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2) Tight Hardware/Software Resource Coupling 
In support of plastic data structures, approaches for developing hybrid 

HW/SW containers are being explored. 

Introduction 
Effective response and adaptation to the physical world, and rigorous management of such behaviors, 

are mandatory features of cyber-physical systems.  However, achieving such capabilities across diverse 
application requirements surpasses the current state of the art in system platforms and tools.  Existing 
systems do not support the expression, integration, and enforcement of such properties that span cyber 
and physical domains.  In this work we are examining mechanisms to enable conjoining of cyber-physical 
properties within a system through: 1) plastic data structures, 2) tightly coupling SW/HW resources, and 
3) integrating system implementation artifacts and control theory. 
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Platform 
We have constructed a set of RAVI prototype 

boards, for experimentation and evaluation of our 
research.  Features on these boards include : 
1) an FPGA to support System-on-Chip 

applications;  
2) a high-end inertial measurement unit for 

integrating physical dynamics of the system;  
3) onboard DRAM; 
4) a wireless communications module. 

1) Plastic Data Structures 
While traditional systems often need data structures optimized for fastest average times for find, insert, 

and other operations, the more diverse semantics of CPS call for data structures whose optimization 
criteria can be adapted on the fly at run-time. We have developed plastic data structures, which can switch 
between optimization modes depending on the work being done. The work presented here compares the 
Real Time and Best Avg Case modes in terms of the ratio of the average to worst case performance. 

 

Future Plans 
• Extend concept of plastic data structures to other container classes (e.g. trees). 
• Analyze various “costs” associated with data structure mode transitions. 
• Examine low overhead flexible SW/HW hybrid architectures for other data structures. 
• Further characterization of interaction between control theory and system implementation artifacts.  
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Modes of a Hash Table 
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Best Avg Case: Designed to optimize average performance, this implementation 
disregards the length of any one chain. When the ratio of nodes to buckets reaches 
a certain limit, a new table is created and all the nodes are rehashed into the new, 
larger table. This ratio is known as the load factor. 
 
Real Time: This implementation of a hash table has the largest average- to worst-
case-time ratio. This implementation places a limit on the maximum number of 
elements in any bucket. In general, real time implementations are slower in terms 
of average case performance, but better constrain the worst case. 

 
Small Footprint: The small footprint implementation uses fewer buckets than the 
other two implementations to conserve memory. A slower implementation in 
terms of both average case and worst case, this implementation of the hash table 
is used when memory must be conserved.  

Switching Between Modes 
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• Real Time->Best Avg Case: Consolidate into one table; Requires 
N puts (N is the #nodes). 

• Real Time->Small Footprint: Consolidate into a smaller table; 
Requires B pointer changes to combine all the chains into one 
or two buckets (B is the # of buckets).  

• Best Avg Case->Small Footprint: Consolidate into smaller table; 
Requires B time. 

• Best Avg Case->Real Time: Clean buckets that need to be 
cleaned; Worst case N puts.* 

• Small Footprint-> Best Avg Case: Build new table and rehash all 
nodes; Requires N puts. 

• Small Footprint-> Real Time: Clean buckets that need to be 
cleaned; Worst case N puts. *  

Best 
Avg Case 

*Numbers are averages taken from multiple trials. 
*Ratios for RT method between 4.7—5.2 
*Ratios for Best avg method are much higher 
   (visible in plot) 

Results 
The chart below plots the ratio of worst-case-time to average time against the size of a hash 

table.  For real-time (RT), that ratio is ideally 1.   Runtime factors beyond our control resulted in 
ratios closer to 5, but these held steady as the number of nodes increases.  However, the ratio is 
much higher for the best-average method, and becomes worse as the number of nodes increases. 
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3) Integrating Systems Implementation with Control Theory 
The design of high performance CPS must take into account implementation artifacts.  Our 

work aims to build upon existing tools such as JitterBug and TrueTime to incorporate artifacts 
from implementing scheduler and  control algorithms (e.g. delay variation) into system stability 
and performance analysis.  
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• Improved Predictability: up to 2 
times less variability in scheduler 
execution times, thus providing 
increased predictability. 

Results and Analysis 
Comparing our hybrid priority queue 
architecture to a software implementation. 

 
 

 Enqueue procedure: a) ID insertion path, b) parallel element insertion into HW resident portion 
of heap, c) hand overflow element  off to SW, d) complete operation in SW. 

Priority Queue Software/Hardware Hybrid Architecture 
• Data Structure: a conventional binary heap organization is used to implement a priority queue in hardware. 
• Parallelism: each heap level is stored in separate on-chip memories, Block Rams (BRAMs), for parallel access to elements. 
• Run time: enqueue and peek operations take O(1) time (when in HW mode) and dequeue operations take O(log n) time. 

• Scalability: can support up to 
2048 tasks with high timer tick 
resolution of 0.1ms. 

• Overhead: up to a  50% 
reduction in scheduling overhead 
was obtained. 
 

• Experimentation development: Matlab-based and Plant-on-Chip (PoC) environments. 
• Characterization: Currently performing characterization of delay variation on system stability 

and performance.  Within dedicated processor and shared Operating System setups. 
 

• Performance trade-offs: provide greater flexible for plastic 
data structures to meet application requirements.  

• Property guarantees: make use of hardware mechanisms to 
help guarantee properties, such as  time determinism. 
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