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The Strongly Connected Components (SCCs) detection algorithm serves as a keystone for many graph
analysis applications. The SCC execution time for large-scale graphs, as with many other graph algorithms,
is dominated by memory latency. In this article, we investigate the design of a parallel hardware architecture
for the detection of SCCs in directed graphs. We propose a design methodology that alleviates memory latency
and problems with irregular memory access. The design is composed of 16 processing elements dedicated
to parallel Breadth-First Search (BFS) and eight processing elements dedicated to finding intersection in
parallel. Processing elements are organized to reuse resources and utilize memory bandwidth efficiently.
We demonstrate a prototype of our design using the Convey HC-2 system, a commercial high-performance
reconfigurable computing coprocessor. Our experimental results show a speedup of as much as 17× for
detecting SCCs in large-scale graphs when compared to a conventional sequential software implementation.
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1. INTRODUCTION

Large-scale graph processing plays a fundamental role in many scientific comput-
ing applications. Examples can be found in diverse domains including bioinformatics
[Mason and Verwoerd 2007], artificial intelligence [Dean et al. 2012], and social net-
working [Gjoka et al. 2010]. These applications have a strong tendency to be computa-
tionally intensive.

Commodity solutions in the market have been trying to meet the huge demand
for performance of these applications by increasing the computation speed and ca-
pacity. Breakthroughs in the semiconductor industry have continued to result in an
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increase in the number of transistors per electronic chip. However, increasing the
operational frequency becomes a harder challenge as the transistor density increases
[Borkar and Chien 2011]. One way toward utilizing the abundant count of transistors
is the use of multicore and heterogeneous cores, from which arises the need to have
parallel algorithms and hardware implementation suitable for these new architectures
[Alonso 2013]. Heterogeneous computing through reconfigurable computing-based sys-
tems have been shown to perform very efficiently, in terms of execution time and energy,
in solving large-scale problems [Olson et al. 2012; Bakos 2010; Aluru and Jammula
2014].

One of the fundamental graph processing algorithms that serves as a classic starting
step for many of the graph decomposition and analysis applications is the computa-
tion of Strongly Connected Components (SCCs). SCC is the problem of decomposing
directed graphs into a set of disjoint maximal connected components [Cormen et al.
2009]. Solving the SCC problem for large-scale graphs, as with many other graph pro-
cessing algorithms, is tightly coupled with the following challenges: the large memory
footprint of the graph processing applications and domination of memory latency on
the execution time, which is caused by the poor locality nature of large-scale graphs
[Lumsdaine et al. 2007].

Trying to address these challenges, different implementations of parallel SCC detec-
tion have been proposed tackling multicore and GPGPU platforms. But to the best of
our knowledge, the possible implementations of SCC detection for large-scale graphs
remains uninvestigated for high performance reconfigurable computing systems. How-
ever, this is not the case for the well studied breadth-first search (BFS) graph traversal
algorithm.

In this article, we present a reconfigurable architecture for parallel detection of SCC
that extends our work in Attia et al. [2014]. The main contributions for this article are
the following:

—A parallel BFS module based on Attia et al. [2014], which takes place as a core
component in our SCC implementation.

—A hardware design for finding intersections that reduce the total execution time of
the SCC problem.

—A practical hardware implementation and communication protocol for arranging our
proposed processing elements.

—We describe how our architecture scales across multiple Field-Programmable Gate
Arrays (FPGAs), and we show performance competitiveness for our BFS and SCC
implementations.

The remainder of this article is organized as follows. In Section 2, we introduce related
work. Section 3 goes through the needed background for the SCC detection algorithm
and proposes our custom graph representation. In Section 4, we introduce our parallel
SCC detection algorithm and the design details of the processing elements. Afterwards,
we show the implementation of the architecture and resource sharing techniques in
Section 5. Performance results and insights are presented and discussed in Section 6.
Finally, conclusions are drawn and potential directions for future work are pointed out
in Section 7.

2. RELATED WORK

Many attempts in the literature have aimed to accelerate graph algorithms through
innovative programming models and dedicated hardware platforms. Attempted imple-
mentations include the usage of commodity processors, multicore systems, Graphics-
Processing Units (GPUs), and FPGAs. In this section, we review relevant work to the
SCC decomposition and BFS algorithms.
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There exist extensive studies on the implementation of graph algorithms in multicore
platforms. Hong et al. [2013] have shown a parallel algorithm for SCC decomposition
based on the FW-BW-Trim algorithm. Recently, Slota et al. [2014] gave a multistep al-
gorithm for detecting SCCs in shared-memory multicore platforms. Shun and Blelloch
[2014] shows another parallel algorithm for graph connectivity in multicore platforms.
For BFS implementations, a parallel BFS algorithm for multicore architectures was
described by Agarwal et al. [2010]. They use a bitmap to mark vertices that have been
visited, and demonstrated a speedup over previous work. For implementations using
large distributed memory machines, Beamer et al. have shown significant speedup
over other implementations [Beamer et al. 2013; Checconi et al. 2012]. Note that such
implementations are not directly comparable to ours, given the high cost and power
consumption of conventional supercomputers.

GPUs have been adopted for speeding up computations in a variety of applications,
including graph processing. For General-Purpose Graphics Processing Unit (GPGPU)
implementations of BFS, Hong et al. [2011a] proposed a level-synchronous BFS kernel
for GPUs. They showed improved performance over previous work. Merrill et al. [2012]
used a prefix sum approach for cooperative allocation, leading to improved performance.
In Zhong and He [2014], the authors present a GPU programming framework for
improving GPU-based graph processing algorithms.

For FPGA-based implementations, Johnston and Bailey [2008] and Klaiber et al.
[2013] demonstrate FPGA implementations of connected components with a specific
application in analyzing streamed images. However, the problem of detecting SCCs for
large-scale graphs is to date still uninvestigated. For BFS implementations, previous
work by Wang et al. [2010] accommodated on-chip memory in order to store graphs.
However, this is not suitable for large-scale problems since these designs do not consider
the high latency of off-chip memory.

Recent FPGA-based high-performance reconfigurable computing platforms, such
as the Convey HC-2/HC-2ex [Brewer 2010; Bakos 2010], are known for their high
memory bandwidth and potential for application acceleration. For example, the Con-
vey HC-2/HC-2ex platforms have been shown to be beneficial in speeding up vari-
ous computation-intensive and memory-bound applications [Nagar and Bakos 2011;
Betkaoui et al. 2012b; Townsend and Zambreno 2013; Augustin et al. 2011].

In our previous work [Attia et al. 2014], we introduced an efficient reconfigurable
architecture, namely, CyGraph, for the BFS algorithm. Based on the CyGraph BFS
kernel and following similar design approaches, we further extend the architecture
to solve the SCC detection problem. Other close approaches to our work include
Betkaoui et al. [2012a], which introduces a parallel BFS algorithm using the Con-
vey HC-1 platform, and the recent BFS implementations by Convey using their lat-
est HC-2ex and MX-100 systems [Wadleigh et al. 2012] illustrate the importance
of this application kernel to the Graph500 supercomputer rankings [Murphy et al.
2010].

3. BACKGROUND

In this section, we introduce our custom graph representation based on the Compressed
Sparse Row (CSR) format. Then, we go through the baseline SCC detection algorithm
and the baseline BFS algorithm.

3.1. Graph Representation

For graph representation, we use our variant of the traditional CSR format. CSR has
been widely employed for large-scale graph and matrix representations in scientific
applications. Unlike an adjacency matrix representation that requires O(|V |2) space
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Fig. 1. Simple example for CSR graph representation format.

to represent graphs, the CSR format requires space only to store the nonzero data of
the graph edges. This renders CSR a space and computation efficient data structure
for representing sparse graphs.

The traditional CSR consists of two vectors: (I) column indices array C, which con-
tains nodes adjacency list; (II) row offset array R, which contains the indices at which
the adjacency list of each node starts. Figure 1 illustrates an example of the CSR rep-
resentation format. Typically, for each node i in the graph, we have to read the visited
bitmap and check if the node is flagged visited or not. Then, if the node is not visited we
have to read the row offset array (R[i] and R[i + 1]) in order to find the start and end
addresses of this node’s adjacency list. In this example, in order to find the neighbors
of node 1, we read R[1] to find that the adjacency list of node 1 starts at C[1]. Then,
we read R[2] to find that the adjacency list of node 2 starts at C[4]. Finally, we issue
memory requests to read the array items C[1], C[2], and C[3], which hold the neighbors
of node 1.

Many state-of-the-art computing platforms are capable of fetching 64-bit values per
memory request. Thus, in order to reduce memory requests, we have manipulated
the width of the row offset array R in the CSR representation to be a 64-bit wide
array. For each element, R[i], we will use the least significant bit of the row index
as a visited flag. This allows us to get all information about a specific node in one
memory request. Now, each element in the new R array contains a tuple of the following
data:

—Start index (32-bit): indicates the start position of the node’s neighbors list in C.
—Neighbors count (31-bit): refers to the size of the node’s neighbors list in C.
—Visited flag (1-bit): flag is set to 1 if a node is visited and 0 otherwise.

Referring to the example in Figure 1, we need a single memory read request at R[1]
in order to find the start position of node 1’s adjacency list in C and the number of
neighbors. Then, we make memory read requests to read the neighbors from C[1] to
C[3].

3.2. Baseline SCC Detection

In a directed graph, G = (V, E), a SCC is a maximal connected subgraph where for any
pair of nodes (u, v) in the subgraph, there exists a path from u to v and a path from v
to u. For any arbitrary graph, we can decompose the graph into at set of disjoint SCCs.
Each node is assigned a label or color that indicates to which SCC this node belongs.
Decomposing the graph into SCCs represents a fundamental primitive in many graph
analysis tools and applications. For instance, it can be used to divide big graph problems
into smaller and easier subsets of the problem.
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Traditionally, there are two sequential SCC detection algorithms that have been
widely used in the literature:

—Tarjan’s algorithm: which is considered the optimal serial algorithm for finding
SCCs [Tarjan 1972]. Tarjan’s algorithm has worst-case complexity of O(|V | + |E|).
However, this algorithm depends on the Depth-First sSearch (DFS) algorithm, which
is considered hard to parallelize.

—Kosaraju’s algorithm: first published in Sharir [1981] and composed of two com-
plete graph traversals (either BFS or DFS). This algorithm has a runtime complexity
of �(|V | + |E|). The capability of using BFS in Kosaraju’s algorithm makes it more
convenient for parallel architecture.

In this article, we target Kosaraju’s algorithm. Given a directed graph G = (V, E) and
its transpose graph G′ = (V, E′), the algorithm starts from any arbitrary node v and
finds the set of forward reachable nodes FW by traversing graph G using BFS or DFS
algorithms. Then, using the transpose graph G′, we find the set of backward reachable
nodes BW . The set S = FW ∩ BW represents a unique strongly connected component.
We remove S from the graph and iterate again until no more vertices exist. Algorithm 1
shows the pseudocode for Kosaraju’s algorithm.

ALGORITHM 1: Kosaraju’s Algorithm
Input: G, G′: directed graph, and its transpose
Output: SCC: set of strongly connected components

1 v ← randomNode()

2 while G.|V | �= 0 do
3 FW ← BFS(G, v)
4 BW ← BFS(G′, v)
5 S ← FW ∩ BW
6 SCC ← SCC ∪ {S}
7 Remove S from G

3.3. Baseline BFS

The Kosaraju algorithm for detecting SCCs requires a graph traversal algorithm that
returns all reachable nodes starting from a given node in the graph. One commonly
used traversal algorithm in real-world applications is the BFS algorithm. This is in
part due to the feasibility of parallelizing the BFS algorithm.

A commonly used approach for parallel breadth-first search is level-synchronous BFS
[Hong et al. 2011b], which is illustrated in Algorithm 2. The level-synchronous BFS
algorithm maintains the following sets of nodes: current nodes (Qc), next nodes (Qn),
and visited nodes (V ).

The algorithm starts with the root node in the current nodes set Qc. Then iteratively,
it visits all the nodes in the set Qc, and adds their neighbors to the next nodes set Qn.
In the next iteration, Qc is populated with the values in Qn and Qn is cleared for the
next iteration. The algorithm uses the set V to flag nodes as visited. The sequential
version of this algorithm runs in worst-time complexity of O(|V | + |E|).
4. DETECTING SCCS IN PARALLEL

Our parallel SCC detection algorithm is based on the previously described Kosaraju’s
algorithm using BFS traversal, and targets high-performance reconfigurable comput-
ing platforms with relatively large amounts of memory bandwidth. We also explore
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ALGORITHM 2: Level-Synchronous BFS Algorithm
Input: root node
Input: Arrays R, C holding graph data in traditional CSR
Output: Array visited holding traversed nodes

1 Qn.push(root)
2 level ← 0
3 root.level ← level
4 while not Qn.empty() do
5 swap(Qc, Qn)
6 for v ∈ Qc do // in parallel
7 if visited[v] = False then
8 visited[v] ← T rue
9 v.level = level + 1

10 i ← R[v]
11 j ← R[v + 1]
12 for i < j; i ← i + 1 do // in parallel
13 u ← C[i]
14 if visited[v] = False then
15 Qn.push(u)

16 level ← level + 1

efficiency optimizations to the BFS algorithm that reduce the number of memory re-
quests and hence increase overall system throughput.

4.1. SCC Algorithm

Algorithm 3 shows our parallel SCC algorithm based on Kosaraju’s algorithm with
parallel BFS. Given a graph and its preprocessed transpose graph represented in
CSR formats, the algorithm starts with the Trim() procedure, which is a simple and
important step to improve the performance by detecting any SCC of a single node.
For any node in the graph that has an in-degree or out-degree of zero, the Trim()
procedure will color it as a size-1 SCC. Then, the algorithm behaves in the same
manner shown in the sequential Kosaraju. We use a parallel BFS algorithm based
on the level-synchronous BFS to compute the set of reachable nodes in forward and
backward starting from the node v. Then, the parallelIntersection() algorithm com-
putes in parallel the intersection between the forward and backward reachability
sets.

ALGORITHM 3: parallelSCC(R, C, R′, C ′)
Input: Arrays R, C representing graph in CSR format
Input: Arrays R′, C ′ representing graph in CSR format
Output: Array S holding colored vertices

1 color ← 1
2 T rim(R, C, R′, C ′)
3 v ← randomNode()

4 while v �= φ do
5 parallelBFS(R, C, FW, v)
6 parallelBFS(R′, C ′, BW, v)
7 v ← parallelIntersection(S, R, R′, FW, BW, color)
8 color ← color + 1
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On each iteration, the parallelIntersection() returns the first uncolored node it en-
counters. We terminate the algorithm if there are no more uncolored nodes. The algo-
rithm returns with a colored vector of the size of the input graph nodes. Each color
represents to which SCC the specific node at this index belongs.

4.2. Parallel BFS

For our BFS implementation, we consider an optimized BFS implementation based on
the traditional level-synchronous BFS algorithm. First, the use of the custom graph
representation allows one to find out if a node is visited or not and the indices of its
adjacency in just one memory request. Thus, we are cutting down the memory requests
to half. Then, in order to save memory requests, we push the row index of node R[i]
instead of node ID to next queue. Hence, we make use of the data we fetched in a
previous iteration. Algorithms 4 and 5 show the BFS after optimizations are applied.

ALGORITHM 4: parallelBFS(R, C, T , v)
Input: Arrays R, C representing graph in custom CSR format
Input: Source node v where BFS traversal starts
Output: Queue T of traversed nodes (reachable nodes)

1 Qn.push(R[v])
2 R[v].visited ← 1
3 T .push(v)

4 while not Qn.empty() do
5 swap(Qc, Qn)
6 T ← T + count // Shift T pointer
7 count ← bf sLevel(R, C, Qc, Qn, T ) // in parallel

ALGORITHM 5: bfsLevel(R, C, Qc, Qn, T )
Input: Arrays R, C holding graph data, and root node
Input: Shared queues Qc, Qn
Output: Queue T holding traversed nodes

1 while not Qc.empty() do
2 v csr ← Qc.pop()
3 start ← v csr[63..32]
4 size ← v csr[31..1]
5 for i ∈ [start, size − 1] do
6 u ← C[i]
7 u csr ← R[u]
8 if u csr[0] = 0 then
9 R[i].visited ← 1

10 Qn.push(u csr)
11 T .push(u)

4.3. Finding the Intersection

Due to the iterative nature of the SCC detection algorithm and the nature of the plat-
form we target, a naive algorithm to find the intersection is not feasible. Usually, the
multi-FPGA target platform will work as a coprocessor that is triggered on every iter-
ation by the host processor. Thus, it is more convenient to run and find the intersection
on the coprocessor in order to save time and utilize the coprocessor high bandwidth
access to the memory resources.
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The intersection algorithm described in Algorithm 6 works in parallel to find all
the common nodes between the backward and forward reachability sets. If a node was
marked as visited in both forward and backward traversal, we color it to be included in
the current SCC. However, if the node was not visited in both traversals, we mark the
node unvisited in both the original and transposed graph and choose it as a possible
next start for the next iteration. For the algorithm to behave correctly, it is important
to keep the colored nodes flagged as visited (i.e., visited flag is binary 1) and to recover
the flag of the uncolored nodes to binary 0. Finally, if we did not encounter any possible
start nodes for the next iteration, we scan the SCC vector searching for a node that is
not colored yet.

ALGORITHM 6: parallelIntersection(SCC, R, R′, FW, BW, color)
Input: R, R′: graph, and reversed graph CSR data
Input: FW, BW : lists of forward and backward reachable nodes
Input: color: current SCC color
Output: v: next unvisited vertex
Result: SCC: colored vertices

1 v ← φ
2 for u ∈ {FW ∪ BW} do // in parallel
3 if SCC[u] = 0 then
4 if R[u].visited = 1 and R′[u].visited = 1 then
5 SCC[u] ← color

6 else // Unvisit
7 R[u].visited ← 0
8 R′[u].visited ← 0
9 v ← u // valid next start node

10 if v = φ then
11 for i ∈ {0, |R|} do
12 if R[i].visited = 0 then
13 v ← i

14 return v

5. HARDWARE IMPLEMENTATION

In this section, we present the methodology that we used to prototype our SCC detection
algorithm on multiple FPGAs. Then, we show how different design elements manage
to share and reuse resources efficiently.

5.1. SCC Architecture

As shown in the previous section, the parallel SCC algorithm employs two main compo-
nents, which are the parallelBFS and the parallelIntersection. In order to gain speedup
over the baseline design we implement these parallel functions as hardware modules
on the same FPGA. Figure 2 illustrates the system architecture of our implementation
for multi-FPGA platforms with an assumption of a ring network between the FPGAs.

Each FPGA in our design includes a BFS module and intersection module, and each
of them consists of multiple parallel kernels. The number of kernels is bounded by the
number of available memory controller ports and available FPGA resources. Since the
BFS and intersection module calls are called sequentially, a good implementation would
be sharing FPGA resources and memory controller ports between the two modules. In
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Fig. 2. Our SCC architecture for multiple FPGA platforms. Each FPGA consists of two modules: BFS module
and intersection module. Each module employs 16 kernels (kernel denoted as Ki and connects to a single
memory controller MCi).

Fig. 3. CyGraph BFS kernel pipeline.

order to meet timing constraints, the kernels inside each module are maintained in
a pipelined fashion only to pass control signals and parameters at initialization. The
master processing element in each module is responsible for triggering and managing
the flow of processing inside each FPGA.

5.2. CyGraph BFS Kernel

The BFS kernel serves as the building block for the parallelBFS module in our imple-
mentation. As shown in Figure 3, it is convenient to convert the BFS kernel to a pipeline
of four stages based on Algorithm 5. The main target of our system is to make the best
effort to utilize memory bandwidth and hence making data available for the high com-
putational power of the FPGA. So, the design methodology we used to approach the
problem is splitting the algorithm into small processes/stages that are separated by
memory requests. Each process will be processing an issuing memory request that will
be handled by the next process. However, in order to optimize the memory controllers
and keep them busy with requests, we are multiplexing all kernels requests to a single
memory controller. As shown in Figure 4, we propose a more efficient kernel design
that consists of five processes, requests multiplexer, and a response decoder.

In our new kernel, process 1 is responsible for dequeuing nodes’ information from the
current queue. Each kernel reads from the current queue with an offset plus kernel_id
(i.e., kernels interleave reading from the current queue). Concurrently, process 2 is
responsible for reading the current queue nodes that are fetched by process 1 and
requests their neighbors’ ID. The response of process 2 is available immediately to
process 3 and a copy to process 4 gets pushed through a First In First Out (FIFO)
queue. Process 3 gets the neighbors’ ID and requests their CSR information, which
will be available to process 4. Finally, process 4 checks the CSR information of each
neighbor. If a neighbor is not visited, process 4 issues three memory requests:

—Enqueue neighbor’s information (CSR) to the next queue.
—Enqueue neighbor’s ID to the reachability queue.
—Flag this neighbor node as visited by updating (CSR).
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Fig. 4. BFS kernel architecture.

The requests multiplexer is designed to exploit the memory controller bandwidth by
keeping it busy every clock cycle either for writing or reading. The requests multiplexer
uses a priority scheduling algorithm to check the queues. Process 4’s requests are the
highest priority and process 1 is the lowest priority. This heuristic is chosen based on
the fact that resolving the requests of process 1 will lead to more data in the other
queues. The multiplexer tags each read request with the owner process’s ID. When
the response decoder gets a new response, it will check the tag associated with it and
consequently it will know to which process it does belong.

In order to find out when the kernel finishes processing, every process counts all
items it reads and writes. Kernel processes share these counts among themselves.
Each process is finished if the preceding process to it is done and when it processes
as many items as the previous process. The kernel finishes when all of its processes
are terminated successfully and all the FIFO queues are empty. Finally, a kernel must
issue a flush request to the memory controller it is using in order to make sure that all
the memory requests made are completed. The count of the nodes pushed to the next
queue are carried out to the next level.

5.3. Intersection Kernel

Intersection module is the second component in our implementation and it is responsi-
ble for two tasks; the first is to find the intersection between the two reachability sets
(forward and backward reachability sets); the second is to unvisit the node if it is not
detected for the current strongly connected component and return it as a possible start
for the next iteration. The second task is important for the correctness of our algorithm.
We employ the same design methodology shown in the previous subsection in order to
design the intersection kernel. Figure 5 shows how to implement an intersection ker-
nel using a pipeline of four processes. In order to utilize memory requests and reduce
latency, we multiplex the memory requests of all the processes and decode responses
back to the corresponding process. As illustrated in Figure 6, the new kernel consists
of five processes, a requests multiplexer, and a response decoder.

For each intersection kernel, we start with process 1 interleave reading the forward
reachability queue FW . Then, process 2 expects the memory responses for process 1
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Fig. 5. Intersection kernel pipeline.

Fig. 6. Intersection kernel architecture.

and issue memory requests to request the node’s current color and the node’s CSR value
in the transpose graph. Given that information along with node ID, process 3 knows
that the node was visited in the forward traversal and if it is visited or not through
the backward traversal. If the node is visited in backward traversal and not colored
yet, process 3 colors this node. Otherwise, if the node is not colored and not visited in
backward traversal, process 3 requests its CSR in order to mark the node unvisited.
Finally, process 4 expects the CSR of the nodes that should be marked unvisited along
with their ID and issue memory requests to update the CSR information. After finishing
processing the forward reach queue, the processes follow the same approach to process
the backward reachability queue BW . Process 5 keeps track of memory requests; if a
node is found to be not colored yet and does not belong to the current SCC, it returns
this node later as a possible next start for the next iteration and shares this information
with other kernels.

5.4. FPGA Communication

In this architecture, we deploy a kernel-to-kernel communication, which is a 32-bit-
wide ring network that is used to share information between kernels and extended
between multiple FPGAs through FPGA I/O ports. In the SCC module, the kernel-
to-kernel communication usage is limited to share a possible start node for the next
iteration when it is found. Thus, other kernels should stop searching and iteration
terminates.

In BFS module, we use the kernel-to-kernel communication to allow multiple reads
and writes to the same memory-based queue. Different kernels have to read and write
in parallel to shared queues. In the case of reading from the current queue, this problem
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Fig. 7. A simple example showing a scenario of three kernels utilizing kernel-to-kernel interface to write to
the next queue.

is trivial and is solved by interleaving or splitting the current queue. However, in the
case of writing to the next queue and reach queue, kernels do not know exactly how
many items will be written by each kernel.

In order to solve this problem, we designed our platform as a ring network as shown
in Figure 2. The kernel-to-kernel interface behaves very similar to the familiar token
ring LAN protocol. A token circulates continuously through the kernels every clock
cycle. The token tells each kernel how many neighbors the previous kernel will be
writing to the next queue and reach queue. The kernel-to-kernel interface works as
follows:

—The master kernel initiates the interface by sending an empty token to the first
kernel in the ring.

—When the token starts circulating, each kernel gets it for one cycle and has to pass it
to the next kernel.

—Each kernel keeps counting how many nodes that needs to write them to next queue.
We call this the demand.

—If a kernel gets the token, it should reserve its demand, pass the token including
information about what previous kernel reserved, and reset the demand count.

—If a kernel does not need to reserve any more space when it gets the token, it should
pass the exact same token as the previous kernel.

—When a level is done, the master kernel will be able to know how many items were
written to the next queue and reach queue from the last token.

—The token is reset at the beginning of every level.

In Figure 7 we show a simple example for how kernel-to-kernel interface functions
in a scenario of three kernels. In this example, we take a snapshot of a system at
an arbitrary timestep i in which the latest reserved address in the next queue is 23.
At timestep i, kernel 1 receives a token with value 24 (i.e., next free address in next
queue is 24). Since the demand counter equals zero, kernel 1 passes the token without
changing its value. In the next timestep (i + 1), kernel 2 receives the token with value
24. Since its demand counter equals 5, kernel 2 sends the token to kernel 3 with value
29 (i.e., kernel 2 will start writing to next queue addresses from 24 to 28 and the next
free address in next queue is 29). Meanwhile, kernel 3 wrote an item to its reserved
space and decreased the reserved counter by one. In timestep i + 2: Kernel 3 receives
the token with value 29. Since the demand counter of kernel 3 equals zero, kernel 3
will forward the token back to kernel 1 without changing its value. Kernels might be
consuming their reserved spaces or incrementing the demand independently from the
kernel-to-kernel communication.

6. IMPLEMENTATION RESULTS

We ported our architecture to the Convey HC-2 and HC-2ex platforms [Bakos 2010].
The Convey HC-2 and HC-2ex are heterogeneous high-performance reconfigurable
computing platforms that consist of a coprocessor board of four programmable FP-
GAs (Virtex5-LX330 on the HC-2 and Virtex6-LX760 on the HC-2ex). The Convey
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Fig. 8. The Convey HC-2 coprocessor board. The board consists of four programmable FPGAs connected to
eight memory controllers through a full crossbar connection.

Fig. 9. The workflow of the SCC algorithm in Convey HC-2/HC2-ex platform.

programmable FPGAs are called Application Engines (AEs) and the custom FPGA
configurations are called personalities. Each of the four AEs is operating at 150MHz
and connected through a full crossbar to eight on-board memory controllers, with each
memory controller providing two request ports (i.e., 16 memory ports per AE). The full
crossbar allows the four AEs to access the memory at a peak performance of 80GB/s
(i.e., each AE can access memory at a peak bandwidth of 20GB/s). Furthermore, the
AEs are connected together through a full-duplex 668MBps ring connection, referred
to as the AE-to-AE interface, which we are utilizing to extend our kernel-to-kernel
communication between multiple FPGAs. Also, it is important to state that the co-
processor memory is fully coherent with the host processor memory. The coprocessor
board is connected with the host processor through a PCI Express channel. Figure 8,
demonstrates the coprocessor board of the Convey HC-2 platform.

We deploy our implementation following the system architecture illustrated in
Figure 2 for multiple FPGAs. Our custom implementation uses 16 CyGraph BFS ker-
nels and eight intersection kernels per AE (i.e., 64 BFS kernels and 32 intersection
kernels in the whole design). Each kernel utilizes one memory port as mentioned in the
previous section. We use the AE-to-AE interface to link the kernels among the different
FPGAs as shown in Figure 2. The processing starts at the host processor, which will
process the graph data and generate transpose graph data. Then, we trim step the
graph by coloring nodes that have in-degree or out-degree of zero because there is no
gain from computing those in parallel. Then, we copy the graph data to the Convey
coprocessor memory and invoke our coprocessor to start processing. Figure 9 shows
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Fig. 10. BFS execution time for CyGraph against Betkaoui et al. [2012a] using random graphs.

Fig. 11. BFS execution time for CyGraph against Betkaoui et al. [2012a] using RMAT graphs.

the workflow of the processing in the target platform. Our implementations for the
CyGraph BFS and SCC modules are fully written in VHDL.

In the following two subsections, we will compare our CyGraph BFS implementation
against a state-of-the-art implementation. Then, we show experiments of how our
parallel SCC implementation, using CyGraph BFS and intersection modules, perform
against a software sequential algorithm.

6.1. CyGraph BFS Experimental Results

For testing the BFS module, we have generated random and R-MAT graph data using
GT-graph, a suite of synthetic graph generators [Bader and Madduri 2006]. R-MAT, Re-
cursive Matrix, is a common approach toward generating realistic graphs [Chakrabarti
et al. 2004]. Figures 10 and 11 show how our CyGraph BFS module performed against
the BFS implementation from Betkaoui et al. [2012a]. Both of the implementations
target the same platform, the Convey HC-2. We compare our implementation using
one and four AEs against their implementation using four AEs. The comparison shows
throughput in GTEPS (109 Traversed Edges per Second) and uses graphs with number
of nodes that spans from 220 to 223, and average vertex degrees that span from 8 to 64.

Figures 11(a) and 11(b) show that CyGraph maintains a speedup over the Betkaoui
et al. implementation [Betkaoui et al. 2012a] for graphs of average vertex degree 8 and
16. However, the two systems show relatively close performance for higher average
vertex degrees. The lower performance of Betkaoui et al. [2012a] for smaller average
vertex degrees is due to the fewer number of updates it will be performing on every
iteration. However, for larger vertex degrees, their implementation tends to loop over
a bitmap with a large number of vertices sequentially, updating a larger number of
values per iteration and thus achieving higher eventual throughput. On the contrary,
our implementation gains higher throughput in sparse graphs by using a memory
queue data structure to mark nodes to updated in the next level. However, with the
increase in average degree, this memory queue becomes quite close in size to the size
of their bitmap.
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Table I. Average Performance of CyGraph BFS Against Betkaoui et al. [2012a] in
Billion Traversed Edges Per Second (GTEPS)

Random graphs R-MAT graphs
Average CyGraph CyGraph Betkaoui et al. CyGraph CyGraph Betkaoui et al.
degree One FPGA Four FPGAs Four FPGAs One FPGA Four FPGAs Four FPGAs

8 0.504 1.949 0.745 0.504 1.761 0.450
16 0.567 2.220 1.520 0.546 1.925 0.975
32 0.584 2.308 2.325 0.570 2.032 1.750
64 0.589 2.339 2.900 0.584 2.108 2.138

Fig. 12. Our parallel SCC execution time using four FPGAs against the sequential software implementation.

Fig. 13. A comparison of our SCC implementaiton using 4 FPGAs against a parallel software implementa-
tion using 12 threads running on the host processor. The results show speedup over a sequential software
implementation.

Using the four Virtex-5 FPGAs, our design is capable of sustaining throughput that
spans from 1.8GTEPS to 2.3GTEPS for large-scale random graphs. The summarized
results in Table I show that on average our implementation obtains higher speedups
over Betkaoui et al. [2012a] and comes quite close to its peak performance. Our per-
formance performed 2.6× and 3.9× faster than Betkaoui et al. [2012a] for random and
R-MAT graphs with average degree of 8.

6.2. SCC Experimental Results

Unfortunately, there are no previous FPGA implementations for SCC detection to com-
pare against our results. Thus, we have generated random graph data using GT-graph
and compared results against a sequential algorithm of SCC detection. We evaluate
graphs with number of nodes that spans from 216 to 222 and average vertex degrees
that span from 16 to 256. Our implementation utilizes the whole 4 FPGAs of the Con-
vey machine. For benchmarking the sequential algorithm we used an Intel Xeon X5670
CPU with peak frequency of 3GHz. Figures 12 and 13 show the performance evaluation
of our parallel SCC implementation against a sequential software implementation.
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Table II. Resources Utilization

Machine Slice LUTs Slice Registers BRAM (Kb)
CyGraph BFS (one FPGA) HC-2 111,538 (53%) 124,181 (59%) 6,678 (67%)
CyGraph BFS (four FPGAs) HC-2 114,530 (55%) 125,638 (60%) 6,678 (67%)
SCC (four FPGAs) HC-2 132,139 (63%) 150,585 (72%) 8,982 (86%)
SCC (four FPGAs) HC-2ex 147,936 (31%) 153,248 (16%) 11,052 (21%)

Figure 12 shows the breakdown of execution time in milliseconds on the y axis
against different average vertex degrees. The execution of the BFS algorithm obvi-
ously dominates the execution time of the SCC algorithm for our implementation and
the sequential implementation. A first look over all instances shows that ours out-
perform the baseline sequential algorithm. The CyGraph BFS component contributes
the major part of this performance by performing 15× faster than the sequential BFS
implementation on average for the instances under investigation. The execution time
does not include the overhead for copying the graph from the host processor to the Con-
vey coprocessor. The overhead of copying data is minimal relative to the time required
to set up the graph (on average 0.36% of the setup time).

In Figure 13, we summarize the speedups of our implementation against a baseline
parallel implemenation described in Hong et al. [2013] using 12 threads.1 The speedup
is calculated over Kosaraju’s sequential algorithm. Hong et al. [2013] proposed other
improved algorithms for SCC; however, we do not compare against them since we do
not employ these improvements in our implementation. The experimental results in
Figure 13 show that our implementation outperforms the sequential implementation
by speedup factor up to 17× in large-scale graphs of 4 million nodes and average
degree of 64 (about 268 million edges). Our implementation is also competitive with
the parallel implementation and outperforms it for average vertex degrees 64 and 128.
With the increase of average vertex degree, the graph becomes more connected, which
provides a chance for our implementation to cover memory latency and run for a longer
time at its maximum performance. This explains the higher speedups achieved by the
increase of average vertex degree. Thus, our implementation might be beneficial for
applications with dense large-scale graphs.

6.3. Resource Utilization

Table II shows the device resource utilization for both the SCC and CyGraph BFS
implementations. We note that our resource utilization does not increase significantly
from using one FPGA to four FPGAs since it replicates the same design for each FPGA,
plus only a few more gates to control the AE-to-AE interface.

As shown in the table, our CyGraph BFS module leaves relatively enough resources
available, which we employed to add our intersection modules. Since the SCC imple-
mentation uses CyGraph BFS as a core component, we conclude that the intersection
module does not occupy a small part of the FPGA resources. However, the remain-
ing resources might not be plentiful in case more computation power is required. In
Convey HC-2 platform, about 10% of the FPGAs’ logic and 25% of the block rams are
occupied for the required interfaces (e.g., dispatch interface and MC interface). The re-
sources utilization reported in Table II includes this overhead. Thus, for large designs
that require more resources, using the Convey HC-2ex machine is a more convenient
option.

1The data in Figure 12(c) are missing data points due to bugs related to the large size of the graph.
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7. CONCLUSION AND FUTURE WORK

In this article, we have investigated a novel parallel FPGA-based implementation
for the detection of strongly connected components. First, we developed a parallel
BFS and intersection kernels following a design approach that minimizes the algo-
rithm’s memory footprint and covers memory latencies. Then, we proposed a hardware
architecture and communication protocol that utilizes our kernels in a scalable multi-
FPGA design. Then, we demonstrated how our implementation for detecting SCCs out-
performs sequential software implementation as much as 17× in large-scale graphs.
Also, our BFS implementation achieved competitive performance against state-of-the-
art FPGA implementation. Finally, we showed how our implementation utilizes re-
sources on different FPGAs. We have publicly released the source code for this project
on our research laboratory’s Github repository.2

The suggested future work includes:

—Reduce the execution time spent on searching for new start points by implementing
the search in hardware.

—Integrating our implementation in real-world graph analysis applications.
—Investigating the hardware implementation of alternative strongly connected com-

ponent algorithms.
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