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Abstract—Biometric authentication is becoming an increas-
ingly prevalent way to identify a person based on unique physical
traits such as their fingerprints, face, and iris. The iris stands
out particularly among these traits due to its relative invariability
with time and high uniqueness. However, iris recognition without
special, dedicated tools like near-infrared (NIR) cameras and
stationary high-performance computers is a challenge. Solutions
have been proposed to target mobile platforms like smart phones
and tablets by making use of the Red-Green-Blue (RGB) camera
commonly found on those platforms. These solutions tend to
be slower than the former due to the reduced performance
available in mobile processors. In this paper, we detail a Field
Programmable Gate Array (FPGA)-based System on Chip (SoC)
approach to help address the mobility and performance chal-
lenges that exist in current iris segmentation solutions. Our
SoC architecture allows us to run the iris recognition system in
software, while accelerating slower parts of the system by using
parallel, dedicated hardware modules. Our approach showed a
speedup in segmentation of 22x when compared to an x86-64
platform and 468 x when compared to an ARMv7 platform.

Index Terms—FPGA, iris recognition, feature extraction, co-
processor.

I. INTRODUCTION

Biometric authentication uses physical traits of a person
to verify their identity, in contrast to using passwords or
other keys. The iris is a trait that is relatively stable in-time
compared to other physical traits and contains high inter-class
variability, making it a good candidate for biometric authenti-
cation [1]]. Today, iris recognition systems exist to authenticate
people for various reasons such as border crossing [2f] and
welfare programs [3]. However, these systems often take
seconds to complete and often require specialized hardware
such as near-infrared (NIR) cameras. The convenience and
security offered by biometric authentication using the iris is
desirable. If authentication of persons via the iris is to become
mainstream, it must be supported by fast, mobile systems
without the requirement of specialized resources.

Solutions have been proposed to target mobile platforms like
smart phones and tablets by making use of the Red-Green-Blue
(RGB) camera commonly found on those platforms. These
solutions tend to be slower than the former due to the reduced
performance available in mobile processors. In this paper,
we detail a Field Programmable Gate Array (FPGA)-based
System on Chip (SoC) approach to help address the mobility
and performance challenges that exist in current iris segmen-
tation solutions. Our SoC architecture allows us to run the iris
recognition system in software, while accelerating slower parts
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of the system by using parallel, dedicated hardware modules.
Our approach showed a speedup in segmentation of 22 x when
compared to an x86-64 platform and 468 x when compared to
an ARMv7 platform.

The rest of this paper is organized as follows. Section
explains relevant anatomical terms of the eye and the general
iris recognition system stages. Section |lII| gives examples of
related research in both iris recognition algorithms and the
platforms iris recognition has been targeted. Section [[V|details
our software implementation of an iris recognition system and
its performance on different processors. Section |V| describes
the hardware architecture that implements the segmentation
stage of the iris recognition pipeline, and its performance
compared to the software-only implementation described in
Section [Vl Section [V offers our conclusion and outlines
future work.

II. BACKGROUND: IRIS RECOGNITION

In this section, the relevant anatomical terms and funda-
mental stages of the iris recognition pipeline are presented.
Figure [I| provides a visual overview. The pupil is the black
circular hole in the center of the eye. It appears a dark, black
color because light is absorbed by tissues inside the eye.
The iris is the colored annulus—ring-shaped object—Ilocated
between the pupil and the white part of the eye called the
sclera. The iris can develop in many different colors, but its
most interesting characteristic is its texture of arches, furrows,
ridges, crypts, and a collarette, all of which make irides highly
unique from person to person. The iris develops early on in
a human’s life and is stable over time [1]], which adds to the
convenience factor of biometric authentication using the iris.

There are two boundaries that separate the iris from the
the rest of the components in the eye. The inner boundary, or
pupillary boundary, is a circle on the outer edge of the pupil
which separates the iris from the pupil. The outer boundary,
or limbic boundary, is a circle on the outer edge of the iris
separating the iris from the sclera, or white part of the eye.

A. Iris Recognition Stages

The iris recognition pipeline is broken into these fundamen-
tal stages: acquisition, segmentation, normalization, feature
extraction, and classification (see Fig. [2).

Acquisition. The acquisition stage involves capturing an im-
age of an eye using a camera. In most extant iris recognition
systems today, this involves a controlled setting and an NIR
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Fig. 1: (a) Simple anatomy of the eye. (b) The pupillary and
limbic boundaries

imaging sensor. The user is given instructions on where to
place themselves and where to look so the system can acquire
an image of their eye [4]]. The Mobile Iris Challenge Evalua-
tion contests mentioned in Section [Tl aim to solve the problem
of restriction to a highly-controlled environment. They target
mobile device platforms—which are often equipped with red,
blue, and green (RGB) imaging sensors—and base evaluation
of their solutions on images of participants taken in random,
uncontrolled environments.

After acquisition, images may be post-processed to help
with later stages of the pipeline. Post-processing may include
methods for enhancing or filtering the image to help with seg-
mentation, or feature extraction. In the case of less restricted
iris recognition systems, further methods may be used to
localize the eye to aid in segmentation. This allows instructions
to be simpler to follow for the user, but may reduce accuracy
or runtime performance as a trade-off for convenience.
Segmentation. The segmentation stage involves locating the
boundaries of the iris. These boundaries identify the area that
contains the iris in the shape of an annulus, or annulus-like
shape—in the case of occlusions, non-circular irides, or off-
axis gaze. While there are several methods typically used for
iris segmentation found in the research literature (e.g. the
circular Hough Transform [3]], 6], active contours [7]], local
statistics kurtosis [8]], [9], thresholding and binary morphol-
ogy [8]l, [9]), in this paper we focus on the integro-differential
method, which has well-documented and reasonably high
accuracy results.

The integro-differential operator acts as a circle detector af-
ter some image pre-processing. The original eye image is first
blurred and then we take the partial derivative with respect to
increasing radius around a center point. The resulting gradient
image highlights the pupillary boundary and limbic boundary
due to the change in shade or color between the pupil to iris
and the iris to sclera, respectively. The operation then uses an
integrator to find the maximum valued circle—with respect to
increasing radius from a center point—corresponding to an iris
boundary. In research contained in the literature, this operator
can be used to find both iris boundaries. This method is applied
in many places within the literature and is well described in
(10, [10].

Normalization. The normalization stage seeks to perform
operations on the image, after segmentation, that make it
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Fig. 2: The iris recognition system model.

possible or easier to detect features and remove noise or
unwanted data before the feature extraction stage. In iris
recognition, common normalization steps include: removing
eyelash or eyelid occlusions, removing light reflections, and
a polar-coordinate transform to warp the iris annulus into
a rectangular image. As is illustrated in Fig. [3] the polar-
coordinate transform warps the iris into a rectangular image
using the two iris boundaries found in the segmentation step.
This unwrapped format makes it easier to extract features from
the iris without the need to do polar-coordinate lookup in
the feature extraction stage. In the literature, this approach is
often called the Rubber Sheet Model in reference to stretching
the inner parts of the iris to match the length of the outer
boundary to form the unwrapped image. The y-axis of the
unwrapped image represents radius and the x-axis represents
degrees. Each row in the unwrapped image corresponds to a
circle in the iris annulus at a different radius.
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Fig. 3: The polar transform (Rubber Sheet) model.

This stage is also responsible for removing various noise
patterns that may appear in the iris that can occur from
light reflections and occlusions. Since these patterns tend
to fit into well-defined ranges (for example, upper eyelid
occlusions most often occur between 45 and 135 degrees in the
unwrapped image), an inverse-threshold mask combined with
pixel-value histograms can be used to mask out noise [[7].
Feature Extraction. The feature extraction stage involves
finding a feature vector (often referred to as iris templates in
this context) that may uniquely identify the candidate iris. One
common approach to building these templates involves wavelet
transformations [T]l, [5]l, [I1]. A simpler alternative is the
Ridge-Energy Direction (RED) method originally presented
in [9] and further used in [12], [13].



Classification. The classification stage follows feature ex-
traction and seeks to find a match between the local iris
template and one or more iris templates previously enrolled
in a database. The typical method used to compare two iris
templates is the Hamming distance between the iris templates’
bit-strings. This metric simply counts the number of differ-
ences in the two bit-strings and normalizes the difference to a
number between 0.0 and 1.0.

IIT. RELATED WORK

In 1993, Daugman published algorithms for iris recognition
that are still widely used today [10]. Updates to that initial
work have focused on performance optimization [[1]] and on
improving the accuracy of segmentation [7].

A. Mobile Iris Recognition

Due to the massive use of mobile devices in today’s world,
the Mobile Iris CHallenge Evaluation (MICHE) [14] was
created to promote biometric authentication, via the iris, on
mobile platforms such as smart phones and tablets in less-
controlled environments. In many circumstances, the users
of these mobile devices access secure data and services that
need to be protected. In common cases, these mobile devices
possess red, green, and blue (RGB) imaging sensors which
MICHE aims to use for convenience and availability. The first
MICHE contest was presented in 2015 to promote advances
in mobile iris recognition. The contest invited researchers to
present their solutions to this problem. An RGB eye-image
dataset was created from this contest and is used in this work.

There are several works that use the MICHE dataset to target
iris recognition on mobile platforms. In [15], De Marsico et
al. layout a modular hybrid approach for a face and iris recog-
nition system. Barra et al. [[16] uses a median filter to detect
and segment the limbic boundary. This approach is similar to
the integro-differential operator approach originally described
by Daugman in [[1], [10]. The runtime performance of this
method—on the order of seconds—suggests improvements
would be necessary to build an everyday-use tool. In [17],
Abate et al. use a watershed transform, after obtaining an
average gradient image across all three RGB color channels,
to binarize the original image and then use a circle detector to
find both the pupillary and limbic boundaries. In [[18]]—[20] the
authors discuss the results of the MICHE competition, showing
that mobile iris recognition is possible but highly performance
constrained to the order of seconds for identification.

There are also other works outside of the MICHE compe-
tition that attempt to use mobile phones for iris recognition.
Kurkovsky et al. was one of the earliest to experiment with
iris recognition on the mobile phone [21]. Their work uses
the NIR-camera image dataset CASIA and claims consistant
performance of under three seconds. In [22], the authors
explore performance of extant systems using an RGB-image
dataset. The systems tested in this work are meant for NIR-
camera images but the authors claim that the systems are
mostly successful when using only the red plane of their RGB-
images. An experiment such as this could provide interesting
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Fig. 4: The original loaded scene and cascade classifier result.

insights on how to tune existing systems to make use of mobile
phone RGB-cameras.

B. Alternative Platform Implementations

There are also several approaches in research that target dif-
ferent platforms than the traditional single-core software-based
solutions for iris segmentation, using NIR image datasets. In
[23], Raida et al. produce a hardware/software hybrid im-
plementation of iris segmentation using Gaussian smoothing-
and morphological-accelerators on a Cyclone-II FPGA. They
show a gain in execution-time performance from ~3 seconds
to ~2 seconds for a total of 33% speedup when using both
types of accelerators. In [24f], the authors target multiple
platforms to obtain performance trade-offs in building token
identifiers for classification/matching. They target a desktop
computer, a microprocessor, and an FPGA. In their results,
they give performance trade-off analysis when using different
resolutions in their FPGA solution. In [25]], Hematian presents
a heavily pipelined FPGA-based iris localization method. Sakr
et al. target an NVIDIA GTX 460 GPU for iris recognition
in [26]. In the localization stage, they present a speedup of
10x when compared to a 2.3 gigahertz Intel Core i3 software
solution.

IV. SOFTWARE-ONLY IRIS RECOGNITION SYSTEM

This section discusses our iris recognition system software
prototype and its results. For this prototype, we make use
of the OpenCV library which supports algorithms and data
structures that are useful for computer vision applications
[27]. The following sections describe the high-level methods
employed for each stage.

A. Acquisition

In the first stage of the iris recognition system, an RGB im-
age from the MICHE dataset is read from disk. The scenes in
the images of this dataset vary greatly due to their purposefully
uncontrolled environment. Because this work does not aim to
specifically solve the problem of an uncontrolled environment,
the built-in OpenCV cascade classifier method is used to
retrieve an eye region of interest (ROI) within the scene.
While this classifier is both computationally expensive and
necessary to work with the input dataset, it is not considered a
fundamental bottleneck in the pipeline as other usage scenarios
could require the user to orient their device in a particular
fashion. An example acquisition of an image and the cascade
classifier result are shown in Fig.



B. Segmentation

In this software prototype, thresholding and morphological
operators are used to segment the pupil. In the eye image, the
pupil appears as a near-black, circular blob. As the red plane
of the image gives the greatest contrast between the pupil and
the rest of the eye, it is therefore best suited for pupillary
boundary segmentation. A threshold operation is used on the
red plane of the eye image to create a pupil mask. The mask
may still contain unwanted noise from other dark regions of
the eye, such as the eyelashes and eyebrows. To help remove
any potential noise and fill in holes from reflections from
the camera or environment, two morphological operators—
erosion and dilation—are applied to the pupil mask. Finally,
we find the connected components in pupil mask. The resulting
connected components are filtered based on their circularity
and size (i.e. area) with the circularity of a perfect circle being
equal to 1.

If there is more than one remaining connected component
after filtering, the largest-in-area component is chosen as the
pupil. If there are not any remaining components after filtering,
then the process restarts from the thresholding operation, with
a higher or lower threshold value. An example result of this
method for segmenting the pupil is shown in Fig. [3

Fig. 5: An example result of pupil segmentation. The original
red plane ROI (top-left). The image after thresholding (top-
right). The image after morphological operations (bottom-left).
The image segmented pupil, identified by a red circle (bottom-
right).

1) Limbic Boundary: In this software prototype, the
integro-differential method is used to segment the limbic
boundary. The eye image must first be preprocessed before
attempting to find the limbic boundary. First, a Gaussian blur
is used to smooth the image to help get rid of sharp noise.
Then, a sobel operator is used to compute the gradient of
the eye image. For the standard integro-differential operator
the gradient is computed from a center point within the pupil
with respect to increasing radius. For simplicity, this gradient
is modified to instead compute two gradients—one in the
increasing horizontal direction and another in the increasing
vertical direction—that are averaged to together. The results
of these gradient operators are shown in Fig. [f] One can

observe the ring that is created around the limbic boundary.
This information is used to segment the boundary.

Fig. 6: The gradient images: horizontal gradient (left), vertical
gradient (center), and averaged combined (right).

After computing the gradient image, we threshold it with a
low threshold value to get a representative binary image. The
next step is to find the best-fit circle which corresponds to the
limbic boundary. This approach uses a radial accumulator, or
integrator, to find the circle containing the highest number of
white pixels, corresponding to the limbic boundary.

It is well known that the pupillary and limbic boundaries
may not be concentric, i.e. they may not share the same center,
even with on-axis gaze. For this reason, the next step in
limbic segmentation is an iterative process to find the best
center for the limbic boundary. We define a center-search
square consisting of points around the pupil center. Each
point in the center-search square is tried to find the best-fit
limbic boundary. In this work, the center-search square size is
arbitrarily chosen as 5x5. In future work, the size of this square
can be estimated based on the size of the pupil; however, the
runtime of this method is linearly proportional to the size of
the square. Each pixel location in the center-search square
represents possible centers for the limbic boundary circle. The
process at each pixel in the square can be broken down into
these two steps:

1) Unwrap the threshold image: As previously discussed,
using a modified polar coordinate transform, the thresh-
old image is unwrapped to polar coordinates. This
process is similar to the Rubber Sheet model defined
in [1].

2) Best-fit band: Find the horizontal band with the highest
number of white pixels. This band corresponds to the
limbic boundary.

The best-fit band step involves finding the horizontal band
with the highest number of white pixels in the unwrapped
image. A horizontal band in the unwrapped image corresponds
to a circle in the original threshold image. This is because the
unwrapped image is in a polar space with radius represented
by the y-axis and angle represented by the x-axis. Therefore,
a perfectly straight band in the unwrapped image corresponds
to a perfect circle in the original threshold image. This is the
part of the integro-differential operator that acts as a circle
detector. We accumulate along circles at different radii. This
process is demonstrated in both Cartesian and polar spaces in
Fig. [/l The band with the highest number of white pixels—
found via accumulation—is considered the best-fit circle for
the current center location in the center-search square.



Fig. 7: An example of the best-fit circle operation in both
Cartesian (left) and polar (right) spaces. The blue circle (band)
corresponds to the best-fit.

In our implementation, the software prototype computes the
best-fit circle (band) in the unwrapped image, or polar space,
only. It’s also worth mentioning that in this work we ignore the
accumulation of values between 45 degrees and 135 degrees,
and values between 225 degrees and 315 degrees as a static
way of removing noise that may be introduced from the upper
and lower eyelids, respectively.

C. Normalization

The normalization stage involves creating and formatting
an image from the information retrieved in the segmentation
stage so that features can be extracted in the next stage. In the
software prototype, we first warp the eye image using a polar
transform (Rubber Sheet) model. We use the pupillary (inner)
and limbic (outer) boundaries discovered in the segmentation
stage as input to the polar transform operation. Once the iris
has been unwrapped using the approach above, we attempt to
remove noise from reflections and eyelid occlusions. One can
spot the noise in the unwrapped image. Figure [§] gives labeled
examples of noise in this iris image.

Reflections

Fig. 8: Labeled examples of noise in the unwrapped iris (top).
The noise mask generated from reflection and eyelid detection
(bottom-left). The iris after the noise mask is applied (bottom-
right).

In this work, we use a white-pixel value to threshold the
unwrapped image. This results in a mask that is used to
removed the light reflections. Another threshold is used to
attempt to detect eyelids. It is not always the case, but often
the eyelid is a lighter-shade than the rest of the pupil. We
also know that eyelids occlude the iris at 45-135 degrees and
225-315 degrees. This information helps in identifying eyelid
occlusions. After thresholding the unwrapped image we can
find contours that correspond to eyelid occlusions. If a contour

or two contours are found, then a mask is built using the
contour information to remove eyelid occlusions. Figure [§]
shows a mask built to remove noise from the unwrapped
image.

D. Feature Extraction

The Ridge-Energy Direction approach considers the “en-
ergy” of the unwrapped image. As explained in [9], energy
refers to the magnitude of the ridges that appear in the iris.
The direction of the ridges is calculated using two filters, a
horizontal and a vertical. First, the unwrapped image is further
normalized using local-adaptive histogram equalization. Then,
the method builds two separated images using 9x9 convolution
filters on the unwrapped image.

Examples of the filtered images are shown in Fig. 9] To
finish feature extraction we use the two filtered images to
build the result and a mask that signifies which bits in the
template are valid to compare in the next stage. The template
bit-string and mask are the same size in bits as filtered images
are in pixels. At every pixel location in the filtered images,
we compare the values. If the horizontally filtered pixel is
greater, then we append a ‘1’ to the bit-string, else we append
a ‘0’. This resulting bit identifies the direction of a ridge in
the unwrapped iris image. Also, if the greater-valued pixel is
less than an energy threshold—defined in this work as the
mid-point between a black pixel and a white pixel (128)—
then we append a ‘0’ to the mask, otherwise we append a
‘1’ to the mask. A value of ‘1’ in the mask signifies that the
corresponding bit in the iris template is valid.

Fig. 9: The horizontally filtered iris (left). The vertically
filtered iris (right).

E. Classification

The classification stage seeks to identify a match between
the computed local iris template and any number of database
templates. For this stage the Hamming Distance metric is
used to gauge whether a compelling enough match exists
between the local template and a database template. In this
work, a Hamming Distance result less than or equal to 0.35
is considered a match. If a match is found, then a unique
identifier corresponding to the matched database template is
returned. If a match is not found, the user is prompted if they
would like to enroll the local template as a new identifier. In a
more practical system, enrollment would be controlled by an
administrator or other authority.

FE. Software Results

This section presents the runtime performance results of the
software-prototype iris recognition system. The runtime per-
formance is given for the software-prototype running on two



different platforms: x64 (Windows) and ARMv7 (ArchLinux).
Table [I| gives each stage’s percentage of the overall runtime
for one iteration of the iris recognition pipeline.

TABLE I: Percentage of total runtime for each stage.

Stage % of Total (x64) % of Total (ARMV7)
Segmentation 91.9% 98.1%
Normalization 0.0% 0.2%
Feature Extraction 0.0% 1.0%
Classification 8.1% 0.7%

One clear observation is that the segmentation stage is
responsible for the majority of the runtime of the software
prototype—discounting acquisition—on both platforms. Fur-
ther profiling (not reported here for sake of brevity) indicated
that when split into the sub-stages of pupillary segmentation
and limbic segmentation, the two are nearly equal in run-
time performance. When broken down further, we noticed
that the pupillary segmentation sub-stage involves operations
that are commonly found in computer vision systems, such
as thresholding and morphological operators. However, the
limbic segmentation sub-stage uses methods not commonly
found in computer vision systems, such as the modified
polar-coordinate transformation and best-fit band computation.
Another reason to consider the limbic segmentation sub-stage
for hardware acceleration is because it involves several data-
independent computations, which could be exploited through
parallelism. Each one of these independent computations es-
sentially contains a polar-coordinate transformation followed
by a best-fit band operation. For these reasons, a digital
hardware design was created to improve performance for the
limbic segmentation sub-stage. In a thorough implementation
of a high-performance iris recognition system, digital hardware
IP such as those contained in Xilinx’s HLS Video Library can
be used for hardware accelerating the pupillary segmentation
sub-stage—thresholding and morphological operations—and
the other common computer vision algorithms used in limbic
segmentation—Gaussian blur and gradient operations.

V. HARDWARE ACCELERATOR FOR IRIS
SEGMENTATION

In this section, we describe a hardware accelerator for
the limbic segmentation sub-stage designed to exist in a
hardware/software co-implementation of an iris recognition
system. We present the runtime performance of the design
and compare it to the software prototype’s performance when
running the same operations. The I/O requirements for the
polar-coordinate transformation and segmentation are as fol-
lows:

o Inputs

— The binary-threshold image to be unwrapped

— The boundary-point arrays which outline the inner
and outer boundaries of the area to look for the
limbic circle

o Outputs

— The best-fit band’s location (i.e. the radius of the
best-fit circle)

— The best-fit band’s total number of ones (so software
can compare against other best-fit circles)

In this work, we’ve normalized the sizes of the polar-
coordinate transform images to convenient sizes for designing
hardware whilst still maintaing accuracyﬂ For fast read and
write access, it would be more convenient to store the images
required for this operation in programmable logic memory,
such as block RAMs (BRAMs) or in distributed memory,
versus loading values individually or in bursts from DDR
memory. The binary-threshold image size is 256x256 bits—8
kilobytes—and the unwrapped image size is 128x176 bits—
2.75 kilobytes. All dimensions of the images are conveniently
normalized to be divisble by eight; allowing easy byte-to-bit
conversion, simple and compact storage, and easier write/read
logic. Due to the size of the I/O in the polar-coordinate
transformation, the decision was made to use block RAMs to
store the binary-threshold and unwrapped images. In this work,
each image gets their own block RAM to simplify the design.
The modified polar-coordinate transformation also requires
the boundary-point arrays which specify the annulus area to
unwrap. Again for simplification, these arrays are stored in
separate block RAMs. Each boundary-point array’s size is
176 bytes, one byte for each bit of resolution in the radial
dimension (i.e. 176 bytes represent 360 degrees).

Since the decision was made to store the unwrapped image
result from the polar-coordinate transform in a block RAM
on the programmable logic side of the SoC, it may also be
convenient to include the best-fit band operation in the hard-
ware accelerator. This would allow the hardware accelerator
to provide a simple result in the form of the size of the best-
fit circle’s radius and total number of counted ones. Then,
the software would only have to compare the results of the
best-fit circles calculated by the several instantiated hardware
modules to find the one with the highest number of ones—
corresponding to the best-fit limbic boundary.

A. Polar Transform Module

The polar-coordinate transform calculates each location,
(z,y), of the unwrapped image pixels in the binary-threshold
image. These locations are loaded from the binary-threshold
image and stored in the unwrapped image to be processed by
the best-fit band operation after the entire unwrapped image
is built.

Because there are multiple reads and read-location calcu-
lations, the polar transform functionality is complex enough
to warrant a controller. This controller is responsible for
transitioning between each set of (r;,6;) locations in the
unwrapped image. At each (r,6), the location of the read-
data in the binary-threshold image must be calculated, loaded,
and stored in the unwrapped image. The process starts at
(r = 0,6 = 0). The controller increments ¢ until the

IThe results obtained from the software prototype also use these size
normalizations in order to maintain consistency.



maximum angle is reached at (r = 0,6 = 176). At this
point the controller resets # and moves to the next row in the
unwrapped image at (r = 1,60 = 0). This process continues
until the controller reaches (r = 128, = 176) and the
unwrapped image is completed. The architecture diagram for
this controller is shown in Fig. [[0] with the underlying polar
transform module shown in Fig. [T1]
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B. Best-Fit Band Module

A controller was created for the best-fit band function to
deal with the overall operation’s complexity. Each band in the
unwrapped image is ten rows, each of 176 bits. There are ten
bands in total. The goal of this module is to compute these
bands in parallel, and after doing so compare their number of
counted ones. The band with the highest number of ones is
considered the best-fit. The module stores the best-fit band’s
location (radius) and number of ones in software accessible
registers to serve as output. To avoid having massive memory
overhead in the band fit controller, we use FIFOs to buffer
data from the unwrapped image. There are ten FIFOs, one
for each band. Each band in the unwrapped image contains
1,760 bits. For simplicity we make the FIFO depth 176 bits;
therefore, we must fill the FIFOs ten times to account for all
relevant data in the unwrapped image. We use the controller
to manage transfers of data to the FIFOs, and to control when
the internal functionality—counting the number of bits that

are one—is activated. The internal module reads the FIFO
data and counts the number of ones in each band. When all
band-data is accounted for, the BestFitBand module compares
each band and stores the resulting location and number of ones
in output registers. Figure [I2] shows the architectural diagram
of this controller, and Fig. El shows the internal module to
calculate the best fit bands.
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Fig. 12: Architectural diagram for the best fit band controller.
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C. Results

The performance results for the iris segmentation [Pwere
targeted the Xilinx XC7Z020 on the Zedboard . Simulation
was used to verify consistency in the results between the
software-only prototype and the hardware module. Table [[I]
gives the runtime performance of the operations targeted for
hardware acceleration.

TABLE II: Runtime performance of operations targeted for
hardware acceleration on different platforms.

Internal operation x64 (ms) ARMvV7 (ms) Hardware (ms)
Polar transform (x25) 15 326 0.68
Best-fit band (x25) 1 13 0.05
Total 16 339 0.73

The speedup factor of the hardware accelerator was com-
puted using the information from Table[[T} Overall we observe
a 22x speedup when comparing the hardware acceleration
method to an x64 platform and a 468 x speedup when com-
pared to an ARMv7 platform.

Table [[1I) provides resource utilization results for the hard-
ware module on the XC7Z020 platform. We see from these
results that we could instantiate twenty-five instances of the
iris segmentation module on the target FPGA.

Finally, Table attempts to provide a comparison be-
tween this paper and other previously published work. While



TABLE III: Resource utilization of the Iris Segmentation
module when targeting a Xilinx Zyng-7000 SoC (XC7Z020).

Resource type  Used  Available  Utilization %  Util. x25
Slice LUTs 2053 53200 3.86 96.48
Slice Regs 3878 106400 3.64 91.12
F7 Muxes 49 26600 0.18 4.61
Block RAMs 4 140 2.86 71.43

TABLE IV: Runtime performance summary of related works.

Publication Stage Platform Type = Runtime (ms)
171 Limbic Seg CPU (Desktop) 3.5
1] Limbic Seg  CPU (Embedded) 90
[16] Entire Seg  CPU (Embedded) 2000
117] Entire Seg  CPU (Embedded) 2000
28] Entire Seg  CPU (Embedded) 15000
[25] Entire Seg FPGA 6
[29] Entire Seg FPGA 25
This work Limbic Seg FPGA 0.7
[26] Entire Seg GPU 24

these results clearly show the potential of using FPGA-based
platforms to accelerate iris recognition, we caution against
comparing approaches that use a variety of techniques for
segmentation, normalization, and feature extraction, leading
to variations in overall accuracy and accuracy/performance
tradeoffs.

VI. CONCLUSION

While iris recognition has the potential to become a leading
biometric authentication method, to be widely used it must
support consumer devices and be quick and convenient to use.
In this paper, we have presented a hardware/software design
for an iris recognition system, and have analyzed its perfor-
mance using the MICHE dataset. Our experiments indicate
significant speedups over software-only implementations, and
illustrate the potential of FPGAs to accelerate this class of
application. In the future, we intend on extending this work in
an attempt to quantify the accuracy / performance tradeoff,
both for our architecture design space and for the various
algorithmic options.
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