
FPGA

2) Tight Hardware/Software Resource Coupling
In support of plastic data structures, approaches for developing hybrid

HW/SW containers are being explored.

Introduction
Effective response and adaptation to the physical world, and rigorous management of such behaviors,

are mandatory features of cyber-physical systems. However, achieving such capabilities across diverse
application requirements surpasses the current state of the art in system platforms and tools. Existing
systems do not support the expression, integration, and enforcement of such properties that span cyber
and physical domains. In this work we are examining mechanisms to enable conjoining of cyber-physical
properties within a system through: 1) plastic data structures, 2) tightly coupling SW/HW resources, and
3) integrating system implementation artifacts and control theory.

Integration of Conjoined Cyber-Physical System Properties
Phillip Jones Joseph Zambreno Ron Cytron Christopher Gill

{phjones,zambreno}@iastate.edu {cytron,cdgill}@wustl.edu

Platform
We have constructed a set of RAVI prototype

boards, for experimentation and evaluation of our
research. Features on these boards include :
1) an FPGA to support System-on-Chip

applications;
2) a high-end inertial measurement unit for

integrating physical dynamics of the system;
3) onboard DRAM;
4) a wireless communications module.

1) Plastic Data Structures
While traditional systems often need data structures optimized for fastest average times for find, insert,

and other operations, the more diverse semantics of CPS call for data structures whose optimization
criteria can be adapted on the fly at run-time. We have developed plastic data structures, which can switch
between optimization modes depending on the work being done. The work presented here compares the
Real Time and Best Avg Case modes in terms of the ratio of the average to worst case performance.

Future Plans
• Extend concept of plastic data structures to other container classes (e.g. trees).
• Analyze various “costs” associated with data structure mode transitions.
• Examine low overhead flexible SW/HW hybrid architectures for other data structures.
• Further characterization of interaction between control theory and system implementation artifacts.

Inertial

Analog to Digital
Servo Outputs

SD-Card

Wireless Comm.
Link

5MP
Image Sensor

Contributing Students
Sudhanshu Vyas, Chetan Kumar N G, Matt Rich (Iowa State); Jonathan Shidal , Josh Levin (Washington University)

Funded by: NSF Grant 1060093

Modes of a Hash Table
Best Avg Case

Real Time

Small Footprint

Best Avg Case: Designed to optimize average performance, this implementation
disregards the length of any one chain. When the ratio of nodes to buckets reaches
a certain limit, a new table is created and all the nodes are rehashed into the new,
larger table. This ratio is known as the load factor.

Real Time: This implementation of a hash table has the largest average- to worst-
case-time ratio. This implementation places a limit on the maximum number of
elements in any bucket. In general, real time implementations are slower in terms
of average case performance, but better constrain the worst case.

Small Footprint: The small footprint implementation uses fewer buckets than the
other two implementations to conserve memory. A slower implementation in
terms of both average case and worst case, this implementation of the hash table
is used when memory must be conserved.

Switching Between Modes

Small
Footprint

Real
Time

• Real Time->Best Avg Case: Consolidate into one table; Requires
N puts (N is the #nodes).

• Real Time->Small Footprint: Consolidate into a smaller table;
Requires B pointer changes to combine all the chains into one
or two buckets (B is the # of buckets).

• Best Avg Case->Small Footprint: Consolidate into smaller table;
Requires B time.

• Best Avg Case->Real Time: Clean buckets that need to be
cleaned; Worst case N puts.*

• Small Footprint-> Best Avg Case: Build new table and rehash all
nodes; Requires N puts.

• Small Footprint-> Real Time: Clean buckets that need to be
cleaned; Worst case N puts. *

Best
Avg Case

*Numbers are averages taken from multiple trials.
*Ratios for RT method between 4.7—5.2
*Ratios for Best avg method are much higher
 (visible in plot)

Results
The chart below plots the ratio of worst-case-time to average time against the size of a hash

table. For real-time (RT), that ratio is ideally 1. Runtime factors beyond our control resulted in
ratios closer to 5, but these held steady as the number of nodes increases. However, the ratio is
much higher for the best-average method, and becomes worse as the number of nodes increases.

Converters

Measurement Unit

3) Integrating Systems Implementation with Control Theory
The design of high performance CPS must take into account implementation artifacts. Our

work aims to build upon existing tools such as JitterBug and TrueTime to incorporate artifacts
from implementing scheduler and control algorithms (e.g. delay variation) into system stability
and performance analysis.

CPU
(Control App)

DRAM

UART

PoC

UART

RAVI Prototyping Platform

• Improved Predictability: up to 2
times less variability in scheduler
execution times, thus providing
increased predictability.

Results and Analysis
Comparing our hybrid priority queue
architecture to a software implementation.

 Enqueue procedure: a) ID insertion path, b) parallel element insertion into HW resident portion
of heap, c) hand overflow element off to SW, d) complete operation in SW.

Priority Queue Software/Hardware Hybrid Architecture
• Data Structure: a conventional binary heap organization is used to implement a priority queue in hardware.
• Parallelism: each heap level is stored in separate on-chip memories, Block Rams (BRAMs), for parallel access to elements.
• Run time: enqueue and peek operations take O(1) time (when in HW mode) and dequeue operations take O(log n) time.

• Scalability: can support up to
2048 tasks with high timer tick
resolution of 0.1ms.

• Overhead: up to a 50%
reduction in scheduling overhead
was obtained.

• Experimentation development: Matlab-based and Plant-on-Chip (PoC) environments.
• Characterization: Currently performing characterization of delay variation on system stability

and performance. Within dedicated processor and shared Operating System setups.

• Performance trade-offs: provide greater flexible for plastic
data structures to meet application requirements.

• Property guarantees: make use of hardware mechanisms to
help guarantee properties, such as time determinism.

0

2000

4000

6000

8000

10000

12000

14000

0 5000 10000 15000 20000 25000 30000 35000 40000 45000

RT Approach

Best Avg approach

Nodes

Ratio of
worst/avg

time

