
Introduction
Scheduling overhead is a major limiting factor for implementing real-time

systems that use temporally fine-grain dynamic schedulers. The core of a real
time operating system (RTOS) is the scheduler, which ensures tasks are
completed on time. A high resolution timer is required to distribute CPU load
in accordance to a scheduling algorithm’s needs, however as time
management is performed at finer granularities, operating system overhead
increases.

We present a scalable hardware scheduler architecture for real time
systems that reduces processing overhead and improves timing
predictability of the scheduler. Our novel hardware priority queue design
supports insertions in constant time, and removals in O(log n) time.

Improving System Predictability and Performance via Hardware Accelerated
Data Structures

Chetan Kumar N G, Sudhanshu Vyas, Joseph Zambreno and Phillip Jones
{ckng,spvyas,phjones,zambreno}@iastate.edu

Results and Analysis

• Scalability: Supports up to 256 tasks with high timer tick resolution of

0.1ms.
• Overhead: A 97% reduction in scheduling overhead was obtained after

migrating the functionality to hardware.

RECONFIGURABLE COMPUTING LABORATORY (RCL)

Hardware Scheduler Overhead Software Scheduler Overhead

Variation in scheduler execution time

Hardware Scheduler
Figure 1 illustrates the high level architecture of our hardware
scheduler.

• Controller: responsible for the execution of the scheduling
algorithm

• Timer: keeps accurate high-resolution time.

• Task queues: priority queues that keep tasks in sorted order based
on their priority (Ready Queue) or activation time (Sleep Queue).

• Custom instructions: extend the processor’s instruction set
architecture to allow the CPU to interface with the scheduler.

• Improved Predictability: Hardware

shows 50 times less variability in
scheduler execution time, thus
providing increased predictability.

 Enqueue procedure.

 Dequeue procedure.

Priority Queue Hardware Architecture
Figure 2 provides further details on the priority queue hardware architecture

• Data Structure: a conventional binary heap organization is used to implement a
priority queue in hardware.

• Parallelism: elements in each level of the heap are stored in separate on-chip
memories called Block Rams (BRAMs) to enable parallel access to heap
elements.

• Run time: enqueue and peek operations take O(1) time and dequeue
operations take O(log n) time.

Figure. 1 Figure. 2

Platform
Our design was deployed and evaluated on the Reconfigurable
Autonomous Vehicle Infrastructure (RAVI) board, an in-house developed
FPGA development platform. The portions of the RAVI board we used for
our experiments included the Cyclone III FPGA, the on-board DDR DRAM
and the UART port. The FPGA was used to implement the NIOS-II (Altera’s
soft-processor), the DDR stored software that was run on the NIOS-II, and
the UART port supported data collection. A pictorial description of the
setup is shown in figure below.

Future Plans
• Our hardware scheduler is limited to 256 tasks due to on-chip memory

constraints. We plan to develop a hybrid SW/HW priority queue
architecture that removes this constraint by migrating tasks between
on-chip and system memory when the 256 task limit is surpassed.

• Integrate the hardware scheduler into the Linux kernel and evaluate its
performance on real world applications.

