
CyGraph: A Reconfigurable Architecture for
Parallel Breadth-First Search

Osama G. Attia Tyler Johnson Kevin Townsend Philip Jones Joseph Zambreno
Department Electrical and Computer Engineering

Iowa State University

Ames, IA 50011 USA

{ogamal, tyler07, ktown, phjones, zambreno}@iastate.edu

Abstract—Large-scale graph structures are considered as a
keystone for many emerging high-performance computing appli-
cations in which Breadth-First Search (BFS) is an important
building block. For such graph structures, BFS operations
tends to be memory-bound rather than compute-bound. In
this paper, we present an efficient reconfigurable architecture
for parallel BFS that adopts new optimizations for utilizing
memory bandwidth. Our architecture adopts a custom graph
representation based on compressed-sparse raw format (CSR),
as well as a restructuring of the conventional BFS algorithm. By
taking maximum advantage of available memory bandwidth, our
architecture continuously keeps our processing elements active.
Using a commercial high-performance reconfigurable computing
system (the Convey HC-2), our results demonstrate a 5× speedup
over previously published FPGA-based implementations.

Index Terms—Reconfigurable Computing, Breadth-First
Search, Graphs, FPGA, Convey HC-2.

I. INTRODUCTION

M any of today’s large data-intensive scientific problems

are solvable through graph theoretical approaches. Ex-

amples can be found in diverse domains including bioinfor-

matics [1], artificial intelligence, and social networking [2].

For example, several methods of short read genome assembly

rely on solving overlap layout consensus graphs or De Bruijn

graphs [3]. It has been shown in the research literature that

FPGA-based platforms can perform efficiently in solving such

large-scale problems [4], [5].

Many previous researchers have investigated the goal of

improving graph processing, with the most common theme

being parallelization in some form of software design. Ap-

proaches using MPI, OpenMPI and massively multi-threaded

architectures such as Cray have all been used to improve

performance [6]. However, many of these approaches do not

attack the problem at the source, which is the memory-

bound nature of processing large graphs. Approaches using

distributed and shared memory models already suffer due

to relatively long memory latencies, but also can not easily

amortize latency costs with random access patterns. Graph

representation plays an important role in overall performance,

with finding ways to provide bounds on the memory usage

being one important aspect. Being able to easily and efficiently

proceed to the next vertex is also important, since if this is

not done properly, any improvements with regards to memory

latency will be lost if time is wasted on collecting the next

vertex’s information.

One important building block of graph algorithms is the

Breadth-First Search (BFS). BFS is used in various scientific

problems that require high-performance approaches to traverse

large-scale graphs. In creating a parallel approach for BFS,

one challenge is that the individual operations will need to

be synchronized among themselves, which could potentially

cause pipeline stalls and other implementation inefficiencies.

Thus, it is imperative that design tactics are taken to provide

parallelization with as few data dependencies as possible.

In the case of a multi-FPGA system (such as the Convey

HC-2 [5] we target in this paper), this parallelization can be

spread across a single FPGA and also simultaneously spread

across multiple FPGAs. As such, inter-device synchronization

mechanisms are also needed, which as a trade-off adds some

latency.

In this paper, we introduce CyGraph, a reconfigurable

architecture for parallel BFS. The main contributions for our

approach are the following:

• We introduce an application-specific graph representation

based on the Compressed-Sparse Row format (CSR) that

appropriately matches the BFS algorithm.

• We develop a restructured and optimized version of BFS

algorithm that makes use of this new graph represen-

tation. Theoretically, these optimizations cuts down the

number of external memory requests by least 50%.

• Our CyGraph architecture is highly scalable when

mapped to FPGA-based systems.

• We describe how our architecture scales across multiple

FPGAs, and in doing so is performance competitive with

an existing state-of-the-art BFS implementation on the

same platform.

The remainder of this paper is organized as follows. In

Section II, we introduce related work. Section III introduces

background about breadth-first search algorithms and graph

representation. In Section IV, we show the building block for

paralleling BFS (the CyGraph kernel). Afterwards, we pro-

pose the hardware implementation of CyGraph in Section V.

Performance results and insights are presented and discussed

in Section VI. Finally, conclusions are drawn and potential

directions for future work are pointed out in Section VII.

2014 IEEE 28th International Parallel & Distributed Processing Symposium Workshops

978-1-4799-4116-2/14 $31.00 © 2014 IEEE

DOI 10.1109/IPDPSW.2014.30

228

II. RELATED WORK

A huge need for higher performance and power efficient

graph algorithms has developed with the growth of scientific

problems that require dealing with large datasets [6]. Many

attempts in the literature have aimed to accelerate graph algo-

rithms through innovative programming models and dedicated

hardware platforms. Attempted implementations include the

usage of commodity processors, multi-core systems, GPUs,

and FPGAs.

For multi-core implementations, a parallelized BFS algo-

rithm for multi-core architectures was described by Agarwal

et al. [7]. They use a bitmap to mark nodes that have been

visited, and demonstrated a speedup over previous work. For

implementations using large distributed memory machines,

Beamer et al. have shown significant speedup over other

implementations [8], [9]. Note that such implementations are

not directly comparable to ours, given the high cost and power

consumption of conventional supercomputers.

GPUs have been adopted for speeding up computations in

a variety of applications, including graph processing. Hong

et al. [10], [11] proposed a level-synchronous BFS kernel

for GPUs. They showed improved performance over previous

work. Merril et al. [12] used a prefix sum approach for

cooperative allocation, leading to improved performance. In

[13], the authors present a GPU programming framework for

improving GPU-based graph processing algorithms.

For FPGA-implementations, previous work accommodated

on-chip memory in order to store graphs [14]. However, this is

not suitable for large-scale problems since these designs do not

consider the high-latency of off-chip memory. Recent FPGA-

based platforms, such as the Convey HC-1/HC-2 [5], [15],

are known for their high memory bandwidth and potential for

application acceleration. For example, the Convey HC-1/HC-2

platforms have been shown to be beneficial in speeding up

various computation-intensive and memory-bound applications

[16]–[19].

The closest previous approach to our work can be found

in Betkaoui et al. [20], which introduces a parallel graph

exploration algorithm using the Convey HC-1 platform. The

authors achieved a 2× improvement over the state-of-the-art

GPU and CPU implementations. This revealed a capability

of reconfigurable computing platforms to outperform these

of GPU/CPU. In Section VI, we show that through a novel

restructuring and optimization of the BFS algorithm, our ap-

proach obtains higher memory utilization than in [20] resulting

in a 5× relative speedup.

More recent BFS implementations by Convey using their

latest HC-2ex and MX-100 systems [21] illustrate the impor-

tance of this application kernel to the Graph500 supercomputer

rankings [22].

III. BACKGROUND

BFS is a graph traversal algorithm that visits all the con-

nected nodes in a specific graph starting at given root node.

The algorithm visits the nodes that have smaller hop distance

from the root node first. The nodes could be processed while

� ��

�

�

� �

	

	� ���
��
�� �	
��
��

����������

������������	��������������������������������������

�

���������	�������������������������������
������

���������	
����

���

��������������
����

���

Fig. 1: Simple example for CSR graph representation format

traversing the graph, or the order of visiting nodes could be

saved for post-processing. BFS can be used to solve many

problems that utilize a graph theoretical approach.

A. Graph Representation

One simple way to represent a graph of n nodes is by using

an adjacency matrix of size n×n whose rows are the adjacency

list of graph nodes. As this can be inefficient, most of the state-

of-the-art BFS implementations use the Compressed Sparse

Row (CSR) format for representing graphs. Since it only stores

the non-zero values of the adjacency matrix, CSR is commonly

used to represent sparse matrices/graphs. Figure 1 shows a

simple example of the CSR representation, which consists of

two vectors:

• Column Indices Array (C): contains the nodes adjacency

list, with size is bounded by the number of non-zero

edges.

• Row Offset Array (R): contains the indices at which the

adjacency list of each node starts.

B. Level-Synchronous BFS

One commonly used approach towards a parallel breadth-

first search is level-synchronous BFS. The level-synchronous

BFS algorithm uses three sets of nodes as follows:

• Set of current nodes (Qc)

• Set of next nodes (Qn)

• Visited nodes (V)

The algorithm starts with the root node in the current set.

Iteratively, the algorithm visits all the nodes in Qc, sets their

level as the current level and collects the next-level set Qn.

In the next iteration, Qc is populated with values from Qn,

and Qn is cleared for the new level.

This approach is illustrated in Algorithm 1. Qc and Qn refer

to FIFO queues in memory. The vector Levels stores the final

result of the algorithm and is initialized with zero. Instead of

using the V set, the algorithm checks the Levels value of a

specific node (i.e. node i is not visited if Levels[i] equals 0).

A major challenge in designing large-scale graph processing

algorithms is utilizing memory bandwidth. Increasing system

throughput requires that data is kept available for immediate

processing. In the previous algorithm, there are six memory

read requests (lines 6, 7, 10, 11, 13 and 14) and two memory

write requests (lines 9, and 16). In the following section, we

229

propose a custom graph representation and optimization that

results in fewer memory requests.

Algorithm 1: Level-Synchronous BFS Algorithm

Input: Arrays R, C holding graph data, and root node

Output: Array Levels holding traversal order of nodes

1 Qn.push(root)

2 current level ← 1

3 while not Qn.empty() do
4 Qc ← Qn

5 while not Qc.empty() do
6 v ← Qc.pop()

7 level ← Levels[v]

8 if level = 0 then
9 Levels[v] ← current level

10 i← R[v]
11 j ← R[v + 1]
12 for i < j; i← i+ 1 do
13 u← C[i]
14 level ← Levels[u]

15 if level = 0 then
16 Qn.push(u)

17 end
18 end
19 end
20 end
21 current level ← current level + 1

22 end

IV. BFS OPTIMIZATION

Our CyGraph approach is based on the previously-described

level-synchronous BFS algorithm, and targets high perfor-

mance reconfigurable computing platforms with relatively

large amounts of memory bandwidth. Specifically, we propose

a custom graph representation that we use later in our BFS

implementation to utilize memory bandwidth. We also explore

efficiency optimizations to the BFS algorithm that reduces

the number of memory requests and hence increases overall

system throughput.

A. Custom Graph Representation

From Algorithm 1, we notice that for each node i in the

current set, we have to read the level and check if the node

is visited or not. Then, if the node is not visited we have to

read the row offset array (R[i] and R[i+ 1]) in order to find

the start and end addresses of this node’s adjacency list. Also,

it is clear that we need the Row Index Array (R) only once

per node. Hence, after reading and visiting we can use its row

index value for storing the level data. We show later how this

optimization will lower the number of memory requests in the

algorithm.

The Convey HC-2 platform, as with many state-of-the-art

computing platforms, is capable of fetching 64-bit values per

memory request. Consequently, we modified the width of the

�

� ��

� �� 	

� �� ��

��

Fig. 2: Graph example, on which Algorithm 1 performs

poorly.

row offset array (R) in the CSR representation to be an array of

elements of 64-bit width. For each element, R[i], we will use

the least significant bit of the row index as a visited flag (i.e.
node i is not visited, if the LSB of R[i] is 0). The remaining

bits of R[i] are used as follows:

• If node i is visited, the LSB of R[i] will equal 0 and the

remaining bits will be used for node level.

• If node i is not visited, the MSB bits from 63 to 32 will be

used as row index and the bits from 31 to 1 as neighbors

count.

Figure 3 illustrates two entries of the new offset row array

in case of visited and unvisited nodes.

������������������������ ���������������� �����

�	
��� ��
��� �
���

���������� �����

��
��� �
���

Fig. 3: Custom CSR format

B. Algorithm Optimizations

We consider the following optimizations to the traditional

level-synchronous BFS algorithm:

• Current/next queues of row indices: In every iteration,

we just need the row index of a specific node. Conse-

quently, a better decision is to push that row index of node

R[i] instead of node ID to next queue. Hence, we will

make use of the data we fetched in a previous iteration.

• Rearranging instructions: A parallel version of Al-

gorithm 1 will perform poorly in the graph shown in

230

�������
�

�������
����

�������
�����

�������
�

�������

	�
!����
�

�� ��" �� ��" �������
�
�������

	�
!����

���

��
!����
�

�� ��
!����
���

��" �������
�

��
���
� ����
�
�"����
���
�
"��!
��
��$�

�����

��

�� ��
%�

��

Fig. 4: Simple pipelined version of CyGraph kernel

Fig. 2. After the third level, we will have duplicates

of nodes 4, 5, and 6 in the next queue. The main idea

of the optimization is that we first visit the neighbors

of the current node and push them to the next queue

(the previous approach was to visit the current node and

push its neigbors to the next queue). Furthermore, even

if duplicate nodes are pushed to Qn, the possibility to

have duplicate of their neighbors in the future is very low

(parallel kernels have to be in a perfect synchronization

which is not possible with random memory access).

• Custom graph representation: As mentioned in the

previous subsection, the custom graph representation will

allow us to find out if a node is visited or not and the

indices of its adjacency in just one memory request. Thus,

cutting down the memory requests to the half.

Algorithm 2 shows the CyGraph BFS after optimizations are

applied. We notice that we decreased the number of memory

requests to five requests instead of eight (three read requests

at lines 8, 12, 13 and two write requests at lines 15, 16). Also,

the optimization reduces the possibility of having duplicates

in the current/next queue which increases system throughput.

V. OUR APPROACH

In this section, we present the methodology that we used

to implement the CyGraph kernel and parallelize it. Then, we

show how the kernels will manage to share access to the same

memory space (current/next queues) efficiently.

A. Kernel Architecture

The CyGraph kernel serves as a building block for our

implementation. As shown in Fig. 4, we designed the CyGraph

kernel as a pipeline of four stages. Pipeline stages are sepa-

rated by a FIFO queues. However, in order to optimize the

memory controllers and keep them busy with requests, we are

multiplexing all kernels requests to a single memory controller.

Figure 5 shows the optimized kernel architecture.

The main target of our system is to make the best effort

to utilize memory bandwidth and hence making data available

for the high computational power of the FPGA. So, the design

methodology we used to approach the problem is splitting

the algorithm into small processes/stages that are separated by

memory requests. Each process will be continuously reading

previous process memory response and making new requests

to the memory controller.

In our kernel design, process 1 is responsible for dequeuing

nodes’ information from the current queue. Each kernel reads

from the current queue with an offset plus kernel id (i.e.

Algorithm 2: BFS using custom CSR

Input: Arrays R, C holding graph data, and root node

Output: Array Levels holding traversal order of nodes

1 csr ← R[root]

2 Qn.push(csr)

3 R[root] ← b’11

4 current level = 1

5 while not Qn.empty() do
6 Qc ← Qn

7 while not Qc.empty() do
8 v csr ← Qc.pop()

9 i← v csr[63..32]

10 j ← v csr[31..1]

11 for i < j; i← i+ 1 do
12 u ← C[i]
13 u csr ← R[u]

14 if u csr[0] = 0 then
15 Qn.push(u csr)

16 R[i] ← (current level + 1) & b’1

17 end
18 end
19 end
20 current level ← current level + 1

21 end

kernels interleave reading from the current queue). Process

1’s response is pushed to the FIFO queue q1. Concurrently,

process 2 is responsible for reading the current queue nodes

that are fetched by process 1 and requests their neighbors’

ID. The response of process 2 is available immediately to

process 3 and a copy to process 4 gets pushed through the

FIFO queue q2. Process 3 gets the neighbors’ ID and requests

their CSR information which will be available to process 4

through q3. Finally, process 4 checks the CSR information of

each neighbor. If a neighbor is not visited, process 4 issues

two requests:

• Enqueue neighbor’s information (CSR) to the next queue.

• Update the neighbor’s information with the current level.

It is important to note that all kernel processes run in

parallel. The requests multiplexer is designed to exploit the

memory controller bandwidth by keeping it busy every clock

cycle either for writing or reading. The requests multiplexer

uses a priority scheduling algorithm to check the queues.

Process 4’s requests are the highest priority and process 1 is

231

�������
�
	�
&���
���

�&�����

&�&�

�������
�
	�
&���
���������

�������
�
	�
&���
���������

�����
�����

�������
�
��
���
'�������
�&��

��
��(�

&�&�

	�
&����
�&������(��

�������
�

�
�
�

	��������
�������

 �
��(�
!�����

"��

���'#
!�����

�
�

��)
$

���������

���

��

Fig. 5: CyGraph Kernel Architecture

the lowest priority. This heuristic is chosen based on the fact

that resolving the requests of process 1 will lead to more data

in the other queues. The multiplexer tags each read request

with the owner process’s ID. When the response decoder gets

a new response, it will check the tag associated with it and

consequently it will know to which process it does belong.

In order to find out when the kernel finishes processing,

every process counts all items it reads and writes. Kernel

processes share these counts among themselves. Each process

is finished if the preceding process to it is done and when it

processes as many items as the previous process. The kernel

finishes when all of its processes are terminated successfully

and all the FIFO queues are empty. Finally, a kernel must issue

a flush request to the memory controller it is using in order to

make sure that all the memory requests made are completed.

The count of the nodes pushed to the next queue are carried

out to next level.

B. Kernel-to-Kernel Interface

One problem that this design faces is to allow multiple reads

and writes to the same memory-based queue. Different kernels

have to read and write in parallel to the current and next

queues. In the case of reading from the current queue, this

problem is very intuitive and is solved by interleaving and

splitting the current queue among different kernels. However,

in the case of writing to the next queue, kernels don’t know

exactly how many neighbors will be written by each kernel.
In order to solve this problem, we designed our platform

as a ring network as shown in Fig. 6. The kernel-to-kernel

interface behaves very similar to the familiar token ring LAN

protocol. A token circulates continuously through the kernels

every clock cycle. The token tells each kernel how many

neighbors the previous kernel will be writing to the next queue.

The kernel-to-kernel interface works as follows:

• The master kernel initiate the interface by sending an

empty token to the first kernel in the ring.

• When the token starts circulating, each kernel gets it for

one cycle and has to pass it to the next kernel.

• Each kernel keeps counting how many nodes that needs

to write them to next queue. We call this the demand.

• If a kernel gets the token, it should reserve its demand,

pass the token including information about what previous

kernel reserved, and reset the demand count.

• If a kernel does not need to reserve any more space when

it gets the token, it should pass the exact same token as

the previous kernel.

• When a level is done, the master kernel will be able to

know how many items were written to the next queue

from the last token.

• The token is reset at the beginning of every level.

232

�������	�
�����
������

�� �� ���

��� ��� ����

�����	

��	��
��
�	�
���
���

����

�� �� ���

��� ��� ����

�����	

����

�� �� ���

��� ��� ����

�����	

����

��������
����	����
����
�����

�� �� ���

��� ��� ����

�����	

����

Fig. 6: CyGraph System Architecture

VI. IMPLEMENTATION RESULTS

We ported our CyGraph BFS architecture to the Convey

HC-2 platform [5]. The Convey HC-2 is a heterogeneous high

performance reconfigurable computing platform that consists

of a coprocessor board of four programmable Virtex5-LX330

FPGAs. The Convey HC-2 programmable FPGAs are called

Application Engines (AEs) and the custom FPGA config-

urations are called personalities. Each of the four AEs is

connected through a full crossbar to 8 on-board memory con-

trollers, with each memory controller providing two request

ports (i.e. 16 memory ports per AE). The full crossbar allows

the four AEs to access the memory at a peak performance of

80 GB/s (i.e. each AE can access memory at peak bandwidth

of 20 GB/s). Furthermore, the AEs are connected together

through a full-duplex 668 MBps ring connection, referred

to as the AE-to-AE interface, which we are utilizing to

extend our kernel-to-kernel communication between multiple

FPGAs. Also, it is important to state that the coprocessor

memory is fully coherent with the host processor memory.

The coprocessor board is connected with the host processor

through a PCI Express channel.

Figure 6 shows our CyGraph system architecture for mul-

tiple FPGAs. The master processing element is responsible

for triggering and managing the flow of processing inside

each FPGA. Also, it is used to maintain the advancement of

each level and other synchronization requirements. Our custom

implementation on the Convey HC-2 uses 16 kernels per AE

(i.e. 64 kernels in the whole design). Each kernel utilizes

one memory port as mentioned in the previous section. We

use the AE-to-AE interface to link the kernels among the

different FPGAs as shown in Fig. 6. CyGraph starts from the

host processor which will process and copy the graph data to

memory and then it will invoke the CyGraph coprocessor via

a custom instruction. Our implementation is fully written in

VHDL code.

Experimental Results

As in previous related work, we have generated random and

R-MAT graph data using GT-graph, a suite of synthetic graph

generators [23]. Figures 8, 7, and 9 demonstrate how CyGraph

performs against the BFS implementation from Betkaoui et al.

[20]. Both of the implementations target the same platform, the

Convey HC-1/HC-2. We compare our implementation using 1

and 4 Application Engines (AEs) against their implementation

using 4 AEs. The comparison shows throughput in billions of

edges per second and uses graphs with number of nodes that

spans from 220 to 223 and average vertex degrees that spans

from 8 to 64.

Figures 8a and 8b show that CyGraph maintains a speedup

over the Betkaoui et al. implementation [20] for graphs of

average vertex degree 8 and 16. However, the two systems

show relatively close performance for higher average vertex

degrees. The lower performance of [20] for smaller average

vertex degrees is due to the fewer number of updates it

will be performing on every iteration. However for larger

vertex degrees, their implementation tends to loop over the

large number of vertices sequentially, updating larger number

of values per iteration and thus achieving higher eventual

throughput. Figure 9 summarizes the previous results to show

the effect of average vertex degree on the execution time. It

shows that as graphs get more sparse, our implementation

obtains higher speedups over [20] and comes quite close to

its peak performance.

Resource Utilization

Table I shows the device resource utilization. We note that

our CyGraph resource utilization does not increase signifi-

cantly from 1 AE to 4 AEs since it replicates the same design

for each FPGA, plus a few more gates to control the AE-

to-AE interface. Also, our CyGraph kernel leaves relatively

more resources available which could be employed to add

more customizations and computations.

In Convey HC-2 platform, about 10% of the FPGAs’ logic

and 25% of the block rams are occupied for the required

233

2^20 2^21 2^22 2^23
0

0.5

1

1.5

2

2.5

3

3.5

B
ill

io
n

ed
ge

s
pe

r
se

co
nd

 (
G

T
E

P
s)

Number of vertices per graph

(a) Average degree = 8

2^20 2^21 2^22 2^23
0

0.5

1

1.5

2

2.5

3

3.5

Number of vertices per graph

(b) Average degree = 16

2^20 2^21 2^22 2^23
0

0.5

1

1.5

2

2.5

3

3.5

Number of vertices per graph

(c) Average degree = 32

2^20 2^21 2^22 2^23
0

0.5

1

1.5

2

2.5

3

3.5

Number of vertices per graph

(d) Average degree = 64

Betkaoui et al. [20] CyGraph (1 AE) CyGraph (4 AEs)

Fig. 7: BFS execution time for CyGraph against [20] using random graphs

2^20 2^21 2^22 2^23
0

0.5

1

1.5

2

2.5

3

B
ill

io
n

ed
ge

s
pe

r
se

co
nd

 (
G

T
E

P
s)

Number of vertices per graph

(a) Average degree = 8

2^20 2^21 2^22 2^23
0

0.5

1

1.5

2

2.5

3

Number of vertices per graph

(b) Average degree = 16

2^20 2^21 2^22 2^23
0

0.5

1

1.5

2

2.5

3

Number of vertices per graph

(c) Average degree = 32

2^20 2^21 2^22 2^23
0

0.5

1

1.5

2

2.5

3

Number of vertices per graph

(d) Average degree = 64

Betkaoui et al. [20] CyGraph (1 AE) CyGraph (4 AEs)

Fig. 8: BFS execution time for CyGraph against [20] using RMAT graphs

interfaces (e.g. dispatch interface, and MC interface). For our

CyGraph kernel, the depth of the FIFOs used is set to 512.

Slice LUTs BRAM Slice LUT-FF

CyGraph 1 AE 53% 55% 74%

CyGraph 4 AEs 55% 55% 74%

Betkaui et al. [20] 80% 64% n/a

TABLE I: Resource Utilization

VII. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a novel FPGA-based graph

traversal implementation, namely CyGraph. Our implementa-

tion outperformed a state-of-the-art FPGA implementation up

to factor of 5. CyGraph performed better for graphs of medium

average vertex degrees. We have shown that application-

specific data structures significantly improve performance for

the target platform. We have introduced a kernel-to-kernel

interface that enables multiple processing elements to collab-

orate writing to the same memory data-structure. Finally, we

have followed a design approach that could be carried out to

design other hardware reconfigurable architectures for graph

processing algorithms.

The suggested future work is twofold. The first direction

is to enhance our implementation by load balancing among

kernels. This will keep all CyGraph kernels busy for equal

processing times, resulting in a better utilization of memory

bandwidth. One idea is to split the large CSRs into multiple

CSRs before pushing them to the next queue. In the next

level, due to the fact that kernels interleave reading, kernels

will have to process a relatively equal number of neighbors.

The second direction is to develop a full framework for graph

algorithms using the Convey HC-2. Other graph problems (e.g.

shortest path, Eulerian path, maximum flow, maximum clique)

are known to be difficult problems. Such a framework can

serve as a base and useful tool for researchers to build upon

it.

ACKNOWLEDGEMENTS

This work was supported in part by the National Science

Foundation (NSF) under awards CNS-1116810 and CCF-

1149539.

REFERENCES

[1] O. Mason and M. Verwoerd, “Graph theory and networks in biology,”
in IET Systems Biology, vol. 1, no. 2, 2007, pp. 89–119.

[2] M. Gjoka, M. Kurant, C. T. Butts, and A. Markopoulou, “Walking in
Facebook: A case study of unbiased sampling of OSNs,” in Proceedings
of the IEEE International Conference on Computer Communications
(INFOCOM), 2010.

[3] D. R. Zerbino and E. Birney, “Velvet: algorithms for de novo short read
assembly using de Bruijn graphs,” in Genome Research, vol. 18, no. 5,
2008, pp. 821–829.

[4] C. B. Olson, M. Kim, C. Clauson, B. Kogon, C. Ebeling, S. Hauck, and
W. L. Ruzzo, “Hardware acceleration of short read mapping,” in Pro-
ceedings of the IEEE International Symposium on Field-Programmable
Custom Computing Machines (FCCM), 2012, pp. 161–168.

234

8 16 32 64 Average
0

0.5

1

1.5

2

2.5

3

Average vertex degree

B
ill

io
n

 e
d

g
es

 p
er

 s
ec

o
n

d
 (

G
T

E
P

s)

Betkaoui et al
CyGraph 1 AE
CyGraph 4 AEs

(a) Random Graphs

8 16 32 64 Average
0

0.5

1

1.5

2

2.5

3

Average vertex degree

B
ill

io
n

 e
d

g
es

 p
er

 s
ec

o
n

d
 (

G
T

E
P

s)

Betkaoui et al
CyGraph 1 AE
CyGraph 4 AEs

(b) R-MAT Graphs

Fig. 9: Average vertex degree effect on CyGraph execution

[5] J. D. Bakos, “High-Performance Heterogeneous Computing with the
Convey HC-1,” in Computing in Science & Engineering, vol. 12, no. 6,
Dec. 2010, pp. 80–87.

[6] A. Lumsdaine, D. Gregor, B. Hendrickson, and J. Berry, “Challenges
in parallel graph processing,” in Parallel Processing Letters, vol. 17,
no. 01, 2007, pp. 5–20.

[7] V. Agarwal, F. Petrini, D. Pasetto, and D. Bader, “Scalable Graph Ex-
ploration on Multicore Processors,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis (SC), 2010.

[8] S. Beamer, A. Buluç, K. Asanovic, and D. Patterson, “Distributed

Memory Breadth-First Search Revisited: Enabling Bottom-Up Search,”
Technical Report UCB/EECS-2013-2, University of California, 2013.

[9] F. Checconi, F. Petrini, J. Willcock, A. Lumsdaine, A. R. Choudhury,
and Y. Sabharwal, “Breaking the speed and scalability barriers for graph
exploration on distributed-memory machines,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis (SC), 2012.

[10] S. Hong, S. K. Kim, T. Oguntebi, and K. Olukotun, “Accelerating
CUDA graph algorithms at maximum warp,” in Proceedings of the
ACM Symposium on Principles and Practice of Parallel Programming
(PPoPP), 2011, pp. 267–276.

[11] S. Hong, T. Oguntebi, and K. Olukotun, “Efficient parallel graph
exploration on multi-core CPU and GPU,” in Proceedings of the Interna-
tional Conference on Parallel Architectures and Compilation Techniques
(PACT), 2011, pp. 78–88.

[12] D. Merrill, M. Garland, and A. Grimshaw, “Scalable GPU Graph
Traversal,” in Proceedings of the Proceedings of the ACM Symposium
on Principles and Practice of Parallel Programming (PPoPP), 2012, pp.
117–128.

[13] J. Zhong and B. He, “Medusa: Simplified Graph Processing on GPUs,”
in IEEE Transactions on Parallel and Distributed Systems (TPDS),
vol. 99, 2013.

[14] Q. Wang, W. Jiang, Y. Xia, and V. Prasanna, “A message-passing multi-
softcore architecture on FPGA for Breadth-first Search,” in Proceedings
of the International Conference on Field-Programmable Technology
(FPT), Dec. 2010, pp. 70–77.

[15] T. M. Brewer, “Instruction set innovations for the Convey HC-1 com-
puter,” IEEE Micro, vol. 30, no. 2, pp. 70–79, 2010.

[16] K. K. Nagar and J. D. Bakos, “A Sparse Matrix Personality for the
Convey HC-1,” in Proceedings of the IEEE Annual International Sym-
posium on Field-Programmable Custom Computing Machines (FCCM),
May 2011.

[17] B. Betkaoui, Y. Wang, D. B. Thomas, and W. Luk, “Parallel FPGA-based
all pairs shortest paths for sparse networks: A human brain connectome
case study,” in Proceedings of the International Conference on Field
Programmable Logic and Applications (FPL), 2012, pp. 99–104.

[18] K. Townsend and J. Zambreno, “Reduce, Reuse, Recycle (R3): a Design
Methodology for Sparse Matrix Vector Multiplication on Reconfig-
urable Platforms,” in Proceedings of the International Conference on
Application-specific Systems, Architectures and Processors (ASAP), Jun.
2013.

[19] W. Augustin, J. Weiss, and V. Heuveline, “Convey HC-1 hybrid core
computerthe potential of FPGAs in numerical simulation,” in Proc. Int.
Workshop on New Frontiers in High Performance and Hardware-aware
Computing (HipHaC), 2011.

[20] B. Betkaoui, Y. Wang, D. Thomas, and W. Luk, “A Reconfigurable Com-
puting Approach for Efficient and Scalable Parallel Graph Exploration,”
in Proceedings of the IEEE International Conference on Application-
Specific Systems, Architectures and Processors (ASAP), 2012, pp. 8–15.

[21] K. Wadleigh, J. Amelio, K. Collins, and G. Edwards, “Hybrid Breadth
First Search Implementation for Hybrid-Core Computers,” in SC Com-
panion: High Performance Computing, Networking, Storage and Anal-
ysis (SCC), 2012, pp. 1354–1354.

[22] R. C. Murphy, K. B. Wheeler, B. W. Barrett, and J. A. Ang, “Introducing
the graph 500,” in Cray Users Group (CUG), 2010.

[23] D. Bader A. and K. Madduri, “GTgraph: A suite of synthetic graph
generators,” 2006. [Online]. Available: www.cse.psu.edu/∼madduri/
software/GTgraph

235

