310MHz 4,438 2,821 91 81 122ns
[15] SDKF Floating-Point Kintex-7 n = 256 - 43,166 49,088 357 262 35ms
[18] LQR Floating-Point Zynq-7020 n = 32 122MHz 42,138 48,143 128 66 1.57µs

to avoid matrix inversion and allow for a scalable hardware
architecture. This controller functions like an IP Core, which is
intended to help bridge the gap between control and embedded
systems engineers. This hardware LQG controller had a 23.6
to 167 factor speedup over 2.70GHz quad-core processor for
systems of size n = 4 to n = 128, respectively. A continuation
on this work would be to incorporate a Plant-on-Chip (PoC)
into this design to allow a user to verify system correctness
before interfacing with their physical system. In addition, a
comparison to Xilinx’s High-Level Synthesis (HLS) and a
GPU implementation of a comparable LQG control algorithm
might provide further insight into the design’s performance
and validate our design methodology. In a parallel direction,
future work may be to incorporate more complex control algo-
rithms (H∞, partial feedback linearization, adaptive control)
into configurable architectures.
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