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Abstract— Multiple aircraft collision avoidance is a challenging
problem due to a stochastic environment and uncertainty in
the intent of other aircraft. Traditionally a layered approach
to collision avoidance has been employed using a centralized air
traffic control system, established rules of the road, separation
assurance, and last minute pairwise collision avoidance. With the
advent of Urban Air Mobility (air taxis), the expected increase
in traffic density in urban environments, short time scales, and
small distances between aircraft favor decentralized decision
making on-board the aircraft. In this paper, we present a Markov
Decision Process (MDP) based method, named FastMDP, which
can solve a certain subclass of MDPs quickly, and demonstrate
using the algorithm online to safely maintain separation and
avoid collisions with multiple aircraft (1-on-n) while remaining
computationally efficient. We compare the FastMDP algorithm’s
performance against two online collision avoidance algorithms
that have been shown to be both efficient and scale to large num-
bers of aircraft: Optimal Reciprocal Collision Avoidance (ORCA)
and Monte Carlo Tree Search (MCTS). Our simulation results
show that under the assumption that aircraft do not have
perfect knowledge of other aircraft intent FastMDP outperforms
ORCA and MCTS in collision avoidance behavior in terms
of loss of separation and near mid-air collisions while being
more computationally efficient. We further show that in our
simulation FastMDP behaves nearly as well as MCTS with
perfect knowledge of other aircraft intent. Our results show that
FastMDP is a promising algorithm for collision avoidance that
is also computationally efficient.

Index Terms— Collision avoidance, Markov decision process.

I. INTRODUCTION

UNMANNED aircraft concepts have developed over the
past decade from hobbyist drones with limited capabil-

ities into autonomous vehicles capable of travelling beyond
line-of-sight with significant range and payload capabilities,
and soon unmanned air taxis carrying passengers known as
Urban Air Mobility (UAM) [1]–[5] or Advanced Air Mobility
(AAM) [6] will be a reality. UAM aircraft will be scheduled
in an on-demand basis by passengers using phone-based
applications like today’s ride-sharing services. This ad hoc
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demand will be significantly different than today’s structured
airspace for commercial air traffic. The air taxis will depart
from and land at vertical take-off and landing (VTOL) airports
known as vertiports and will need to avoid collisions with
other aircraft (manned and unmanned), avoid hazards such as
terrain and buildings, and respect airspace restrictions such
as temporary flight restrictions and restricted flight corridors
managed by air traffic control. While it should be expected that
some types of structured airspace concepts will be applied such
as separating different types of traffic by altitude, corridors or
lanes, the unpredictable nature of UAM will result in complex
traffic patterns in urban environments that will present new
challenges for airspace management.

As compared to today’s commercial air traffic management,
the smaller scales of operation and flight times mean that the
operations tempo will be faster, where rerouting decisions need
to be made quickly and without error. Collision avoidance
will be difficult as the aircraft will be constrained to similar
altitudes, will be closer to the ground than typical commercial
traffic, and may be more routinely affected by low-altitude
hazards such as migrating birds, low-lying clouds, rain, and
other issues that high-flying aircraft can avoid for much of
the flight. While we may ultimately use a form of centralized
air traffic management in and around an urban area, when
we consider communications and surveillance faults or unpre-
dictable (or unknowable) events such as bird flocks, we must
acknowledge that some form of on-board collision avoidance
capability will be necessary. Moreover, in a layered safety
system, an on-board collision avoidance system may be used
as part of a larger system of systems designed to ensure safety
of passengers and the public.

Collision avoidance is ultimately an algorithmic issue where
many potential algorithms can be chosen which each present
tradeoffs with respect to other algorithms. Whatever algo-
rithms are chosen, they must balance completeness, optimality,
and computational efficiency. Avionics hardware is typically
not as capable as traditional hardware available for main-
stream computing. Reference [7]–[9] certification bodies such
as the Federal Aviation Administration (FAA) and European
Union Aviation Safety Agency (EASA) require a very high
level of assurance from computing hardware and software
typically including design artifacts from hardware manufac-
turers, special design processes, and extensive verification.
Like other embedded environments, thermal, power, and size
limits of the aircraft platform also limit the hardware selected.
In computing hardware, this is most painfully felt as requiring
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low-power processors which are much slower than typical
desktop class processors available for mainstream computing.
Hardware selected for aviation typically is not the latest, most
high-performing hardware available but is instead the most
reliable hardware available that fits within the size, weight
and power constraints of the platform, and this often means
that algorithms will run much more slowly on this embedded
hardware.

The algorithms that will be most effective for these prob-
lems will be ones that can navigate while avoiding collisions
with large numbers of aircraft and obstacles while also remain-
ing efficient enough to run on lower-powered, light-weight
embedded computing hardware used in avionics with limited
processing, memory, and storage capability.

Markov Decision Processes (MDPs) [10] have received
attention in Air Traffic Management literature due to recent
successes of the Airborne Collision Avoidance System X
(ACAS-X) [11], [12]. ACAS-X provides advisories to pilots
about impending 1-on-1 collisions with other aircraft and
replaces an historical rules-based system known as Traffic Col-
lision Avoidance Systems (TCAS) [13]–[15]. ACAS-X uses
a Partially Observable Markov Decision Process (POMDP)
formulation to describe a 1-on-1 aircraft encounter and pro-
vides the best solution for a pilot to follow to avoid a
collision. MDPs are a powerful approach for describing
sequential decision making problems and are the mathematical
foundation that underpins Reinforcement Learning and Deep
Reinforcement Learning.

ACAS-X solves the POMDP offline and stores the optimal
policy in memory (or a “table”) to look up the action in
real time. Multiple ACAS-X variants exist, each with their
own lookup tables on the order of 200 MB - 1 GB. Other
offline MDP-based collision avoidance approaches have been
proposed in [16]–[20] which use various MDP-based problem
formulations and all result in large (multi-megabyte) lookup
tables which are used at run time. In [16], the authors describe
a similar multi-agent collision avoidance problem based on a
multi-agent MDP formulation (MMDP) and is solved offline
with value iteration and a QMDP heuristic. While the problem
required 7 hours to solve and generated a 77 MB lookup table,
the lookup table query performed for each pair-wise encounter
is fast and results in good collision avoidance behavior. In [17],
the authors follow a similar line of investigation to examine
multi-rotor collision avoidance with a POMDP formulation
solved offline using a QMDP solution method which converts
a POMDP into an equivalent MDP which can be more
easily solved. The authors report that finding an appropriate
state discretization for the problem was possible in 11 days
and optimization of POMDP parameters was performed over
3 weeks. While runtime performance measurements are not
provided, this type of approach results in a table lookup
which should be very fast. The lookup table developed for this
approach contained approximately 9.5 million entries. Multi-
agent collision avoidance is discussed as an extension but is
not covered within the scope of the paper. In [18], the authors
use a partially observable MDP (POMDP) solved with nom-
inal belief-state optimization (an approximation method) to
perform UAV path planning and explores collision avoidance

between a small set of obstacles, including other UAVs.
Though many applications and case studies are presented,
only very vague computational performance measurements are
taken (350 ms). It is unclear if all problems take 350 ms
to solve, if the problem takes 350 ms per iteration, etc.,
so it is difficult to draw conclusions on performance using
this approach. In [19], the authors use a mixed-observability
MDP (MOMDP) formulation to address vehicles passing other
vehicles on roads, which is a special case of a POMDP where
certain dimensions of the belief space are assumed to be
known in order to make the POMDP tractable. The authors
use this approach to implement an agent which can safely
enter the lane of oncoming vehicle traffic in order to pass a
vehicle while avoiding collision with oncoming vehicles. The
authors sidestep the problem of solution time required for the
MOMDP and do not provide performance measurements for
solving the problem, instead referring readers to the state-of-
the-art offline POMDP solvers and indicate that performance
will improve as computing technology and POMDP solvers
improve. Nonetheless, once the problem is solved, a lookup
table approach is used to efficiently obtain the required action,
much in the way that ACAS-X operates. In [20], the problem
of optimal control of a UAV with feedback in the presence
of wind uncertainty is studied, and takes an approach that
is equivalent to an MDP (though they do not use that term
explicitly.)

In this paper, we describe an online algorithm called
FastMDP which performs 1-on-n collision avoidance while
remaining computationally efficient. FastMDP differs from
traditional MDP solution approaches such as those described
above by taking advantage of structure that is present in the
MDP’s value function which allows for a computationally
faster way to solve the MDP. FastMDP solves the MDP
online and does not require a large lookup table to be stored.
FastMDP also computes portions of the value function on
demand, meaning that only the portion of the value function
that is needed for the agent to take an action need be computed.
These features allow FastMDP to be used on low-power
embedded hardware at high rates of processing and can be
used in a real-time system. This performance comes at a cost
though: FastMDP can currently only operate on a restricted
subset of MDPs and is not a generic MDP solver, which
we discuss in more detail in Section III, but the restricted
MDP subset is still useful in solving problems such as aircraft
collision avoidance. We compare the FastMDP algorithm to
two baseline algorithms: Optimal Reciprocal Collision Avoid-
ance (ORCA) [21] and Monte Carlo Tree Search [22], [23].
We show how FastMDP can be used to effectively perform
collision avoidance and also provide some description of how
FastMDP can be tuned for a problem such as aircraft collision
avoidance.

Optimal Reciprocal Collision Avoidance (ORCA) [21] is
a popular online collision avoidance algorithm that scales to
many agents (n-body). ORCA was studied for 1-on-n aircraft
collision avoidance in [24] which we compare to FastMDP in
this paper.

Monte Carlo Tree Search (MCTS) [22], [23] is an online
sampling based approach to solving MDPs. MCTS for 1-on-n
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aircraft collision avoidance has been explored in [24], [25] in
2D environments with varying strategies to keep the problem
tractable, to improve collision avoidance performance, and to
scale to large numbers of aircraft, which we also compare to
FastMDP in this paper.

The FastMDP algorithm [26] is an online approach that
solves MDPs quickly and has been applied to collision avoid-
ance (2D [27] and 3D [28]), terminal area guidance [29],
pursuit-evasion (dog fighting) [30], and pre-departure flight
planning [31] and has been shown to scale to thousands of
aircraft. While the FastMDP algorithm has shown promise, this
paper is the first extensive study of the algorithm compared to
other well known collision avoidance algorithms. This paper
sets out to answer the question of whether FastMDP is com-
petitive with state of the art collision avoidance algorithms.

The major contributions of this paper are:
• Extension of the algorithm from [26] to deterministic,

terminating MDPs.
• Extension of FastMDP with an intruder intent model.
• Characterization of collision avoidance, throughput, and

computational performance for FastMDP and two other
online collision avoidance algorithms.

• Extension of proofs from [28] to cover MDPs with
terminal positive rewards.

We provide background on MDPs and related topics in
Section II. In Section III we describe and extend the FastMDP
algorithm. Section IV describes the experimental setup and
simulation environment. In Section V, we show how this new
algorithm compares to the baseline algorithms and provide
concluding remarks in Section VI.

II. BACKGROUND

A. Markov Decision Processes

MDPs are a framework for sequential decision making with
broad applications to finance, robotics, operations research and
many other domains [32]. MDPs are formulated as the tuple
(S, A, R, T ) where st ∈ S is the state at a given time t , at ∈ A
is the action taken by the agent at time t as a result of the
decision process, rt = R(st , at , st+1) is the reward received
by the agent as a result of taking the action at from st and
arriving at st+1, and T (st , a, st+1) is a transition function that
describes the dynamics of the environment and captures the
probability p(st+1 | st , at ) of transitioning to a state st+1 given
the action at taken from state st .

A policy π can be defined that maps each state s ∈ S
to an action a ∈ A. From a given policy π ∈ � a value
function V π(s) can be computed that describes the expected
future reward that will be obtained within the environment by
following the policy π and can be expressed over an infinite
horizon as:

V π(s0) = E

[ ∞∑
t=0

[
γ t R(st , at , st+1) | π

]]
, (1)

where s0 is the initial state, γ is a discount factor that defines
the infinite horizon and lies in the range 0 < γ < 1,
and st+1 is sampled from the distribution described by the
transition function T (st , at , st+1). The discount factor γ serves

to balance immediate reward with future reward. Small values
of γ close to zero favor immediate rewards, whereas large
values of γ near one favor long term rewards. The value
function aggregates all of the agent’s knowledge about future
expected reward into a single metric that can then be used as
an indicator of how to obtain the best future expected reward.

The solution of an MDP is termed the optimal policy π∗,
which defines the optimal action a∗ ∈ A that can be taken from
each state s ∈ S to maximize the expected future reward. From
this optimal policy π∗ the optimal value function V ∗(s) can
be computed which describes the maximum expected value
that can be obtained from each state s ∈ S. For a given
MDP, the optimal value function V ∗(s) is unique but multiple
optimal policies π∗(s) may exist which result in the same
value function V ∗(s).

The fundamental way to solve a MDP is by way of a relation
known as the Bellman Update Equation:
V (st ) = max

a

∑
st+1

T (st , a, st+1)
[
R(st , a, st+1)+ γ V (st+1)

]
(2)

which is a recursive relation that indicates that the value of the
current state is related to the value of the states it is connected
to. For the optimal value function, V ∗(s), the value at every
state is maximized and following this relationship results in an
optimal trajectory through the state space. The optimal value
function can be found using an iterative approach known as
Value Iteration which applies the Bellman Update Equation
across the state space at each iteration. The Value Iteration
algorithm is guaranteed to converge to the optimal value
function V ∗(s) down to an arbitrarily small stopping condition
� known as the Bellman residual. Value Iteration is known to
converge in polynomial time [33], [34] but this is polynomial
in the size of the state space |S| and action space |A|.

Historically, many algorithms have been devised to solve
MDPs. A fundamental problem with MDPs is that the size
of the state space |S| and the size of the action space |A|
both can grow quickly either due to high-dimensionality of
the space, or due to increasingly fine-grained discretization to
approach a continuous representation. Bellman [10] referred to
this as the curse of dimensionality and much of the literature
has been devoted to finding ways to mitigate these effects to
keep a particular MDP tractable so that a solution may be
found. We now describe one such method known as Monte
Carlo Tree Search.

B. Monte Carlo Tree Search

MCTS [22] is a powerful approach to solve MDPs when
a model is available for simulation of future possible actions
but the state-action space is too large to represent efficiently.
MCTS was explored for aircraft collision avoidance in [24]
and we here we provide a brief summary of the main features
of the algorithm.

MCTS is an approach to solving MDPs which uses tra-
jectory sampling to arrive at a statistical representation of
expected return. Starting from the current state, possible
actions are tentatively explored. Actions which seem promis-
ing are then further expanded focusing search effort on actions
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which seem to be leading to higher reward. Multiple trajec-
tories are sampled as the tree is built in order to develop
a statistical understanding of the expected reward of each
action.

As the tree is developed, a successively better approximation
of expected reward is developed. In the limit with an infinite
number of samples, the solution provided by MCTS converges
to the true value function for the MDP. In practice, a pre-
determined finite number of samples is used by defining some
termination criteria such as a fixed number of trajectories
having been explored, or a pre-determined time budget has
elapsed. After the termination criteria is met, the best available
action is selected by examining the children of the root of
the search tree to determine which action results in the most
expected reward. This best action is then taken by the agent in
the environment. MCTS is thus an any-time algorithm where
a result can be provided at any point but can improve if
more computational time is available. MCTS can then be
used in real-time systems such as UAVs assuming enough
computational power is available to compute a meaningful
result.

III. FASTMDP

FastMDP solves a certain class of MDPs very quickly
compared to other methods by exploiting structure in the
value function. FastMDP is built upon the observation that
the Bellman Update results in predictable peaks in the value
function, where the peaks are generated by rewards in the
MDP. Given the rewards, FastMDP determines the corre-
sponding peaks and is able to reconstruct the value function,
leading to the ability to solve the MDP more directly than
the traditional iterative approaches. In one sense, the Bellman
Update can be considered a performance bottleneck in deter-
mining the solution, and FastMDP offers a way to bypass
this bottleneck. FastMDP cannot currently be applied to a
general MDP and is instead currently restricted to a subset
of MDPs. This paper covers the following subclass of MDPs:
(a) deterministic transition function, (b) a state space which
maps to an underlying metric space with an available distance
metric (e.g., Euclidean distance metric), (c) a terminating MDP
where upon receiving a positive reward the MDP transitions
to an absorbing state S∅. This subclass of MDP corresponds
to an agent (e.g., an aircraft) exploring a 2D or 3D world
with deterministic actions and dynamics where the simulation
ends when the agent reaches a goal (e.g., a vertiport). (The
non-terminating case is explored in [26].)

Formally, let us define a distance function δ(s, si ) as the
minimum number of actions a ∈ A needed to reach state
si ∈ S starting from state s ∈ S.

δ(s, si ) = min
t
{t | T (s, a1, a2, · · · , at = si }, (3)

where a1, a2, · · · , at represent a sequence of actions taken at
each time step, and T (s, a1, · · · , at ) represents the transition
function applied at each time step t using the sequence of
actions starting at state s.

We define a point source reward as a positive reward of
magnitude rg that is obtained at only one state sg and zero

everywhere else:

r(s) =
{

rg > 0 if s = sg

0 otherwise.
(4)

Theorem 1: The value function for a deterministic termi-
nating MDP with a single positive point source reward with
magnitude rg at state sg with MDP discount factor 0 < γ < 1
has the form:

V (s) = γ δ(s,sg) · rg, (5)

where s ∈ S.
Proof: By definition, if our initial state is sg we collect

reward with magnitude rg , whereupon the MDP terminates,
resulting in a value at state sg of V (sg) = rg .

Let us denote the set of all states k-steps from sg as Sk =
{s ∈ S | δ(s, sg) = k} where k ≥ 0 is an integer, with S0 =
{sg}, S1 with all states one step from sg , etc. Let us now
assume that we start not at state sg , but at some state s1 ∈ S1.
As no immediate reward is collected at state s1 if we take an
optimal action a∗ ∈ A which leads to S0, the expected future
reward is:

V (s1) = γ · V (sg)

= γ δ(s1,sg) · V (sg)

= γ δ(s1,sg) · rg. (6)

Suppose for states sk+1 ∈ Sk+1 and sk ∈ Sk :

V (sk+1) = γ · V (sk). (7)

Then for states s2 ∈ S2 and s1 ∈ S1:

V (s2) = γ · V (s1)

= γ ·
[
γ δ(s1,sg) · rg

]
= γ · γ · rg

= γ δ(s2,sg) · rg . (8)

Then by induction, we see that the value of any state s is
as follows, completing the proof:

V (s) = γ δ(s,sg) · rg . (9)

�
When considering multiple positive rewards, multiple peaks

form in the value function and the resulting value function is
the max over all peaks at each state s ∈ S. To prove this,
we will show equivalence to the Bellman optimality equation
V ∗ = LV ∗, where L is the Bellman operator. It is well known
that the Bellman operator L is a contraction mapping over
the max norm of the functional V π (s) of all possible value
functions resulting from all possible policies π ∈ �, and that
the optimal value function V ∗ is a fixed-point solution to V =
LV due to the contraction mapping property of L [35], making
the optimal value function V ∗ a unique solution and V ∗(s) ≥
V π (s) ∀s ∈ S for all policies π ∈ � and it follows that
V ∗(s) = maxπ∈� V π (s), ∀s ∈ S.

Let S+ = {s ∈ S | R(s, a) > 0} be the set of states where
positive reward is collected, and SZ = {s ∈ S | R(s, a) = 0}
be the set of states where no reward is collected.
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Note that the value at any state si ∈ S+ for a terminating
MDP is by definition known and fixed, as the state si is the
absorbing state where reward Ri with magnitude ri is collected
and no subsequent reward can be collected. The value at such
a state si is V (si ) = ri . Thus what remains is to identify the
value at the other states in SZ .

Theorem 2: The maximum of the optimal value function
V ∗(s) occurs within S+.

Proof: We prove by contradiction. Let smax =
arg maxs∈S V ∗(s) and assume smax ∈ SZ . From Theorem 1,
it is clear that any state s ∈ SZ requires one or more steps to
reach its goal sg and is therefore in Sk where k > 0. But for
k > 0, sk+1 ∈ Sk+1, and sk ∈ Sk , V (sk+1) = γ · V (sk) = γ k ·
V (sg) and given 0 < γ < 1, then V (sk+1) < V (sk) < V (sg)
and implies that smax then lies within S0 and therefore S+
which is a contradiction. �

Theorem 3: States with reward of zero, SZ , are determined
from the states with non-zero reward, S+.

Proof: If we examine the recursive form of the Bellman
equation at the optimal policy π∗ with the (stationary) V ∗:

V ∗(s) = max
a

∑
s �∈S

T (s, a, s�)
[
R(s, a)+ γ V ∗(s�)

]
, (10)

where s� is a possible next state resulting from taking action
a from state s and note that the immediate reward R(sz , a) =
0, ∀sz ∈ SZ ,∀a ∈ A, then for sz ∈ SZ the value V ∗(sz) is
then determined only by discounted future reward:

V ∗(sz) =
∑
s �∈S

T (s, a∗, s�)γ V ∗(s�)

= γ
∑
s �∈S

T (s, a∗, s�)V ∗( s�), (11)

noting that
∑

s �∈S T (s, a, s�) = 1.
Thus, for the optimal action a∗ ∈ A:

a∗ = arg max
a

∑
s �

T (sz, a, s�)V ∗(s�), (12)

we can rewrite the Bellman equation as,

V ∗(sz) = γ
∑

s �
T (sz, a∗, s�)V ∗(s�) (13)

And given that the discount factor 0 < γ < 1, we see that:
V ∗(sz) ≤

∑
s �

T (sz, a∗, s�)V ∗(s�) (14)

Furthermore, if V ∗(s�) > 0, then:
V ∗(sz) <

∑
s �

T (sz, a∗, s�)V ∗(s�), (15)

which is to say that V ∗(sz) can only be equal to V ∗(s�) if both
are zero.

Consider a sequence of states in SZ over n time steps,
{s(1)z , s(2)z , · · · , s(n)z } and suppose that each element in the
sequence is the result of the optimal action a∗ ∈ A at each
step that satisfies a∗ = arg maxa γ

∑
s � T (sz, a, s�)V ∗(s�). Let

us say that at time step n + 1, by taking the optimal action
a∗ we reach some state sp ∈ S+. If we then consider sp and
s(n)z , we recognize that that sp ∈ S0 and s(n)z ∈ S1 and that

s(i)z ∈ Si−(n−1). Thus by induction, all states sz ∈ SZ lie within
some Sk with k > 0 and their value is therefore derived from
the value of states in S+. �

Theorems 2 and 3 taken together imply that that all
sequences starting in SZ must therefore terminate in S+. The
question is from a given state sz ∈ SZ , which in which state
sp ∈ S+ will the sequence terminate?

Theorem 4: For a deterministic MDP with N positive ter-
minal rewards Ri ∈ {R1, · · · , RN } with reward Ri located
at si having magnitude ri and a single point source reward
value function of Vi (s) = γ δ(s, si ) · ri , the MDP’s optimal
value function V ∗(s) is:

V ∗(s) =
{

ri if s = si ∈ S+

maxi Vi (s) if s ∈ SZ .
(16)

Proof: By definition of this MDP with terminating positive
rewards, the value at any state within S+ is known and fixed
to be V (si ) = ri , as the state si is an absorbing state where
reward Ri with magnitude ri is collected and no subsequent
reward can be collected.

For all states in sz ∈ SZ , the expected value of obtaining
reward Ri located at state si ∈ S+ is:

Vi (sz) = γ δ(sz ,si ) · ri . (17)

It follows that the maximum value is then obtained at each
state with:

V ∗(sz) = max
i

Vi (sz). (18)

By definition, all states in S+ are at a location of a reward,
and a point source reward Ri at the reward’s state si has value
of Vi (si ) = ri . Therefore the maximum possible value at each
state is then V (s) = maxi Vi (s), ∀s ∈ S completing the
proof. �

In [26] it is shown that in a deterministic MDP, negative
point source rewards do not have the same exponential decay
behavior and are confined to a single state where the negative
reward is located. The concept of a risk well is introduced
to model the exponential decay of a negative reward which
behaves similarly to the positive reward above. Risk wells
can be explicitly constructed with a finite number of negative
rewards carefully constructed to result in the desired expo-
nential decay, but it was shown that this was computationally
intensive to do so. Instead, the risk well is modelled as a single
negative reward with magnitude rn centered at a state sn which
decays exponentially out to a radius Rn . With this model,
a similar algorithm used to compute positive rewards can be
used to also compute the negative risk wells. In [26], this result
was not proven and only shown to approximate the true value
function with both positive and negative rewards, and thus
our solution here is also only an approximation of the true
value function V ∗(s) when negative rewards are present and
we leave proofs for negative reward for future work. Figure 1
illustrates a risk well.

For a negative reward R j with magnitude r j at state s j , the
well P−j formed by the negative reward is:

P−j (s) = γ δ(s,s j ) · −r j . (19)
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Fig. 1. Risk well centered at state sn with radius Rn .

A positive peak P+i is the value function formed from a
positive reward Ri with magnitude ri at state si is defined as:

P+i (s) = γ δ(s,si ) · ri , (20)

The value function V+ from all N+ positive reward peaks
P+ = {P1, P2, · · · , P N+ } is the state-wise maximum over all
positive peaks:

V+(s) = max
i

P+i (s),∀i = {1, · · · , N+}. (21)

Likewise, the value function V− for all N− negative rewards
peaks P− = {P1, P2, · · · , P N− } is the state-wise minimum
over all negative peaks:

V−(s) = min
j

P−j (s),∀ j = {1, · · · , N−}. (22)

The resulting value function for the MDP is then the
state-wise sum of V+ and V−:

V ∗(s) = V+(s)+ V−(s). (23)

Forward projection is used to determine which states are
reachable within the state space given the allowable actions the
agent can take from the current state. The forward projection
applies an action (or actions) to the dynamics equations
(defined in Section IV) for a duration of time and returns the
resulting state(s).

Previous FastMDP approaches [26]–[28] assumed that
intruder aircraft maintained their present heading and velocity
when performing planning. In this paper we expand on this
previous work by borrowing the roll-out concept from MCTS
to better predict intent of intruder aircraft. At each planning
step of the algorithm, we begin by computing a tree TI

for each intruder aircraft I out to a depth RW in seconds
(an experimental parameter) in steps of RK seconds (an
experimental parameter) where each intruder takes a random
action for the duration of the RK time step. We perform this
randomized action roll-out multiple times growing TI into a
tree of possible actions that the intruder may perform. The
tree overall will contain a number of nodes of order K = |A|D
nodes N = {N1, · · · , NK }, where |A| is the number of actions
that can be taken from a given state. Here the actions intruders
can take RA are a configurable parameter. We refer to this
tree TI as the intent tree and the nodes NK ∈ N as intent
nodes. As a computational optimization, we generate these

intent nodes at the beginning of the algorithm’s operation each
time it is run, running it for all aircraft. During the execution of
the algorithm when we need to know the intent of the intruders,
we filter out the ownship’s pre-computed intent nodes, leaving
only the intruders’ intent nodes. These intent nodes are then
converted into negative rewards and fed into the FastMDP
algorithm, along with a single positive reward with magnitude
200 corresponding to the ownship’s destination vertiport. Each
negative reward is assigned a magnitude of RM (a parameter)
and a radius based off the “loss of separation” (discussed
in next section) distance DL OS times a scaling factor RS

(a parameter).
See Algorithm 1 for a description of the FastMDP algo-

rithm. Lines 2-4 set initial conditions for the algorithm, where
the actions A and limits L for the agent are provided as inputs.
Each time step of the simulation where FastMDP is invoked
(line 5), the intent tree TI is rebuilt to describe the likely future
actions of all aircraft (line 6). For each aircraft controlled
by FastMDP (line 7), we perform the core of the FastMDP
algorithm starting at line 8 where we load the current state
st of the aircraft under control (i.e., the ownship) where t
indicates the current time. Line 10 builds the positive peak(s)
associated with the ownship’s goal. Line 11 builds the negative
peak(s) associated with all intruders (from the perspective
of the ownship) using the information in the intent tree TI .
Line 13 performs forward projection of the dynamics of the
ownship using the list of possible actions (and limits) which
computes a set of trajectories in the form of a set of points �
which represent the reachable states from the current state st .
Starting at line 15 we begin to compute the value for these
reachable states for each state s j ∈ � (line 16). We compute
the value associated with each positive peak pi , where i is an
index identifying which positive peak, by computing distance
dp from the current state to the reward, and use it to compute
the value gained by obtaining the reward (lines 19-22), saving
off the highest value contribution (line 24) known as the
“dominant reward”. We do a similar calculation (lines 26-32)
to identify the negative value associated with the negative
rewards nk , where k is an index indicating which negative
peak, and the reward that contributes the most negative value
(line 33). Note that the term ρn is a binary logical value
of 0 or 1 and indicates whether the radius of the negative
peak has been exceeded (0) or not (1) and is a multiplication
term (line 31) which implements truncation of the negative
value beyond the radius rn per the definition of a risk well
above. We compute the MDP value function at state s j which
identifies the expected value of reaching state s j . The most
valuable action amax is identified and recorded (lines 37-39)
so that it can be taken in the environment. As this environment
in this paper is a simulation based environment, the action is
taken in simulation on line 42, and we note that all aircraft
take their actions in this simulation simultaneously.

Our expected usage for this algorithm is for it to run
on-board an aircraft in real-time. In this configuration, the
run time complexity of the algorithm (line 6, lines 8-39) is
O(|�| × |R|) where |�| is the number of reachable states to
consider and |R| is the number of rewards to consider. For this
problem, we compute the reachable states for each action over
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a time horizon defined by a constant parameter c1 which means
that |�| = c1|A|. At any time step, the number of rewards is
|R| which is some constant c2 times the number of intruders
|I | for this problem, |R| = c2|I |. Thus the complexity of the
algorithm is O(|A| × |I |) for this problem. One cautionary
note for readers is that |A| can quickly explode and must
be carefully managed. This dependency on |A| is the reason
that the algorithm in its current form is restricted to a finite
action space A. Note that there is no dependence on the size
of the state space |S|, which is what allows the algorithm
to be used on continuous state spaces. MCTS has a similar
dependence on a finite action space but can also be used on a
continuous state space. Most algorithms based on MDPs have
some dependence on the size of the state space, which also
often grows exponentially as the fidelity of a problem increases
(i.e., Bellman’s well known “curse of dimensionality” [10].)

IV. EXPERIMENTAL SETUP

All three algorithms are evaluated in the same simulation
environment, a 2D aircraft simulation from [24], [25]. The
aircraft are represented with a continuous state space and
a discretized action selection. Uncertainty is present in the
environment in the form of Gaussian process noise: noise
is added to both the selected heading and velocity at each
time step. While the environment uses simplified aircraft
dynamics, the noise applied leads to a challenging environ-
ment within which the agent must plan. When describing
the planning, we refer to the aircraft for which a plan is
being constructed as the “ownship” and all other aircraft as
“intruders”. The simulation operates by treating each aircraft
as the ownship and at each simulation time step all aircraft
complete a planning cycle. Within the simulation all aircraft
construct their plan simultaneously and all actions are taken
simultaneously.

The aircraft dynamics model used in this simulation is:
v̇ = av + �v (24)

φ̇ = aφ + �φ̇ (25)

ψ̇ = g tan φ

v
(26)

ẋ = v cosψ (27)

ẏ = v sinψ (28)

where av is the commanded change in airspeed and aφ is
the commanded change in bank angle. At each step Gaussian
process noise is inserted into the velocity �v and at the bank
angle �φ̇ . Of the formulations used in [24], [25], we use the
3-action version of the simulation which selects only changes
in bank angle and always selects no commanded change in
airspeed (though noise is still applied at each step). This form
is a challenging enough environment that collision avoidance
can be tested without needing to use the 9-action version which
is slower.

In the environment, there are a number of vertiports which
agents must navigate to. The vertiports are arranged such
that they generate conflict so that collision avoidance can
be effectively measured. There are two levels of collision,
with terminology taken from the aviation community: a “loss

Algorithm 1 FastMDP Algorithm
1: procedure FASTMDP
2: S← initial aircraft states
3: A← aircraft actions (a priori)
4: L← aircraft limits (a priori)
5: while aircraft remain do
6: TI ← (re)build intent tree for intruders
7: for each aircraft do
8: st ← S[aircra f t]
9: // Build peaks

10: P+ ←pos reward for destination vertiport
11: P− ←neg rewards from TI

12: // Perform forward projection of aircraft dynamics
13: �← fwd Project (st,A,L)
14: // Compute the value at each reachable state
15: V∗ ← allocate space for each reachable state
16: for s j ∈ � do
17: // First for positive peaks
18: for pi ∈ P+ do
19: dp ←

∥∥s j − location(pi )
∥∥

2 
 distance
20: rp ← reward(pi)
21: γp ← discount(pi)

22: V+(pi)← |rp| · γ dp
p

23: end for
24: V+max ← max

pi
V+

25: // Next for negative peaks
26: for nk ∈ P− do
27: dn ←

∥∥s j − location(nk)
∥∥

2 
 distance
28: ρn ← dn < radius(nk) 
 within radius
29: rn ← reward(nk)
30: γn ← discount(nk)
31: V−(nk)← ρn · |rn | · γ dn

n
32: end for
33: V−max ← max

nk
V−

34: V∗[s j ] ← V+max − V−max
35: end for
36: // Identify the most valuable action
37: amax ← arg max

a
(V∗) per method FM (parameter)

38: // Record each aircraft’s action
39: A∗t+1[aircra f t] ← amax

40: end for
41: // Now that all aircraft have selected an action, apply

it
42: S = SimulationU pdate(A∗t+1)
43: end while
44: end procedure

of separation” conflict (LOS) and a “near mid-air collision”
(NMAC). Within this simulation taken from [24], a LOS
occurs when two aircraft are within 926 meters, and an NMAC
occurs when two aircraft are within 150 meters. The simulation
maintains a record of reward earned over time (only used for
training MCTS, not required for FastMDP.) Positive reward of
1 is provided to the agent if the agent reaches its destination
vertiport. Negative reward of -1 is provided to the agent if an
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NMAC event occurs and -0.5 if a LOS event occurs. At each
time step, a -0.001 fuel penalty is applied. An agent then
obtains reward by navigating its aircraft to the destination
vertiport while avoiding collisions with other agents.

We assess performance of the algorithms along three
dimensions: computational performance, collision avoidance
performance, and throughput. Computational performance is
measured as the time that is required to perform one planning
cycle for an agent on the computing hardware. Collision
avoidance performance is measured by counting the number
of LOS and NMAC events that occur per hour of simulated
time. Throughput is measured by the number of aircraft
that reach their destination vertiport per hour of simulated
time. As a summary metric, the reward received over time is
also instructive in comparing the algorithms. Simulations are
performed over 120000 seconds (approx. 33 hrs) of simulated
time with 10 random seeds to obtain a statistical mean and
standard deviation of the performance of the algorithms over
different random seeds. Simulations were performed on a
compute cluster with Intel(R) Xeon(R) CPU X5650 cores
running at 2.67GHz. Each run was confined to a single CPU
core and is implemented single-threaded to isolate multicore
effects from the algorithms’ performance.

Simulation begins with a single aircraft spawned at a
randomly selected vertiport. New aircraft are spawned at
randomly selected times as the simulation progresses, until a
pre-specified number of aircraft (10,000) have been spawned,
at which point no new aircraft are generated. Aircraft are
removed from the simulation when they reach their vertiport.
If NMACs occur, the aircraft involved are temporarily removed
from simulation and reintroduced in the simulation at a later
time in order to continue to obtain useful encounters despite
an NMAC occurring. (The purpose of the simulation is to
generate as wide a variety of encounters as possible in order
to best evaluate the algorithm.) The algorithms all cause
aircraft to navigate to the vertiports and generally reach a
steady state of approximately 30-40 aircraft in the air at any
one time. Simulation terminates when all aircraft reach their
destinations.

A. Intruder Intent

To study the effects of intent, we examine three variations
of MCTS. In the first variation which we will refer to as
MCTS-perfect, following [24] we provide MCTS with per-
fect knowledge of the intruders’ actions as they are devel-
oped. Consider a planning horizon with time steps W =
{w1, w2, · · · , wN }. At each time step wi , all agents are
informed of all other agents decisions at time step wi−1. For
this to be possible for real aircraft, the agents would require
perfect communications with zero latency and zero packet
loss, and the agents would need to operate on a common
clock so that the decision time steps {· · · , wi , wi+1, · · · }
occur simultaneously so that all agents decisions from wi are
available to all agents at wi+1. In practice, these assump-
tions would not hold for real systems but serves as useful
upper bound on collision avoidance performance as per-
fect knowledge should always perform better than imperfect
knowledge.

We define two variations of MCTS which are fully decen-
tralized and have no intent messages from intruders. First
we define a variant MCTS-straight which assumes that all
intruders continue on their present course. Second we define
a variant MCTS-random which assumes that all intruders take
random actions over the planning window W .

We additionally include the ORCA algorithm as a well
known algorithm that is not based on an MDP formula-
tion. In this implementation from [24], the n-body ORCA
algorithm has no knowledge of the intruders’ intent. The
ORCA algorithm inherently plans such that the agents take
actions which are designed not to conflict with possible actions
of other agents and in the absence of uncertainty should
generate conflict free trajectories. Due to ORCA’s inherent
design, in these simulations ORCA not only has heading
control but also is allowed speed control and therefore has
better control authority in the simulations than the other two
algorithms. Within the simulation, for all algorithms equivalent
Gaussian noise is injected into the heading and speed after the
commanded heading and speed changes are applied leading
to all algorithms being evaluated under uncertainty in the
following simulations.

B. Experiment Design

In this section we describe experiments performed on the
FastMDP algorithm, both to identify the best performing
variation of FastMDP and to understand what aspects of
the problem are most relevant for safety. We also include
a description of this procedure to illustrate how to perform
tuning of the FastMDP algorithm for problems of interest
to future readers. We define experimental parameters which
may be numerical values inherent in the algorithm (e.g., MDP
discount factor γ ) sometimes referred to as hyperparameters,
or may be parameters that capture hypotheses on the best
problem formulation (e.g., how to express intruder intent).
Our intent here is optimization for a specific problem (i.e.,
collision avoidance) but not good behavior over a range of
problems (e.g., landing, takeoff). Note that the MCTS baseline
[24], [25] we compare to had a similar investigation performed
in defining the best performing MCTS and experimental
parameters and our intent is to measure against that published
work.

For a problem of interest to a reader, there is no simple way
to describe how to choose what parameters to study for a given
problem. However, the authors suggest the geometry of posi-
tive and negative rewards be selected to be of an appropriate
size for the agent’s dynamic constraints (e.g., minimum turn
radius) and several possible geometries be considered (such
as how we have examined the intruder roll-out in this paper.)
We also suggest that for a problem with distances of the scale
used in this problem, the distance metric used will also affect
the value of the MDP discount factor γ used. In this problem,
we measure distance with meters and found that we needed to
use a relatively high value of γ . If other units were used (such
as kilometers), it may be that a lower value of γ may be needed
(i.e., perhaps 0.8 or 0.9.) The parameter γ here defines the rate
of exponential decay of the rewards and the most important
aspect of γ is that it is chosen to provide an identifiable

Authorized licensed use limited to: Iowa State University Library. Downloaded on August 02,2023 at 02:14:25 UTC from IEEE Xplore.  Restrictions apply. 



15428 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 23, NO. 9, SEPTEMBER 2022

TABLE I

HYPOTHESIZED INFLUENCING FACTORS FOR EXPERIMENTATION

gradient to the agent over the expected range of the reachable
points that will be sampled by the algorithm. The parameter γ
must be chosen so that the expected distances are not too far
out on the tails of the exponential decay so that two closely
sampled states have a detectable difference (i.e., larger than the
order of magnitude of the smallest numbers representable by
floating point numbers in computer hardware.) When using
single-precision floating point, this can be a problem but
typically is not an issue with double-precision floating point.
Note that this choice of the value of γ is inherent in any
MDP formulation and any algorithm used to solve the MDP
and the selection of γ is a commonly reported problem in
the literature. FastMDP offers insight into why certain values
of γ may work for a problem while others may not as γ
defines the rate of exponential decay of peaks in the value
function.

Multiple possible influencing factors were identified and
isolated into configuration variables. Test runs using a single
random seed were performed initially altering one variable at a
time from a baseline setting. Promising settings from the first
round of testing were combined into mixtures of parameters
until the best performing candidates were identified. Final
candidates were evaluated with multiple random seeds using
the same procedure as the baseline algorithms to develop a sta-
tistical characterization over the multiple random seeds. In all,
34 runs were performed, and 2 final candidates were selected
for multiple random seed runs. To differentiate between the
runs, we evaluated each run for the number of NMAC events,
LOS events, throughput, and computational performance to
try to strike a balance between them, generally favoring
lower NMACs and LOS over throughput and computational
performance.

Table I identifies the factors that we hypothesized may
affect the FastMDP algorithms performance. Table II defines
the experiments that were performed. The default parameters
that form the baseline were RS = 1.0, RW = 20, RA =
{−5,−2.5, 0, 2.5, 5}, RK = 5, RM = 1000, RF = T rue,
FW = 60, FM = mean. Experiments 1-26 tested one change
at a time from the defaults, and only parameter values that
differ from these defaults are called out in the experiment

definitions due to space considerations. Experiments 27-34
were a second round of experiments formed by combining
promising results from experiments 1-26 in the hope of
identifying synergies between factors.

V. RESULTS

We first discuss the experiment results for FastMDP and
then compare the best candidates with the baseline algorithms
ORCA and MCTS.

A. Experiment Results

Table III summarizes the experiment results for the exper-
iments we conducted. Experiments 1-3 examine the effect of
the rollout scale parameter RS and do not show a strong
preference for any of the values. We therefore should generally
favor a smaller value of RS as larger values will from these
results unnecessarily reserve a larger portion of the airspace
with higher values. Experiments 4-7 evaluate the rollout
window length RW parameter and show that values above
45 seconds appear to have a negative effect in this problem
while also reducing computational performance. Experiments
8-10 study the effect of the intruder’s actions parameter RA

when performing the intruder roll-out. The results here appear
to be inconclusive and do not seem to significantly favor
higher or lower fidelity action definition of the intruders during
roll-out, though we can observe that higher fidelity actions
appear to provide a throughput boost. Experiments 11-13 study
the effect of the roll-out time step parameter RK and indicate
that smaller values appear to perform much better in terms of
avoiding NMACs. Interestingly, we also see that with smaller
RK we also appear to receive a throughput boost at the expense
of significantly increasing computational cost. Experiments
14-17 examine the impact of the magnitude of the negative
rewards formed at each intruder position computed during
roll-out. From these runs it is difficult to understand if there
is a significant difference here but we can observe that lower
values at or below the value of positive reward magnitude of
200 appear to provide a modest benefit. We observe that low
values of 100 appear to provide improved throughput, reduced
computational demand, but at an expense of more conflicts.
This can be explained as the reduced negative penalty as
providing more wiggle room for the agent to cut corners during
conflict. This more risky behavior provides a benefit near con-
gested vertiports where multiple agents wish to land, resulting
in higher throughput (and therefore reduced average number
of aircraft in flight at any one time.) Given the potential safety
impacts however, we feel that this increased risk taking is not
a desirable characteristic of the agent and therefore will favor
RM values of 200 or 500. Experiments 18-19 study the effect
of a filtering mechanism that we hypothesized would lead to
improve agent behavior. We expected that behavior would be
improved with RF = T rue, but the data suggests otherwise
showing a clear preference for RF = False. The effect of
this filter is to remove approximately half of the intruder’s
roll-out positions by determining the mean distance of all of
the roll-out positions to the intruder’s destination vertiport,
and only keeping those points which were below the mean
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TABLE II

EXPERIMENT DEFINITIONS

distance. It was hypothesized that among all of the possible
randomly generated roll-out positions, the intruder would tend
to favor those positions which were closest to the vertiport.

TABLE III

EXPERIMENT RESULTS

Removing the unimportant positions was hypothesized to
improve performance by not having to consider positions that
are unlikely to be visited. In reality, however, inspection of
simulation runs showed that due to the congestion in this
environment, agents must often turn away from their destina-
tion vertiports in order to avoid collisions. Therefore we favor
RF = False for this problem. Experiments 20-23 explore the
effect of the length of the FastMDP algorithm’s forward pro-
jection window. We expected that a longer forward projection
window would result in better performance, but the data sug-
gests that shorter windows result in better performance and we
therefore favor values of 30 or 45 seconds. Experiments 24-26
examine the mechanism used by FastMDP to determine which
action is the best action. The “mean” and “sum” actions are
not that significantly different but the “max” method is clearly
inferior. Experiments 27-34 are used to explore mixtures of
promising parameters from the earlier experiments in order
to identify possible synergies between parameters. Through
a process of iterative examination of results, we ultimately
selected experiments 19 and 31 for performing more extensive
tests. These runs had good NMAC performance (our highest-
weighted consideration), reasonable LOS performance, and
reasonable throughput values. In subsequent sections, we label
these runs as FastMDP-19 and FastMDP-31 in the plots.

B. FastMDP Comparison With Baseline Algorithms

We now present the two candidate tunings of the FastMDP
for this problem against the baseline algorithms.
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Fig. 2. Near mid-air collision (NMAC) events per hour of simulated time.

Fig. 3. Loss of separation (LOS) events per hour of simulated time.

From the experiment definition section, recall that we exam-
ine three versions of the MCTS algorithm: MCTS-perfect,
MCTS-straight, and MCTS-random. MCTS-perfect has per-
fect knowledge of intruder intent (an unrealistic assumption for
a real-world problem, but a useful bound on what we should
expect as a best case for collision avoidance performance).
MCTS-random assumes intruders select random actions during
MCTS roll-out, and MCTS-straight assumes intruders main-
tain current heading during MCTS roll-out. We also compare
to the ORCA algorithm, a well-known collision avoidance
algorithm which is not based on a MDP-based formulation,
as a control variable on whether MDPs are a suitable way to
represent this collision avoidance problem. Note that for each
algorithm, 10 simulations runs were performed with different
random seeds in order to obtain a statistical measurement
of each algorithm’s performance. In the plots, the dark lines
indicate the mean where the shaded regions indicate standard
deviation.

Figure 2 and Table IV show the resulting NMAC events per
hour of simulated time for each algorithm. The data shows
that MCTS-random has the most NMACs/hr and that ORCA
and MCTS-straight have about equivalent NMACs/hr in these
simulations. (Note that due to job duration constraints ORCA
was not able to finish the simulation run.) As expected, MCTS-
perfect achieves the best NMAC/hr performance because it has
perfect knowledge of intruders’ intent and should represent the

TABLE IV

NEAR MID-AIR COLLINS (NMAC) EVENTS OVER 10 RANDOM SEEDS
SORTED BY MEAN NUMBER OF EVENTS PER SIMULATION HOUR

TABLE V

LOSS OF SEPARATION (LOS) EVENTS OVER 10 RANDOM SEEDS SORTED

BY MEAN NUMBER OF EVENTS PER SIMULATION HOUR

Fig. 4. Throughput per hour of simulated time.

best we can expect for performance in these simulations. What
is interesting is that the two FastMDP runs achieve a similar
level of avoiding NMAC events despite not having access
to this perfect knowledge that is available to MCTS-perfect.
Due to the scale of the plots, it is difficult to discern MCTS
and FastMDP-19’s performance on the plot and Table IV
should be consulted. Note that in this plot, the early spikes
result from large initial variance as some simulation runs
generate NMACs early on while others do not. As more
time elapses, the variances over the simulation runs average
out revealing the expected steady state performance of each
algorithm.

Figure 3 and Table V show the Loss of Separation (LOS)
event per hour of simulated time for each algorithm. Here we
see that ORCA generates the highest rate of LOS events for
these simulations. MCTS-random and MCTS-straight result in
somewhat better but still elevated levels of LOS events. Here
again we see that MCTS-perfect achieves the best results due
to having perfect knowledge of intruders’ intent, and again we
see that the two FastMDP runs achieve nearly the same level
of conflict avoidance as MCTS-perfect. Due to the scale of
the plot, Table V should be consulted to more easily discern
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TABLE VI

THROUGHPUT (AIRPLANES ARRIVING AT DESTINATION PER HOUR
OF SIMULATED TIME) OVER 10 RANDOM SEEDS SORTED

FROM SLOWEST TO FASTEST

TABLE VII

ALGORITHM PERFORMANCE PER AIRCRAFT OVER 10 RANDOM

SEEDS SORTED FROM SLOWEST TO FASTEST

the small difference in performance between FastMDP-19,
FastMDP-31 and MCTS-perfect.

Figure 4 and Table VI show the throughput per hour of
simulated time for each algorithm. Here the MCTS algorithms
variants excel achieving the best throughput, though it may be
difficult to discern on the plot that the plots for MCTS-perfect,
MCTS-random, and MCTS-straight nearly coincide. This is
an interesting result in that the intruder intent does not seem
to have a strong impact on the throughput, despite it having
a large impact on the number of LOS and NMAC events
above. We expected that having a better understanding of
where the intruder is likely to go would result in a better
ability for an agent to “slip by” other agents, but this does
not appear to be the case for this environment. We speculate
that in this environment, the agents are not often able to
choose actions that fit our narrowed definition of intent and
instead more closely match more random definition of intent
(which corresponds more closely to what other agents are
capable of doing rather than what they are likely to do.) In
this plot we also see a more marked difference between the
two FastMDP runs. FastMDP-19 achieves a higher through-
put as compared to FastMDP-31. Recall from Table II that
FastMDP-19 eliminates an intruder roll-out filtering mecha-
nism which was hypothesized would improve performance,
but appeared not to from the data. FastMDP-31 mixed multiple
promising parameter values in an attempt to identify synergies.
What is apparent from this plot is that this mixture of
parameter values used for FastMDP-31 resulted in a slight
decrease of throughput as compared to the values used for the
FastMDP-19 run.

Figure 5 and Table VII show the computational performance
of each algorithm at each time step during the simulation.
Here we see that MCTS-perfect and MCTS-random per-
form approximately equally to ORCA, with MCTS-straight
performing slightly more efficiently. We see here that the
FastMDP variants are much more efficient than either the

Fig. 5. Computational time of the algorithms.

Fig. 6. Computational time varying with number of aircraft.

MCTS or ORCA algorithms for this problem. Here again we
see that the FastMDP-19 variant has an advantage over the
FastMDP-31 variant due to the FastMDP-31’s larger number
of intruder roll-out positions that are generated due to the
parameter settings.

Figure 6 show how the computational performance of each
algorithm varies with the number of aircraft in flight. The
simulations initially start with one aircraft spawned at a
randomly selected vertiport and new aircraft are spawned
at random intervals over time. The plot shows how the
computation time varies for the number of aircraft currently
in flight. The regression trend lines show that as expected
performance increases for all algorithms with fewer aircraft
and the advantages of using the FastMDP approach is more
substantial with larger numbers of aircraft.

Taken in aggregate, FastMDP-19 appears to be the best
performing FastMDP variant in these simulation runs. In gen-
eral, from these results we can say that FastMDP can be
tuned to trade collision avoidance performance with through-
put and that a satisfactory level of throughput can be
achieved while obtaining collision avoidance performance that
approaches MCTS with perfect knowledge of the intruders’
intent, while being more computationally efficient. In par-
ticular, the FastMDP-19 variant achieves a speed up factor
of 139.5s/29.8 s = 4.7 versus ORCA and a speed up
factor of 155.2/29.8 = 5.2 versus MCTS-perfect in these
simulations.
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VI. CONCLUSION

In this paper, we demonstrate the FastMDP algorithm
applied to a 2D collision avoidance problem and com-
pare the performance to Monte Carlo Tree Search (MCTS)
and Optimal Reciprocal Collision Avoidance (ORCA) in an
environment with significant uncertainty. We compare the
algorithms along collision avoidance, throughput, and compu-
tational performance metrics and find that FastMDP executes
approximately 5 times faster than MCTS and ORCA while
achieving collision avoidance performance that exceeds ORCA
and nearly approaches MCTS with perfect knowledge of
intruders’ intent with only a modest decrease in throughput
as compared to MCTS. We performed experiments that both
identified the best performing parameters for this problem,
but can also serve as a guide to future researchers on how
to tune FastMDP for other problems. These results show
that FastMDP is competitive with ORCA and MCTS and
in some ways can outperform both algorithms in uncer-
tain environments, despite FastMDP’s current limitation of
a restricted subset of MDPs. These conclusions motivate
further study of the FastMDP approach for collision avoidance
problems.
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feedback guidance of a small aerial vehicle in a stochastic wind,”
J. Guid., Control, Dyn., vol. 36, no. 4, pp. 975–985, Jul. 2013, doi:
10.2514/1.59512.

[21] J. van den Berg, S. J. Guy, M. Lin, and D. Manocha, “Recipro-
cal n-body collision avoidance,” in Robotics Research, C. Pradalier,
R. Siegwart, and G. Hirzinger, Eds. Berlin, Germany: Springer, 2011,
pp. 3–19.

[22] R. Coulom, “Efficient selectivity and backup operators in Monte-Carlo
tree search,” in Computers and Games, H. J. van den Herik,
P. Ciancarini, and H. H. L. M. J. Donkers, Eds. Berlin, Germany:
Springer, 2007, pp. 72–83.

[23] C. B. Browne et al., “A survey of Monte Carlo tree search meth-
ods,” IEEE Trans. Comput. Intell. AI Games, vol. 4, no. 1, pp. 1–43,
Mar. 2012.

[24] X. Yang and P. Wei, “Autonomous free flight operations in urban
air mobility with computational guidance and collision avoidance,”
IEEE Trans. Intell. Transp. Syst., vol. 22, no. 9, pp. 5962–5975,
Aug. 2021.

[25] X. Yang and P. Wei, “Scalable multi-agent computational guidance with
separation assurance for autonomous urban air mobility,” J. Guid., Con-
trol, Dyn., vol. 43, no. 3, pp. 1473–1486, 2020, doi: 10.2514/1.G005000.

[26] J. R. Bertram, “A new solution for Markov decision processes and
its aerospace applications,” Ph.D. dissertation, Dept. Elect. Comput.
Eng., Iowa State Univ., Ames, IA, USA, 2020. [Online]. Available:
https://lib.dr.iastate.edu/etd/17832

[27] J. Bertram, X. Yang, M. W. Brittain, and P. Wei, “Online flight planner
with dynamic obstacles for urban air mobility,” in Proc. AIAA Aviation
Forum, 2019, p. 3625, doi: 10.2514/6.2019-3625.

[28] J. Bertram and P. Wei, “Distributed computational guidance for high-
density urban air mobility with cooperative and non-cooperative col-
lision avoidance,” in Proc. AIAA Scitech Forum, 2020, p. 1371, doi:
10.2514/6.2020-1371.

[29] J. Bertram and P. Wei, “An efficient algorithm for self-organized terminal
arrival in urban air mobility,” in Proc. AIAA Scitech Forum, 2020,
p, 0660, doi: /10.2514/6.2020-0660.

[30] J. Bertram and P. Wei, “An efficient algorithm for multiple-pursuer-
multiple-evader pursuit/evasion game,” in Proc. AIAA Scitech Forum,
2021, p. 1862, doi: 10.2514/6.2021-1862.

Authorized licensed use limited to: Iowa State University Library. Downloaded on August 02,2023 at 02:14:25 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.2514/6.2018-3676
http://dx.doi.org/10.17226/25646
http://dx.doi.org/10.2514/6.2019-1289
http://dx.doi.org/10.2514/6.2013-4622
http://dx.doi.org/10.2514/1.G001822
http://dx.doi.org/10.2514/6.2016-3673
http://dx.doi.org/10.1080/15472450.2017.1334558
http://dx.doi.org/10.2514/1.59512
http://dx.doi.org/10.2514/1.G005000
http://dx.doi.org/10.2514/6.2019-3625
http://dx.doi.org/10.2514/6.2020-1371
http://dx.doi.org//10.2514/6.2020-0660
http://dx.doi.org/10.2514/6.2021-1862


BERTRAM et al.: FAST MARKOV DECISION PROCESS-BASED ALGORITHM FOR COLLISION AVOIDANCE IN URBAN AIR MOBILITY 15433

[31] J. Bertram, P. Wei, and J. Zambreno, “Scalable FastMDP for pre-
departure airspace reservation strategic de-conflict,” in Proc. AIAA
Scitech Forum, 2021, p. 0779, doi: 10.2514/6.2021-0779.

[32] R. Bellman, “A Markovian decision process,” Indiana Univ. Math. J.,
vol. 6, no. 4, pp. 679–684, Apr. 1957. [Online]. Available: http://www.
jstor.org/stable/24900506

[33] M. L. Littman, T. L. Dean, and L. P. Kaelbling, “On the complexity
of solving Markov decision problems,” in Proc. 11th Conf. Uncer-
tainty Artif. Intell. San Francisco, CA, USA: Morgan Kaufmann, 1995,
pp. 394–402.

[34] P. Tseng, “Solving H -horizon, stationary Markov decision problems in
time proportional to log(H ),” Oper. Res. Lett., vol. 9, no. 5, pp. 287–297,
Sep. 1990, doi: 10.1016/0167-6377(90)90022-W.

[35] O. Sigaud and O. Buffet, Markov Decision Processes in Artificial
Intelligence. Hoboken, NJ, USA: Wiley, 2013.

Josh Bertram (Graduate Student Member, IEEE)
received the master’s degree from Iowa State Uni-
versity, focused on Markov decision processes and
their applications to aerospace problems, where he
is currently pursuing the Ph.D. degree. He worked at
Collins Aerospace for 16 years in real-time embed-
ded systems and as a Machine Learning/Artificial
Intelligence Engineer. He is a Machine Learn-
ing/Artificial Intelligence Researcher at the Johns
Hopkins University Applied Physics Laboratory. His
research interests are in the intersection of embedded

computing, avionics, and artificial intelligence, where size, weight, and power
constraints restrict the types of algorithms that can be employed.

Peng Wei (Member, IEEE) received the Ph.D.
degree in aerospace engineering from Purdue Uni-
versity in 2013. He is an Assistant Professor with the
Department of Mechanical and Aerospace Engineer-
ing, The George Washington University, with cour-
tesy appointments at the Electrical and Computer
Engineering Department and the Computer Science
Department. He is leading the Intelligent Aerospace
Systems Laboratory (IASL). By contributing to the
intersection of control, optimization, machine learn-
ing, and artificial intelligence, he develops autonomy

and decision support tools for aeronautics, aviation, and aerial robotics. His
current focus is on safety, efficiency, and scalability of decision making
systems in complex, uncertain, and dynamic environments. Recent appli-
cations include: air traffic control/management (ATC/M), airline operations,
UAS traffic management (UTM), eVTOL urban air mobility (UAM), and
autonomous drone racing (ADR). He is an Associate Editor of AIAA Journal
of Aerospace Information Systems.

Joseph Zambreno (Senior Member, IEEE) received
the B.S. degree (summa cum laude) in computer
engineering, and the M.S. and Ph.D. degrees in elec-
trical and computer engineering from Northwestern
University, Evanston, IL, USA, in 2001, 2002, and
2006, respectively. He has been with the Department
of Electrical and Computer Engineering, Iowa State
University, since 2006, where he is currently a
Professor, an Associate Chair, and the Director of
the Reconfigurable Computing Laboratory (RCL).
While at Northwestern University, he was a recipient

of a National Science Foundation (NSF) Graduate Research Fellowship,
a Northwestern University Graduate School Fellowship, a Walter P. Murphy
Fellowship, and the EECS Department Best Dissertation Award for his
Ph.D. dissertation titled “Compiler and Architectural Approaches to Software
Protection and Security.” He was also a recipient of the NSF CAREER Award
in 2012, the ISU Award for Early Achievement in Teaching in 2012, the
College of Engineering Outstanding Achievement in Teaching Award in 2019,
and the ECpE Department’s Warren B. Boast Undergraduate Teaching Award
in 2009, 2011, and 2016.

Authorized licensed use limited to: Iowa State University Library. Downloaded on August 02,2023 at 02:14:25 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.2514/6.2021-0779
http://dx.doi.org/10.1016/0167-6377(90)90022-W


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


