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Abstract—Graphics Processing Units (GPUs) have been widely
adopted as accelerators for high performance computing due to
the immense amount of computational throughput they offer over
their CPU counterparts. As GPU architectures are optimized
for throughput, they execute a large number of SIMD threads
(warps) in parallel and use hardware multithreading to hide
the pipeline and memory access latencies. While the Two-Level
Round Robin (TLRR) and Greedy Then Oldest (GTO) warp
scheduling policies have been widely accepted in the academic
research community, there is no consensus regarding which policy
works best for all applications.

In this paper, we show that the disparity regarding which
scheduling policy works better depends on the characteristics of
instructions in different regions (phases) of the application. We
identify these phases at compile time and design a novel warp
scheduling policy that uses information regarding them to make
scheduling decisions at runtime. By mitigating the adverse effects
of application phase behavior, our policy always performs closer
to the better of the two existing policies for each application.
We evaluate the performance of the warp schedulers on 35
kernels from the Rodinia and CUDA SDK benchmark suites.
For applications that have a better performance with the GTO
scheduler, our warp scheduler matches the performance of GTO
with 99.2% accuracy and achieves an average speedup of 6.31%
over RR. Similarly, for applications that perform better with RR,
the performance of our scheduler is within of 98% of RR and
achieves an average speedup of 6.65% over GTO.

I. INTRODUCTION

Graphics Processing Units (GPUs) are widely used for
accelerating general-purpose applications that exhibit a high
degree of data level parallelism. Sixty systems on the June
2015 TOPS00 supercomputer list use GPUs as accelerators
[1]. The reason for this wide adoption is the high amount of
floating point throughput that GPUs can provide as compared
to their CPU counterparts. For example, the peak double
precision floating point throughput of an NVIDIA K80 is 1.87
TFLOPs [2] and that of an AMD Firepro is 1.48 TFLOPs [3].
In comparison, an Intel Xeon E7, a high end CPU used in the
HPC domain can achieve 408 GFLOPs [4].

To achieve such high computational throughputs, GPUs
dedicate a large portion of their die area to functional units.
As a trade-off, GPU chips do not include the hardware units
which have been traditionally used for latency hiding in
CPUs. For example, GPUs use a non-speculative in-order
pipeline, do not have branch predictors, and have much
smaller caches compared to CPUs. Consequently, to hide

the pipeline and memory access latencies, GPUs perform
massive multithreading in hardware. Each core executes a very
high number of threads in parallel, and a hardware scheduler
interleaves their execution to hide latency. Specifically, groups
of threads are executed as SIMD units called warps [5] (or
wavefronts [6]), and the scheduler overlaps the latency of
warps waiting on long latency operations with computation
from other warps. The policy used by the warp scheduler
is pivotal in being able to achieve a throughput which is
close to peak, as it largely affects how well the latencies and
computations are overlapped.

There is a large body of previous work on warp scheduling
techniques. A majority of the initial works focused on
mitigating warp-divergence, a problem that occurs when
threads within a warp diverge in their program paths [18,
8, 19, 20]. Recently, a few works have designed techniques
that focus on a subset of applications that exhibit specific
characteristics. The authors in [9] focus on applications that
are sensitive to L1 data cache, while the authors in [10]
focus on applications with irregular workloads. However, the
underlying policy which selects the next warp to be dispatched
for execution has received rather less attention.

Two underlying policies have been widely adopted, namely
round robin (RR) and greedy then oldest (GTO). The RR
policy rotates the priority of warps in round robin order after
each selection. The GTO policy on the other hand, always
gives a higher priority to warps that are launched earlier.
Today’s state of the art GPUs employ hierarchical implemen-
tations of these policies for increasing energy efficiency [7, 8].
A smaller set of warps (typically 6 to 8), from all the active
warps (typically 48 to 64), referred to as a fetch group, is
kept in a separate queue called the ready queue. The scheduler
only selects warps from the ready queue for execution. This
makes the warp selection and scoreboarding logic simpler and
more energy efficient. A warp in the ready queue is replaced
only when it arrives at a long latency operation, such as a
memory request. It has been shown that warps in a fetch group
have enough parallelism to hide the shorter ALU latencies [7].
Moreover, prioritizing execution of subsets of warps spaces out
the requests to main memory in time, which results in a better
overlap of memory latency and computation [8]. Both the RR
and GTO policies can be used for assigning priority to the
fetch groups as well as warps within the fetch group.



In [9], Rogers et al. claim that using the GTO policy for
prioritizing the fetch groups as well as warps within a group
gives the best performance. By contrast, our experimental
results show that while the GTO policy performs better for
some applications, some applications show better performance
when RR is used, while others have comparable performance
with either scheduler. To understand the disparity between
performance of warp schedulers for different applications,
we analyze how the warps progress through the program’s
instructions. The set of warps within a fetch group proceed
together through the program instructions, at approximately
the same pace, until they arrive at an instruction that depends
on a long latency operation. When selected the next time, they
again proceed until the next long latency operation, and so on.
In this way, the program is essentially divided into regions of
computations, separated by instructions that depend on long
latency operations. We refer to these regions as phases.

Our results clearly indicate that the length and arrangement
of phases have a direct impact on the performance of warp
scheduling policies. We show that the disparity regarding
which policy performs better for a particular application can be
explained by understanding how warps progress through the
different phases of the application. With this understanding, we
then design a warp scheduling policy that uses information re-
garding phases that is embedded in the program’s instructions
by the compiler. Our policy results in a performance which is
always closer to the better performing policy for the respective
application. Our contributions can be summarized as follows:

1. We characterize phase behavior in GPGPU applications,
and via case studies of real-world applications show how phase
characteristics impact the performance of the RR and GTO
scheduling policies.

2. We describe how the phase information can be inserted
at compile time and design a hardware warp scheduler that
uses this information to be more robust to application phase
behavior.

The remainder of this paper is organized as follows: In
Sect. 2 we give an overview of the GPGPU programming
model and GPU hardware architecture. In Sect. 3 we for-
mally define program phases via an illustrative code example.
We then analyze two real-world applications in detail, and
show how phase behavior affects the performance of warp
schedulers for those applications. In Sect. 4, we describe our
phase-aware scheduling policy, and its software and hardware
implementation. In Sect. 5, we provide experimental results
that compare our phase-aware scheduler to the RR and GTO
warp schedulers. In Sect. 6 we discuss related work and
compare our contributions to the published work in this field.
Finally, in Sect. 7 we provide our conclusions from this work,
followed by next steps in the direction of compiler assisted
warp scheduling techniques.

II. BACKGROUND

A. The GPGPU Programming Model

The two most widely used GPGPU programming languages
are OpenCL [6] and CUDA [5]. To evaluate our work, we
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Fig. 1: Structure of a CUDA application with one kernel.

used applications written in CUDA. However, the concepts
are directly applicable to applications written in OpenCL as
well.

Fig. 1 illustrates the structure of a basic CUDA application.
Each portion to be offloaded to the GPU is written as a
separate function, called a kernel (I). The function launch
syntax specifies the total number of threads that would execute
this kernel within the <<< >>> structure (). This group
of threads, which represents the entire workload for a given
instance of the kernel call, is called a grid. The parameters
within <<< >>> describe the relationship between threads
and data. The grid is partitioned into groups of threads,
called thread blocks. Threads within a thread block can use
synchronization barriers and share data using on-chip SRAM.
Finally, each individual thread executes all instructions in the
kernel function on its respective data, resulting in a Single
Program Multiple Data (SPMD) form of programming model.
Fig. 1 marker (3) depicts how the block and thread identifiers
are used within the kernel, to index data specific to a thread
from GPU memory.

B. GPU Hardware Architecture

The hierarchical structure of threads described in the pre-
vious subsection is scheduled on GPU hardware by two
schedulers. Fig. 2(a) shows a high level depiction of the GPU.
The Work Distributor shown in the figure is a chip-level
hardware scheduler which issues thread blocks to cores. At the
beginning of a kernel, it launches blocks on cores one by one,
until a core runs out of resources to support an entire block.
The primary goal of this scheduler is to maintain a balanced
workload across all cores and keep each core completely full
by launching the next block in the grid on any core that finishes
a block. As the programming model does not guarantee the
scheduling order of threads that belong to different blocks,
blocks are assigned to cores in any order. Further details of
the work distributor architecture can be found in [11, 23, 24].

1) GPU Core: Thread blocks launched on the core are
further partitioned into groups, of typically 32 threads, called
warps. As mentioned in Sect. I, warps are entities used for
execution by the hardware units on the core. Fig. 2(b) shows
a depiction of some of the units on the GPU core which are
used for general purpose computing.
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Fig. 2: Overview of GPU architecture.

The fetch unit fetches instructions for each warp, from the
instruction cache into the instruction buffer. The instruction
buffer has a separate entry for each warp, allowing each warp
to be at its own instruction in the kernel. Once the current
instruction is decoded and its operands are collected from the
register file, the warp is placed into the Warp Queue. The
warp scheduler selects a warp from this queue and dispatches
it for execution on the vectorized functional units. Each thread
within a warp executes the same instruction on its data, in
Single Instruction Multiple Data (SIMD) fashion. Indeed, the
various hardware units are vectorized and indexed at the warp
abstraction level, because of this SIMD form of execution
adopted by the GPU architecture. The register file is divided
at the warp granularity as well. Context for a warp is kept live
in the register file until it completes the entire kernel.

2) Warp Scheduler: Initial warp schedulers used a single
queue to store all the warps that are active on the core. This
is depicted as the Warp Queue in Fig. 2 and Fig. 3. The
warp selection logic arbitrates among all the warps in this
queue every cycle. We refer to such schedulers as single level
schedulers in this paper. As GPU cores became bigger and
could support a higher number of warps (current architectures
support up to 64), arbitrating among all the active warps
every cycle became less energy efficient. Gebhart et al. [7]
and Narasiman et al. [8] proposed hierarchical scheduling
policies, which maintain a smaller subset of warps in a Ready
Warps queue (refer to Fig. 3). The set of warps in the ready
warps queue is referred to as a fetch group (FG). The warp
selection logic arbitrates only among warps in the ready queue
every cycle. When a warp becomes pending on a long latency
operation, it is put in the larger warp queue, and a warp from
the fetch group with the next highest priority is brought to the
ready queue in its place. We refer to such schedulers as two
level schedulers in this paper.

The policy used by the warp selection logic determines
how well the warps in the ready queue can hide the shorter
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Fig. 3: Block diagram of the two level warp scheduler. An
equivalent block diagram of the single level scheduler would
not have the Ready Warps queue.

pipeline latencies. The priority assigning logic, on the other
hand, assigns priority to the warps in the larger Warp Queue.
Its policy dictates which fetch group would be moved next
to the ready queue. Consequently, it has an effect on how
the fetch groups progress through the kernel instructions. The
authors of [7, 8] use a round robin policy to assign priority to
the fetch groups, while the authors of [9] showed that using
the GTO policy yields a better performance. As mentioned in
Sect. I, we show that the performance of these policies depends
on how the computations and memory accesses are laid out in
the kernel instructions (program phases). In the next section
we formally define program phases and depict this effect. To
compare our work, we use the RR and GTO policies for the
single level scheduler; and scheduling the fetch groups for the
two level scheduler. Warps within the ready warps queue are
always scheduled using RR.

III. PHASE BEHAVIOR IN GPGPU KERNELS

In this section, we formally define phases in the context
of GPGPU kernels. We then illustrate the impact of phase
characteristics on warp scheduling policies using two real-
world applications.

A. Definition of Kernel Phases

Fig. 4 shows an example of a simple CUDA kernel that
adds two vectors. Three high level sections are shown in
the code. First, the index for a thread is calculated using
special variables that store the thread and block identifiers
(threadIdx.x and blockIdx.x), and the thread block
dimension (blockDim.x). The index is then used as offset
from the base addresses (passed as arguments to kernel call)
to load data for that thread. The computation is performed and
result is stored back in the third section. The right box in the
figure shows the corresponding assembly code.

We define phase as a set of consecutive instructions such
that, no instruction in the current phase has an input operand
that is produced by a long latency instruction from the current
phase.



CUDA Kernel Corresponding assembly code

void add( int *in1, int *in2, int *out ) Function : _Z3addPiS_S_

{ Phase 1 Phase Length

unsigned tid,a,b,c; MOV.U16 ROH, g [0x1].U16; 18

121.U32.U16 R1, ROL; 17
// Calculate thread’s index ——— IMAD.U16 RO, g [0x6].U16, ROH, R1; 16
tid = (blockDim.x * blockldx.x) + SHL R2, RO, 0x2; 11
threadldx.x; IADD32 RO, g [0x4], R2; 10

IADD32 R3, g [0x6), R2; 6
// Access input data -»-[ GLD.U32 R1, global14 [RO]; 2
a=inl[tid]; GLD.U32 RO, global14 [R3]; 1
b =in2[tid];

Phase 2

// Compute and store result IADD32 R1, R1, RO;
c=a+b; -I— IADD32 RO, g [0x8], R2;

i
=N OO

in2ftid] = ; GST.U32 global14 [RO], R1;
} EXIT

Fig. 4: CUDA kernel for vector addition and its corresponding
assembly code showing phases and phase length.

Observe that this kernel has two phases (refer to
the assembly code in Fig. 4). Phase 2 begins at the
IADD32 R1,R1, RO instruction. The input operands RO and
R1 are produced by memory load instructions (GLD), which
belongs to the set of long latency instructions'. It should be
noted that in real-world applications, contrary to the example
shown, it is common to have multiple instructions in a phase
that depend on long latency instructions from the previous
phase. A new phase begins only if an instruction depends on
a long latency instruction from the current phase. We show a
simple example here for brevity. The structure of a phase is
often as follows: multiple memory loads at the beginning of
a phase (initial loads), followed by computations that depend
on loads from the previous phase, and then an instruction that
depends on one of the initial loads (this would begin a new
phase). For the kernels we studied for this work, the number
of phases in a kernel varies from 3 to 45.

B. Effect of Kernel Phases on Warp Schedulers

In the two level warp scheduler, a warp is moved from
the Ready Warps queue to the larger pool of all warps, when
it arrives at an instruction that depends on a long latency
operation. As such instructions lie at phase boundaries, warps
proceed through the kernel instructions one phase at a time.
When a warp reaches the end of a phase, it is put back in the
larger warp pool and a different fetch group gets a chance
to execute. As the fetch group maintains its priority until
it reaches the end of a phase, one of the main factors that
affects the performance of the warp schedulers is phase length
(refer to Fig. 4). Phase length is computed by summing the
instruction latencies, from the last to the first instruction of
a phase. It is an approximation of the minimum number of
cycles that a warp would take to reach the end of a phase. The
lengths of phases 1 and 2 in Fig. 4 are 18 and 10 respectively.

Fig. 5 is a depiction of the effect of phase length on perfor-
mance of the warp schedulers. For simplicity, the illustration
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Fig. 5: Impact of phase length on warp scheduling.

Non-overlapped
latency

assumes that all warps in a fetch group (FG) arrive at the
end of a phase simultaneously. Fig. 5(a) is an example of
an application where the GTO scheduler performs better than
RR. It has a medium length phase, followed by a short phase
and then phase of long length. Notice that the computation
from medium length phase of FGs 2 and 3 are enough to hide
the memory latency of FG 1. At this time, the RR scheduler
selects FG 4 (D, while the GTO scheduler selects FG 1 (2.
Observe that, with RR scheduling all the FGs arrive at the
short length phase at the same time. As computation from
three short length phases is not enough to hide the memory
latency, some of the latency is exposed ). In contrast, as the
GTO scheduler selects FG 1 at 2), FG 1 arrives at the long
length phase earlier @. This long phase is then used to hide
the latency which was exposed in the case of RR scheduling.
In general, for applications that have shorter length phases in
the middle of the application, the GTO scheduler performs
better than RR.

Fig. 5(b) is an example of an application where the RR
scheduler has a better performance compared to GTO. Notice
that the application has a medium phase, followed by a
phase of long length. Similar to the example of Fig. 5(a),
computation from three FGs is enough to hide the memory
latency of FG 1, and the GTO scheduler switches back to FG
1 (3. As this phase is long enough to overlap the latency
of outstanding memory requests, the load on the memory
subsystem is reduced. On the contrary, the RR scheduler
selects FG 4 @). This results in sending out more requests to
memory, and thus better utilization of the memory bandwidth
while executing the long length phase. We can observe that
around the time when the GTO scheduler begins fetch group 4,
the RR scheduler has already executed a significant portion of
it. In general, for applications that have extremely long phases
in the middle of the kernel, the RR scheduler performs better
than GTO.



(B B F B F K et iR iees

[¢]
(0] 1000 2000

3000 4000 5000 6000 7000 8000 9000

0 Cycles
I Jq/\ i A I ‘L i ’M\N.‘““" - ‘u

o Lt A o e, A, )

Instructions

0] 1000 2000 3000 4000 5000 6000

Cycles
(a) Two Level Round Robin

7000 8000 9000

-2+ e sElr ol 7 BlrsEPoilP10 P11 P = Phase

20 = . [ " N
_____ \ . N . Y

Active
Warps

(0] 1000 2000 000 4000 5000 6000

Cycles

7000 8000 9000

w— ALU == MEM
20

4
b ] b L o R W
Ol 1, o o et i

ol i i
o] 1000 2000 3000 4000 5000 6000 7000 8000 9000

Cycles
(b) Two Level GTO

Fig. 6: B+Tree Phase Graphs

Instructions
in flight

C. Illustrative Applications

The effects of phase length on warp scheduling policies
described in the previous section, can be summarized as
follows:

1. Performance of the RR policy is adversely affected in
kernels that have shorter length phases, due to all the warps
arriving at these phases at the same time.

2. Performance of the GTO policy is adversely affected in
kernels that have long length phases, as the scheduler keeps
choosing warps from these phases, thereby under-utilizing the
memory bandwidth.

In this section, we explore two real-world applications that
clearly demonstrate these effects. The top figures in each of the
subplots of Fig. 6 and Fig. 7 plot the total number of warps in
each phase at a given cycle. The bottom figure plots the total
the number of ALU instructions and memory requests that are
in flight.

1) B+Tree: B+Tree is an example of a kernel for which
the GTO scheduler achieves a better performance compared
to RR. It launches 48 warps on each core, as six thread blocks
of eight warps each. The fetch group size is six.

Observe in Fig. 6(a) that, when warps from the first fetch
group (FG) complete the first phase, warps in the next FG
execute. Warps completing a phase can be seen in the plot
when the number of warps in a particular phase decreases.
This is followed by the third FG, and so on. Thus, due to RR
scheduling warps proceed through the kernel instructions one
phase at a time. As mentioned in Sect. III-B, this trait of the
RR scheduler becomes an issue in kernels which have short
length phases. Observe that phase 4 is extremely short (marked
oval). All the warps finish this phase and arrive at the start of
phase 5 at around the same time. Observe that during this time,
the memory load is high and ALU load becomes almost zero.
This is because all warps are waiting for the memory requests
issued in phase 4. The phase problem alleviates a little after
cycle 4000 due to some warps branching back to phases 1

HMr P2 lP3 P4 PSIPs[JP7]P8]PY| P=Phase

2 g 10 \—\L\ '\ T \ W

0 \'—H‘ e,
2 ] 10000 20000 30000 40000 45000
Ego Crcles
o = vl s 7 A |
S % 20 A \ albhooy \
s c Al Ve dlt (K L , TISRT v
25 Il AP il ey s I
- 0 10000 20000 30000 40000 45000

Cycles

(a) Two Level Round Robin
P12l P3 P4 Ps [ P6[]P7 []P8[]PI| P=Phase

N
(=}

Active
Warps
[
o

20000 30000 40000 45000

5 50 Cycles

=2 ) \

§ i 20 yw ‘| | b i ' A A ¥ L ’v‘"‘ !

85 N Al o) 1, L st

- 0 10000 20000 30000 40000 45000
Cycles

(b) Two Level GTO
Fig. 7: CFD Phase Graphs

and 3. However, only a small portion of the runtime is shown
here. The application grid is of 65535 blocks and this pattern
keeps repeating throughout the kernel execution after every
6'" block.

In contrast, observe in Fig. 6(b), that after three fetch
groups complete, the GTO scheduler selects FG 1. This is
observed in the figure when the number of warps in phase
1 stop decreasing and the number of warps in phase 2 start
to decrease. Due to this decision, only a small set of warps
arrive at the short length phase 4, at the same time. As the
other warps are in the longer length phases, the scheduler can
switch to them to hide the memory latency. Observe in the
lower plot of Fig. 6(b), the amount of time when the ALU
and memory load becomes zero has reduced as compared to
the RR scheduler. Moreover, observe in the area plot that the
distribution of warps across different phases (marked oval) is
much better in GTO as compared to RR.

2) Computational Fluid Dynamics (CFD): CFD is an ex-
ample of a kernel for which RR scheduling achieves better
performance as compared to GTO. It launches 18 warps on
each core, as three thread blocks of 6 warps each. Observe
in Fig. 7(b) that the first fetch group (FG) of 6 warps starts
executing ahead and reaches phase 2. Notice that the GTO
scheduler selects FG 1 again (first marked oval). This is
because, as phase 1 is a long length phase, the memory
requests sent near its beginning are completed by the time
warps reach phase 2. As the next two phases are long as well,
the warps in FG 1 become pending only when they reach phase
4. At this time fetch group 2 gets to execute. Observe that
when warps from FG 2 reach phase 2 and become pending,
FG 1 gets selected again and executes until it reaches phase
6 (second marked oval).

In this manner, due to phases of long length, a group of
warps keeps getting the priority. Consequently, other warps do
not get a chance to execute and issue their memory requests.
Observe in the lower plot of Fig. 7(b) that the memory load
becomes zero in the duration when warps from FG 1 are in



the long compute phases. In comparison, the RR scheduler
switches priority to the next fetch group at phase boundaries.
Due to this, warps that were in the shorter length phases are
able to execute and send the memory requests. We can observe
in Fig. 7(a) that the warp distribution across different phases is
much better. Also, notice that the memory load is more regular
and has lesser fluctuations as compared to GTO. The average
memory load for this kernel with the two level RR scheduler
was 4% higher as compared to the two level GTO.

IV. PHASE AWARE WARP SCHEDULING

In this section, we first propose a dynamic scheduling policy
based on phase length that can mitigate the negative effects of
phases outlined in the previous section. We then provide details
of the compiler frontend that adds the required phase infor-
mation in program instructions and hardware implementation
of the warp scheduler that uses this information at runtime.

A. Scheduling Policy

In the previous section, we showed that performance of the
RR scheduler is affected if the kernel has phases of short
length and all the warps arrive at such phases simultaneously.
On the other hand, performance of the GTO scheduler is
adversely affected when the kernel has long phases and the
scheduler keeps selecting the set of warps that are in the long
phase.

Our policy is based the following simple observation: Ad-
verse effects of the RR and GTO scheduling policies can be
mitigated by always choosing the warp that has the shortest
length for its next phase.

Consider a kernel with two phases P; and P;, such that P;
is shorter than P;.

Case (1): The RR policy chooses a warp in phase P;. This
implies that warps in P; were selected before this.

(a): P; is before P; in program order. This is the more common
case given that warps in P; were selected earlier. Selecting
warps in phase P; would get all warps to the shorter phase
P;, leading to a possibility of non-overlapped memory latency.
Hence, it would be ideal to first select warps in P;.

(b): P; is after P; in program order. This would happen if
warps (currently in P;) executed before this and branched back
to an earlier phase. Selecting warps in phase P; would get all
warps to the longer phase P;. Note that in this case, selecting
warps from P; would harm performance only if they branch
back to phase P;. Nonetheless, selecting warps in P; would
not negatively impact performance.

Case (2): The GTO policy chooses a warp in phase P;. This
implies that warps in P; were launched before warps in P;.
(a): P; is after P; in program order. This is the common case
as GTO gives priority to older warps, causing them to be ahead
in the program. If phase P; is extremely long, choosing a warp
from phase P; might under-utilize the memory bandwidth.
Hence, it would be better to first execute warps in P; and
then overlap the memory latency using warps in phase P;.
(b): P; is before P; in program order. This would happen if
warps with the lower index have branched back to P;. Again,
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Fig. 8: Block diagram of our two level warp scheduler.

selecting warps in phase P; would issue memory requests
which can then be overlapped by warps from P;. Note that
in this case, selecting warps from P; would have the same
effect, if warps in P; also branch back to P;. Nonetheless,
selecting warps which are in phase P; would not negatively
impact performance.

B. Implementation

1) Front-end: The phase length information is computed
at compile time and included in the kernel instructions. As
the CUDA ISA is not open-source, we use PTX-Plus [12].
PTX is an intermediate assembly language generated during
the compilation of CUDA kernels. PTX-Plus is a modified
version of PTX which closely matches the ISA that executes
on the hardware. We chose to work with PTX-Plus because
we observed that PTX is generated before the compiler has
performed instruction scheduling. Due to this, the memory
load and store instructions are scheduled very close to their
dependent instructions, resulting in the instruction sequence
being fragmented into several phases.

A long-op register is defined as a register that is a destina-
tion operand of a long latency instruction. To create phases, a
set of long-op registers (empty at initialization) is maintained.
The PTX-Plus assembly code is parsed at compile time from
top to bottom and long-op registers are added to the set one
instruction at a time. The first instruction that consumes any
register currently in the set marks the start of a new phase.
At the start of each phase, the set is cleared. This assumes
that long latency instructions issued close to each other would
complete around the same time, and avoids creating several
short phases. In addition, each basic block starts a new phase.

Once the phases are created, the code is traversed backwards
to calculate phase lengths. Within each phase, instruction
latencies are accumulated from the last to the first instruction
as mentioned in Sect. III-A. This simultaneously calculates
two pieces of information. Each instruction is assigned a phase
distance, which approximates the number of cycles a warp
executing this instruction would take to reach the end of the
phase. Additionally, each phase is assigned a phase length,
which approximates the number of cycles a warp takes to
execute the phase.



2) Hardware Implementation: We implemented the sched-
ulers in GPGPU-Sim v3.2 [12], a cycle-accurate GPU architec-
ture simulator. The phase distance mentioned in the previous
subsection is used by the phase-aware single level scheduler,
while the phase length is used by the phase-aware two level
scheduler.

Single Level Schedulers: As mentioned in Sect. II-B, single
level schedulers maintain a queue of all warps that are active
on a core. All the warps in the active queue are checked every
cycle and the one with the highest priority is chosen. The
priority assigning policy is the key difference between the
different schedulers. The RR scheduler rotates the priority after
each selection, while the GTO scheduler always assigns the
highest priority to the oldest warp. The phase aware scheduler
compares the phase distance of the current instruction for each
warp. Warp at an instruction with the lowest distance from the
next phase is chosen. For warps that are at the same distance,
the oldest warp is chosen first. This requires the distance
information to be added for each instruction. In real GPU
implementations, this can be achieved via opcode extensions.
Our experiments showed that a phase distance of 512 covers
more than 98% of all kernels?. Considering instruction size
of 8 bytes and L1 cache line size of 128 bytes, adding phase
distance would increase the static instruction size by 12.5%.

Two Level Schedulers: In the baseline two level scheduler
(refer to Fig. 3 and subsection II-B2), when a warp in the ready
queue arrives at a long latency operation, it is put in the active
queue and replaced by the warp from the head of the queue.
This implementation works well if priority of the warps in the
active queue is rotated in a round robin order. However, notice
that this is an issue for any scheme that requires warps to be
prioritized. If a single queue is used to store the active warps,
as well as the warps waiting on long latency operations, all
the warps would need to be checked when replacing a warp
from the ready queue. To solve this, we use an additional
pending queue to store warps that are waiting on long latency
instructions.

Fig. 8 shows a block diagram of our implementation of
the two level scheduler. A warp waiting on a long latency
instruction is first moved to the pending queue. When all
the long latency instructions complete, it is moved to the
tail of the active queue. The priority assignment logic is
triggered at this point and warps in the active queue are sorted.
This design effectively allows implementation of different
scheduling policies by modifying the policy of the priority
assignment logic. The RR scheduler does not sort the warps,
while the GTO scheduler sorts the warps in launch order. The
phase-aware scheduler uses the phase distance of the next
phase to sort the warps. Consequently, contrary to the single
level scheduler, length information is required only once for an
entire phase. Our experiments show that adding phase length
increases the static instruction size by less than 1%. After
sorting, warp at the head of the active queue is moved to the
ready queue.

2For longer phases, multiple opcode extensions can be used.

TABLE I: GPGPU-Sim configuration
Chip configuration
Number of cores 16

Core frequency 1300 MHz
DRAM clock frequency 1850 MHz
Peak SP / DP floating point throughput 1330 / 650 GFLOPs
Peak DRAM bandwidth 177 GB/sec
Core configuration
Maximum thread blocks per core 8
Maximum warps supported per core 48

32 ALUs, 4 SFUs

Execution units per core 16 LD/ST units

Scheduler configuration
Warp schedulers per core 2
1 instruction
every 2 cycles
Ready warps queue size 6

Instruction dispatch throughput per scheduler

V. EXPERIMENTAL RESULTS
A. Methodology

We configured the simulator [12] to match the architecture
of NVIDIA Tesla M2090 GPU [15] (refer to Table I). To
perform our evaluations we chose kernels from the CUDA
SDK [13] and the Rodinia benchmark suites [14]. The SDK
has 49 applications, while Rodinia has 19; with each ap-
plication having multiple kernels. We pruned our workload
list by omitting the applications provided in the SDK for
hardware profiling and demonstrating interoperability with
graphics APIs. We also omitted kernels that did not have a grid
size large enough to fill all the cores, and the size could not be
increased without significantly changing the application code.
Our final workload list had 13 kernels from 11 applications of
the SDK and 17 kernels from 12 applications of Rodinia. For
brevity, we discuss results of kernels for which either the RR
or the GTO scheduling policy showed a better performance.
For the remaining kernels, the GTO, RR and phase-aware
scheduling policies had comparable performance (within 1%
of each other).

B. Impact on Performance

Fig. 9 plots the speedup of the Greedy Then Oldest (GTO)
and phase-aware schedulers normalized to the Round Robin
(RR) scheduler. The single level schedulers have an advantage
of selecting from all the warps on the core. Hence, we compare
the performance of the single level and two level schedulers
separately. We have grouped the kernels into two types. For
kernels grouped under Type A, the GTO scheduler achieves a
better performance compared to RR, while for kernels grouped
under Type B, the RR scheduler performs better than GTO.

1) Type A Kernels: Kernels for which the GTO policy
performs better (grouped under type A), have phases of
extremely short length. As mentioned in subsection III-C1, our
simulations showed that when the RR policy is used, warps
get accumulated in these short phases at around the same time,
causing the core to become idle.

Eight kernels always perform better with the GTO policy
(refer to Fig. 9(a)). The BP-K2, DWT, HIST and MCO kernels
have their shortest phase (refer to Table II) at the beginning



Applications from Rodinia Applications from CUDA SDK
Name Back B+Tree Heart | K-means | LU Decom- | Speckle Reducing | Comp.Fluid | Discrete Wavelet DXT Fast Walsh Histogram Monte Carlo
Propagation Search Wall | Clustering position Anisotropic Diff. Dynamics Transform Compression | Transform i Option Pricing
Abbreviation BP - K1 | BP - K2 | B+T - K1 | B+T - K2 | Heart KM LUD SRAD CFD DWT DXTC FWT HIST MCO
Total Thread Blocks 65535 65535 65535 65355 56 841 16129 16384 1817 4096 4096 4096 256 2048
Threads / Block 256 256 256 256 256 256 256 256 192 512 256 512 192 256
Thread Blocks / Core 6 5 5 6 4 6 6 6 3 3 4 3 6 5
Total Phases 5 5 16 11 45 2 3 4 9 2 3 2 2 2
Longest Phase 206 99 40 32 212 48 150 218 985 144 1159 174 44 284
Shortest Phase 26 14 5 3 41 14 7 31 86 44 24 45 24 38

TABLE II: Workloads from the CUDA SDK [13] and Rodinia [14]
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Fig. 9: Performance comparison. Type A - GTO performs better than RR. Type B - RR performs better than GTO.

of the kernel. The SRAD kernel has two short phases in the
middle of the kernel code, while the B+Tree kernels have
phases of length shorter than 20 cycles intermixed throughout
the code. Notice in Fig. 9 that the BP-K1, LUD and KM
kernels have a better performance with the GTO policy for
single level implementation and with the RR policy for two
level implementation. This happens due to a phenomenon we
refer to as intra-block tail effect, which we will explain in
detail in subsection V-E.

For the type A kernels, the single level GTO has a speedup
of 10% over single level RR on average. The performance
of the phase-aware scheduler is close to that of GTO for all
these kernels and it achieves a speedup of 9% on average
over RR. A similar performance trend was observed for the
two level schedulers. However, as warps progress through the
kernel in fetch groups, all the warps do not arrive at the
short phases simultaneously. This reduces the negative effect
on performance of the RR scheduler. Notice in Fig. 9(b) that
for the DWT, DXTC and HIST kernels RR scheduling now
performs comparable to GTO and phase-aware. Consequently,
the speedup of GTO over RR is lesser with an average of 4%.
Again, the performance of the phase-aware scheduler is close
to that of GTO and it achieves a speedup of 3% on average
over RR.

2) Type B Kernels: Kernels for which the RR policy per-
forms better (grouped under type B) typically have extremely
long length phases. Heartwall is a very long kernel with 1523
instructions and 45 phases, with several long length phases
of over 100 cycles. CFD has pairs of medium and long
length phases, with an average phase length of 290 cycles,
and FWT has just two phases of length 45 and 174. As
discussed in subsection III-C2, memory operations issued at
the beginning of these long phases complete before the phase
ends. Consequently, the GTO policy keeps prioritizing a small
set of warps causing it to under-utilize the memory bandwidth.

For the kernels in our benchmark suite, RR scheduling
performs better than GTO only for three kernels for the single

level implementation and has an average speedup of 9.2%
over GTO. Notice in Fig. 9(a) that the phase-aware scheduler
now performs closer to the RR policy. Performance of the
phase-aware scheduler is comparable to RR and it achieves a
speedup of 9% over GTO. For the two level implementation,
similar to the type A kernels, the impact of phase behavior
on performance (now on the GTO policy) reduces. The RR
policy achieves a better performance for six kernels, with an
average speedup of 7% over GTO. The phase-aware scheduler
matches the performance of RR for all kernels except LUD
and achieves a speedup of 4% over GTO. The reason for
the negative impact on performance of the LUD kernel is
explained in subsection V-E.

3) Summary of Performance Impact: Observe in Fig. 9(a)
and Fig. 9(b), that for kernels grouped under type A, per-
formance of the phase-aware scheduler is always closer to
that of the GTO scheduler. On average, its performance is
within 99% of GTO for both the single level and two level
implementations, and it achieves a speedup of 9% and 3% re-
spectively over RR. For the kernels grouped under type B, the
phase-aware scheduler now performs closer to RR. It matches
the performance of RR for the single level implementation
and performs within 96% for the two level implementation.
Consequently, it achieves a speedup of 8.9% and 4% over
the GTO policy. These results indicate that application phase
behavior has an impact on performance of the GTO and RR
scheduling policies. As application type is not known a priory,
performance can be negatively impacted if static policies are
used. For example, if the RR policy is used, we would incur
performance loss for type-A kernels, and similarly for type-B
if the policy was GTO. On the contrary, the phase-aware policy
always performs closer to the better performing policy for
any kernel. Hence, by utilizing information regarding program
phases, our scheduling policy becomes applicable to a wider
range of applications.
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Fig. 11: Average ALU and memory load of two kernels of type A and type B.

C. Impact on Scheduler Idle Time

At any given cycle during kernel execution, the scheduler
can be in either one of the four states: 1-no warps have a
new instruction, 2-all warps that have an instruction are not
ready (waiting for an operand from a previous instruction),
3-all warps that have a ready instruction cannot issue due to a
pipeline stall or 4-at least one warp can issue an instruction.
We refer to the sum of the cycles spent in the first three states
as scheduler idle time. As scheduler idle time is the cycles
when no new instructions are issued, it is a good indicator of
the performance trend.

Fig. 12 plots the scheduler idle time as a percentage of the
total execution time. For brevity, the data is averaged across
kernels of the same type and normalized to RR. For type
A kernels, the GTO and phase-aware policies had a 21.56%
and 21.03% lower idle time compared to RR for the single
level scheduler, while the average idle time was comparable
to RR for the two level scheduler. As expected, for the kernels
grouped under type B, the average scheduler idle time for GTO
was higher than the RR policy. It was higher by 13.66% for
the single level and by 8.73% for the two level scheduler.
As the phase-aware scheduler performs closer to RR, its idle
time was lower than GTO, but higher than RR by 6.8% for the
single level and 3.9% for the two level. Notice that similar to
the performance trend, the difference in the idle time between
schedulers for a given type of kernels is lower in the two level
implementations. This again shows that the impact of phase
behavior is reduced with two level scheduling. Also, the idle
time for the phase-aware warp scheduler is always closer to
the better performing policy for each kernel type.
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Fig. 12: Comparison of average scheduler idle time.

D. Impact on Functional Unit Load

The total runtime of a kernel can be broken down as
‘Idle cycles’ 4 ‘Total Computation Cycles’ 4 ‘Total Memory
Access Cycles’ — ‘Cycles of Overlap of Computation and
Memory Access’. The amount of time spent by a kernel doing
only arithmetic or only memory operations indicates whether
the kernel is compute or memory intensive. To measure
this, we instrumented the simulator and monitored the ALU
pipeline and the memory system. The kernel is considered
as performing computation (or memory access), if there is at
least one ALU (or memory) instruction in flight at that cycle.
Load on the ALU and memory pipelines is defined as the
total number of instructions that are in flight during that cycle.
Fig. 10 shows the breakdown of execution time of two kernels
each, of type A and type B, and Fig. 11 plots their respective
ALU and memory loads.

BP-K1 is an example of a type A kernel that is compute
intensive. A significant portion of the execution time is spent
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performing only ALU operations (refer to Fig. 10(a)). Notice
in Fig. 11(a) that the single level GTO and phase-aware
schedulers maintain a lower load on the memory subsystem.
However, as the average ALU load achieved is higher, they
perform better than RR. Also, notice that for the two level im-
plementation, the RR scheduler maintains a ALU load that is
similar to the GTO and phase-aware schedulers. Consequently,
the GTO and phase-aware scheduler do not achieve a speedup
over RR for the two level implementation (refer to Fig. 9(b)).
B+Tree-K2 is a type A kernel that is memory intensive (refer
to Fig. 10(b). Again, observe in Fig. 11(b) that although the
ALU load is comparable for all the schedulers, the GTO and
phase-aware schedulers maintain a higher memory load, and
consequently achieve a better performance compared to RR.

Similarly, Figs. 10(c) and 10(d) are examples of type B
kernels (RR performs better than GTO), which are compute
and memory intensive respectively. Around 20% of the exe-
cution time of Heartwall is spend performing ALU operations
by all schedulers (refer to Fig. 10(c)). Notice in Fig. 11(c)
that the average ALU load achieved by the GTO policy is
lower than that of RR and phase-aware schedulers, thereby
achieving a lower performance. CFD is a type B kernel
that is memory intensive. The GTO scheduler achieves a
lower average memory load for both the single and two level
implementations, and hence achieves a lower performance as
compared to RR. Notice that the single level phase-aware
scheduler maintains a lower memory load compared to RR,
while the two level implementation achieves a slightly higher
load. This is reflected in the performance results (refer to
Fig. 9), as the single level phase-aware scheduler is 3% slower
than RR, while the two level achieves a speedup.

E. Impact of Intra-Block Tail Effect on Performance

As mentioned in Sect. V-B, performance of the two level
GTO and phase-aware policies, for the LUD, KM and BP-
K1 kernels, is adversely affected due to intra-block tail effect.
Intra-block tail effect is a phenomenon where some warps
of a thread block complete the kernel before others. This
happens when some warps from a thread block complete their
long latency instructions before others and are selected in an

earlier fetch group. The LUD, KM and BP-K1 kernels have
a short phase of length 7, 14 and 16 respectively at the end.
The warps selected in the earlier fetch groups run ahead and
complete the last phase. However, a new thread block is not
launched until all warps of a block complete, thus reducing
the number of warps on the core. The effect is reduced in
the single level schedulers as warps are not scheduled in fetch
groups. Moreover, with single level RR, all warps arrive at
the last short phase at the same time leading to the GTO and
phase-aware policies performing better (refer to Fig.9(a)).
Fig. 13 depicts the intra-block tail effect for the LUD kernel
by plotting the total number of active warps on a core. Notice
in Fig. 13(a) that 6 warps (size of the fetch group) finish all
the three phases and the number of warps reduce to 42 (the
first marked TE). However, new warps are not launched until
more warps finish phase 3. Notice that the tail effect repeats
each time warps in phase 3 complete. On the contrary, as the
RR scheduler switches to a different fetch group after each
phase (refer to Fig. 13(b)), all warps reach phase 3 at around
the same time. Notice that the length of the tail for RR is
around 2000 cycles for all the 6 blocks, as compared to 5000
cycles for GTO (sum of all TEs in Fig. 13(a)). Performance
of the phase-aware scheduler is also affected as it chooses
the shortest length phase which is the last phase for these
kernels. To mitigate this problem, we are currently evaluating
implementations for adding thread-block affinity to our two
level scheduler. Note that this would increase the complexity
of the scheduler considerably and its overhead for the hardware
implementation should be carefully considered.

VI. RELATED WORK
A. General Warp Scheduling Techniques

Lakshminarayana and Kim [16] analyzed the performance
of GPU kernels under various instruction fetch and memory
scheduling policies. They showed that applications in which
warps have a uniform execution latency, a fairness based
warp and DRAM access scheduling approach results in the
best performance. The goal of their work was to explore
the effects of the scheduling policies on the performance of
various applications. In contrast, we try to use information
about the application to make scheduling decisions at runtime
and perform closer to the better performing policy for each
application.

Gebhart et al. [7] and Narasiman et al. [8] proposed the
hierarchical warp scheduler that we used as a baseline for
our work. The focus of authors in [7] was making the warp
scheduling logic simpler and more energy efficient. Choosing
from a smaller set of warps every cycle saves energy spent
on scheduling. Their results show that using an active queue
size of 6 results in less than 1% performance loss compared
to the single level scheduler. The focus of authors in [8] was
to use the two level policy to improve latency hiding. As the
two level policy makes the warps progress through the kernel
instructions at different speeds, it results in a better overlap of
memory latency and computation. We showed that although
the two level schedulers perform well, the policy to select the



fetch group has an effect on their performance. We build upon
the schedulers proposed in their works, and make them more
robust to application phase behavior.

Our work is closest to the work published by Chen et
al. in [17]. They identify the adverse effects of short phases
on the two level RR scheduler and propose a scheduler that
shifts to the next fetch group only at priority shift instructions.
Short phases are identified by the compiler and merged with
the previous phase by adding a priority shift instruction after
the short phases. This effectively makes the priority selection
policy as greedy until all the short phases are completed by a
fetch group. Our policy to select the phase with the shortest
length has the same result. The problem they identify with the
RR scheduler can be mitigated if the GTO policy is always
used. Instead, our work identifies the scenarios when the GTO
policy has a lower performance as well, and proposes a more
robust scheduling policy that would be applicable to a wider
range of application types.

B. Scheduling Techniques to Mitigate Warp Divergence

In addition to the generic techniques mentioned in the previ-
ous subsection, there is a significant amount of published work
that has focused on techniques to mitigate warp divergence.
Warp divergence occurs when threads within a warp execute
different program paths due to branches. Traditional GPUs
execute each path sequentially with lesser number of threads,
thereby under-utilizing the GPU core’s computational through-
put. Fung et al. [18] proposed Dynamic Warp Formation
(DWF) which creates new warps from threads that fall on the
same program path after the divergence point. Their technique
suspends a warp when it reaches an instruction that causes
threads in a warp to diverge. When other warps arrive at the
same instruction, new warps are created and all warps proceed
from that point. To reduce the synchronization overhead due
to warps from different thread blocks forming a warp, Fung
et al. [19] later proposed Thread Block Compaction (TBC),
which adds thread block affinity to DWF. TBC creates new
warps from diverged warps of the same thread block, similar
to the Large Warps technique proposed in [8].

Meng et al. [20] proposed Dynamic Warp Subdivision
(DWS) which divides a warp into warp splits on branch
divergence. The focus of DWS is to improve latency hiding in
scenarios when one warp split encounters a cache miss. The
latency of memory access can be overlapped by executing the
other warp split. Their technique creates warp splits to improve
latency hiding upon memory divergence as well. Memory
divergence occurs when some threads of a warp hit in the
cache and others miss. The DWS technique creates a warp split
with threads that hit and lets them continue. This allows those
threads to reach the next memory request and possibly prefetch
for the warp split that missed the first memory request. A
similar technique of dividing warps into separate scheduling
entities was proposed by Steffen and Zambreno [21]. They
divide the kernel instructions, which are potential program
paths after divergence, into smaller instruction blocks called
pu-kernels. On warp divergence, threads wait in a partial warp

pool. When there are enough threads to make a complete warp,
the new warp is allowed to execute the p-kernel.

Our phase scheduler can be used along with the warp
divergence techniques mentioned above. Our technique marks
each basic block as a new phase. Thus on warp divergence
warps would be first put into the pending pool. Each of the
techniques mentioned above creates new scheduling entities
at this point. The new entities can then be scheduled by our
phase scheduler using the phase length information.

C. Thread Throttling

There is body of work that focuses on throttling the amount
of thread level parallelism available on the core. Although
all of these are not at the warp level, changing the number
of active warps on a core has an effect on warp scheduler
performance. Guz et al. [22] designed an analytical model to
study the impact of amount of TLP on performance of highly
multi-threaded architectures. They showed that performance
increases initially due to increase in TLP, and then starts to
reduce once the total working set of the threads does not fit in
the cache. Performance continues to decrease if more threads
are launched until the TLP is high enough to hide the increased
memory latency. The region of performance dip is referred to
as the “performance valley”. The authors in [9, 11, 23, 24]
effectively detect at runtime when the number of active threads
causes the GPU to get into the performance valley.

Rogers et al. [9] detect scenarios when the L1 data cache
is trashed. They monitor the cache lines to detect warps that
have lost intra-warp locality because of other warps evicting
data that would have been used by them. A scoring system
increases the score of such warps. Warps below a certain
score are not selected by the scheduler, thereby reducing the
number of active warps. Kayiran et al. [23] monitor the amount
of time spent waiting for memory. The number of threads
is reduced if the time is more than an empirically found
threshold. Lee et al. [11] find the optimal amount of TLP by
launching the maximum number of warps initially and then
using a greedy scheduling policy. After the first thread block
completes, the optimal number of blocks is estimated using the
number of instructions that have been completed until then.
Awatramani et al. [24] detect the optimal thread block count
by comparing the pipeline stalls at different block counts.
They launch half the maximum number of warps and then
use history information of the previous block counts to guide
the scheduler. Lee et al. [10] identify a problem similar to
the tail effect mentioned in Sect. V-E for workloads that have
varying warps execution times. They throttle warp execution
by assigning a time slice to each warp, proportional to its
the execution time with the RR scheduler. The tail effect is
reduced by giving a larger time slice to longer running warps.

Each of the above techniques reduces the number of warps
on a core to a smaller set. However, the underlying policy to
select warps from this reduced set to dispatch to the execution
units is either RR or GTO. Hence, our phase-aware warp
scheduler can be easily used in conjunction with the above-
mentioned techniques.



VII. CONCLUSION

In this work we analyze phases in GPGPU kernels and
show that the performance of warp schedulers depends on
characteristics of these phases. Using real-world application
examples, we show that an efficient warp scheduling policy
can be designed by understanding how warps progress through
these kernel phases. Based on these observations, we pro-
pose a novel phase-aware warp scheduling policy that uses
information provided by the compiler to make scheduling
decisions. We implement this scheduler in a GPU simulator
and demonstrate that it is more robust to phase behavior as
compared to the static policies like round robin and GTO.
As more and more applications are being ported to the GPU
for acceleration, we believe that to cater to the wide array
of workloads, application-aware warp scheduling policies will
become even more relevant in the near future.
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