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Abstract—QR decomposition has been widely used in many
signal processing applications to solve linear inverse problems.
However, QR decomposition is considered a computationally
expensive process, and its sequential implementations fail to
meet the requirements of many time-sensitive applications. The
Householder transformation and the Givens rotation are the
most popular techniques to conduct QR decomposition. Each
of these approaches have their own strengths and weakness. The
Householder transformation lends itself to efficient sequential
implementation, however its inherent data dependencies compli-
cate parallelization. On the other hand, the structure of Givens
rotation provides many opportunities for concurrency, but is
typically limited by the availability of computing resources.
We propose a deeply pipelined reconfigurable architecture that
can be dynamically configured to perform either approach in
a manner that takes advantage of the strengths of each. At
runtime, the input matrix is first partitioned into numerous sub-
matrices. Our architecture then performs parallel Householder
transformations on the sub-matrices in the same column block,
which is followed by parallel Givens rotations to annihilate the
remaining unneeded individual off-diagonals. Analysis of our
design indicates the potential to achieve a performance of 10.5
GFLOPS with speedups of up to 1.46×, 1.15× and 13.75×
compared to the MKL implementation, a recent FPGA design
and a Matlab solution, respectively.

Index Terms—Architecture, FPGA, QR decomposition, House-
holder transformation, Givens rotation.

I. INTRODUCTION

QR decomposition has been widely used in many signal

processing applications such as MIMO systems [1], beam-

forming [2] and image recovery [3] to calculate the inverse

of matrices or solve linear systems. However, its inherent

computational complexity makes it unlikely to satisfy the

requirements of many time-sensitive designs, especially when

the system operates on a large-scale dataset. QR decompo-

sition is generally considered as an O(n3) operation, and

previous research has shown that more than 10 minutes could

be taken to perform QR decomposition-based robust Principal

Component Analysis on a 110, 592 × 100 matrix, which is

far beyond the requirements of potential real-time applications

such as video surveillance or traffic monitoring [4].

The Gram-Schmidt process, Householder transformation

and Givens rotation are known as the most popular algorithms

for QR decomposition [5], among which, the Householder

transformation and the Givens rotation are considered numer-

ical stable algorithms, while the Gram-Schmidt process pro-

vides an opportunity to perform successive orthogonalizations.

Parallel designs have been previously investigated to accelerate

QR decomposition on traditional multi-core systems [6], [7],

GPUs [8] and reconfigurable computing platforms [9]–[12].

The Householder transformation is efficient in its vectorized

operations. However, parallelization of the Householder trans-

formation is challenged by the data dependencies among vec-

tors [13]. To help mitigate the issue of data dependency, a tiled

QR decomposition (also known as the blocked Householder

transformation) was proposed [14], and has been demonstrated

to better exploit the parallelism available on multi-core CPUs

[15], GPU [8] and FPGAs [10], [11].

The Givens rotation provides better opportunities for highly

parallel designs. However, the scalability of Givens rotation-

based QR decomposition is typically limited by the O(n2)
processing elements (PEs) needed to fully parallelize those

rotations for an n×n matrix [16]. A two-dimensional systolic

array was devised for fast parallel Givens rotations on a single

FPGA [9]. However, the scalability was severely restricted due

to the large amounts of resources required.

In this paper, we present a hybrid approach that leverages

the strengths of both Householder transformation and Givens

rotation by applying the most appropriate of the two at

each stage of the QR decomposition process. We propose

a reconfigurable architecture for QR decomposition, which

can be dynamically configured to perform either Householder

transformation or Givens rotation, both of which are deeply

pipelined. To process large data sets, the input matrix is parti-

tioned into multiple columns of sub-matrices. The sub-matrix

columns are processed successively, while the sub-matrices in

the same column are applied with parallel independent House-

holder transformations. Then, the dense sub-matrix column

is transformed into numerous upper triangular sub-matrices,

on which highly parallel Givens rotations are performed to

annihilate the remaining non-zero elements. Our experimental

results show our design can achieve 10.5 GFLOPS with

speedups of up to 1.46×, 1.15× and 13.75× compared to the

Intel Math Kernel Library (MKL) implementation on a single

CPU core [17], an FPGA-based tiled matrix decomposition

[10], and a single threaded Matlab routine, respectively.

II. THEORETICAL BACKGROUND

A. QR Decomposition

QR decompostion of an m× n matrix A has a form given

by eq. (1)
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A=QR (1)

where Q is an m×m matrix, which is an orthogonal matrix

such that QT ·Q = I, and R is an m×n upper triangular matrix

[5].

B. Householder Transformation

The Householder transformation [5] is a linear process that

reflects a vector through a plane containing the origin. The

transformed vector is orthogonal to and has the same norm as

the original vector. To perform the linear reflection of a vector

x, the Householder matrix as shown in eq. (2) is employed,

in which v is a unit vector orthogonal to the plane.

H= I - 2vvT (2)

To perform the transformation so that all the elements in

the transformed vector below the first entry are zero, the unit

vector v can be constructed as shown in eq. (3) and eq. (4),

where e is a unit vector (1, 0, 0, · · · , 0)T .

u= x+‖x‖e (3)

v=
u

‖u‖ (4)

By applying the Householder matrix, the householder trans-

formation is performed, eq. (5), where c is ±‖x‖.

H ·

⎡
⎢⎢⎢⎢⎣

x1

x2

x3

· · ·
xn

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

c
0
0
0
0

⎤
⎥⎥⎥⎥⎦ (5)

C. Givens Rotation

The Givens rotation introduces zeros to matrices through

plane rotations. After determining the plane rotation angle (θ)

for paired elements, as shown in the eqs. (7,8,9), zero elements

can be introduced by conducting rotations in the form of eq.

(6) [5]. Since only two elements are operated on in a single

rotation, the Givens rotation provides better opportunities to

process individual components in parallel.

[
cos θ sin θ
− sin θ cos θ

] [
a
b

]
=

[
x
0

]
(6)

x =
√

a2 + b2 (7)

cos θ =
a

x
(8)

sin θ =
−b
x

(9)

(a) p× p sub-matrices (b) p× q sub-matrices

Fig. 1: An example sub-matrix partition of an m×m matrix

for our Hybrid QR decomposition algorithm

III. RELATED WORK

The numerical stability and sequential implementation ef-

ficiency of the Householder transformation has lead it to be

employed in many standard software packages (e.g. Matlab,

LAPACK) [18]. Parallel implementations of the Householder

transformation have been investigated on multi-core systems,

GPUs and reconfigurable computing platforms [7], [8], [11].

However, the performance improvement is challenged by its

inherent data dependencies. Although the tiled matrix [19]

was introduced to efficiently partition data sets, near ideal

speedups on multi-core platform-based or GPU-based designs

are achieved only for matrices with large dimensions due to

heavy inter-core communication [7], [8]. In [11], an efficient

FPGA-based QR decomposer for tall-skinny matrices was

presented. An additional concern with this decomposer is that

during the merge stage parallelism decreases as the quantity

of intermediate results reduce.

The Givens rotation has been proven to be the most accurate

and stable approach for QR decomposition [5], [20]. Com-

pared to the Householder transformation, the Givens rotation

provides more opportunities for parallelism, especially when

annihilating individual isolated elements. In [9], [16], [21],

a 2-dimensional systolic array was employed to demonstrate

the parallel implementation of Givens rotation in hardware.

However, their scalability was constrained due to the limited

resources on a single chip. As demonstrated in [21], 86% of

a Virtex-II FPGA’s resources were consumed to factorize a

4× 4 matrix. Our proposed architecture looks to leverage the

benefits of both the sequential efficiency of the Householder

transformation and parallelizability of Givens rotation by using

a hybrid approach.

IV. HYBRID QR ALGORITHM

As previously mentioned, the Householder transformation

is able to efficiently zero out all the components of a vector

below the first entry. However, its inherent data dependency

makes parallelization challenging. The Givens rotation pro-

vides better opportunities to pursue parallelism and more flex-

ibility for processing individual isolated elements. However,

decomposing a large dense matrix by Givens rotation requires

a large number of rotation operations. To improve the per-

formance of QR decomposition by combining the advantages

of both algorithms, our approach divides the input matrix
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Fig. 2: Block diagram of our Hybrid QR decomposition

architecture.

into a number of sub-matrices, on which local Householder

transformations are performed in parallel on sub-matrices in

the same column block. Then, parallel Givens rotations are

employed to annihilate the remaining isolated non-zero lower

triangular elements. Compared to [11], which targeted tall-

skinny matrices and employed the Householder transformation

both to factorize sub-matrices and merge the transformed sub-

matrices, Givens rotations are better for conducting parallel

processing at the merge stage, especially when floating-point

arithmetic is used, whose computations have relatively long la-

tencies. In addition, the Givens rotation can potentially achieve

additional acceleration when factorizing partially sparse ma-

trices.

In our hybrid QR decomposition algorithm, the input matrix

is divided into m × n sub-matrices. The sub-matrices from

the same columns can be processed in parallel both for

factorization and updates, while sub-matrices having the same

row indices are processed successively from left to right. The

factorization process and update operation can be performed

simultaneously if no data dependencies exist between them.

The sub-matrices can either be square as shown in Fig. 1a, or

rectangular, as shown in Fig. 1b. As demonstrated in Fig. 1,

the lower triangular part of the matrix has been transformed

into a number of upper triangular sub-matrices (as depicted

by the shaded area) by parallel Householder transformations,

which then will be annihilated by parallel Givens rotations.

V. OUR ARCHITECTURE FOR QR DECOMPOSITION

A reconfigurable computing platform provides a flexible

medium for dynamically configuring our architecture to per-

form either the Householder transformation or the Givens

rotation algorithm. The detailed calculations of the House-

holder transformation algorithm and the Givens rotation ap-

proach are described in Table I, both of which can be

primarily summarized as three steps: a) preprocessing, b)

factorization, and c) matrix updates. In the preprocessing

stage, the Householder transformation employs vector-vector

multiplication to compute the squared vector norms, while the

Givens rotation performs multiplication-addition operations,

Fig. 3: Matrix updates/preprocessing component architecture.

both computations are required during the matrix update phase.

To help optimize hardware resource usage, a deeply pipelined

component is devised that performs both preprocessing and

matrix update operations. Fig. 2 provides a high-level block

diagram of our hybrid QR decomposition architecture. The

matrix updates/preprocessing component and the factorization

component are the pipelined computational engines. RAMs

are employed to temporarily hold the generated Householder

vectors and Givens rotation parameters. Additionally to help

reduce communication overheads, the current processing sub-

matrix column and the adjacent sub-matrix columns are kept in

local memory. The adjacent sub-matrix column is moved to the

local storage of current processing sub-matrix column when

all its respective updates have completed. The number of sub-

matrix columns that can be held on chip is determined by the

amount of on-chip resources as well as the matrix dimensions.

A. Preprocessing Component

The preprocessing component is responsible for producing

the squared vector norms for the Householder transformation

and square sums for the Givens rotations. To calculate the

squared vector norms, a reverse binary tree structure was

implemented as shown in Fig. 3. The top level is equipped with

n multipliers, under which there are �log (n)� levels of adders.

An additional adder is employed as an accumulator when

the vector length is greater than the number of multipliers.

Only the multipliers and top level adders are used to perform

preprocessing for Givens rotation. To save hardware resources,

the preprocessing component is implemented as part of the

matrix update component.
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TABLE I: Hybrid QR decomposition approach computations.

Phases Householder Givens Rotation

Preprocessing
x←

⎡
⎢⎢⎢⎣

Ri,i

Ri+1,i

Ri+2,i

· · ·
Rn,i

⎤
⎥⎥⎥⎦

t1 ← Ri,i

t2 ← Rj,i

t← t21 + t22v1 ← R2
i,i +R2

i,i+1 · · ·+R2
n,i

Factorization

e1 ← √
v1 r ← √

t

v2 ← (Ri,i − e1)2 +R2
i,i+1 · · ·+R2

n,i cosθ = t1
r

e2 ← √
v2 sinθ = − t2

r
x1 ← Ri,i − e1 Ri,i ← r

u← x
e2

Rj,i ← 0

Matrix
R← R− 2 ∗ u ∗ uT ∗R

k ← 1 to NumofColumn
Updates

[
Qk,i

Qk,j

]
←

[
cosθ sinθ
sinθ cosθ

] [
Qk,i

Qk,j

]

Fig. 4: Dataflow view of the factorization component.

B. Factorization Component

e1 =
√

R2
i,i +R2

i+1,i · · ·+R2
n,i (10)

e2 =
√

(Ri,i − e1)2 +R2
i+1,i · · ·+R2

n,i

=
√

R2
i,i − 2 ∗Ri,i ∗ e1 + e21 +R2

i+1,i · · ·+R2
n,i

=
√

2 ∗ (R2
i,i +R2

i+1,i · · ·+R2
n,i −Ri,i ∗ e1) (11)

The factorization component uses a unified architecture to

perform both the Householder transformation and the Givens

rotation. Fig. 4 illustrates this reconfigurable architecture as a

data flow graph. All of the computational cores are deeply

pipelined, and factorization can be switched between the

Householder transformation and the Givens rotation seam-

lessly. FIFOs are employed to synchronize the data streams,

while FSM-based control units are used to manage the runtime

configuration of the architecture.

For the Householder transformation, whose input is the

original untransformed vector and the sum of its squared

vector elements, the process is started by computing the L2-

norm e1 with the square root operation as shown in eq.

(10), where i is the index of the column vector within a

sub-matrix and n is its row dimension. In parallel, additions

are performed by a pair of adders to calculate 2 ∗ Ri,i and

2 ∗ (R2
i,i + R2

i+1,i · · · + R2
n,i) respectively, in which Ri,i

is the first entry of the input vector. Then, a multiplier is

used to multiply 2 ∗ Ri,i by e1, which is followed by the

subtraction, 2∗ (R2
i,i+R2

i+1,i · · ·+R2
n,i)−2∗Ri,i ∗e1, whose

result is the square of e2 (eq. 11). To obtain the Householder

vector, a division calculates x
e22

, in which e22 is the result of

the subtractor and x is identical to the input vector except

the first entry has been transformed to x1 − e1. Since the

use of a Householder vector is in the form of vector-vector

multiplication ( x
e2
∗ x′

e2
) in the subsequent matrix updates,

its computation can be replaced by x* x′
e22

. This makes the

square root operation of e22 unnecessary. The final output of

the Householder transformation is the Householder vector x
e22

and e1, the first and only non-zero entry of the transformed

vector.

To perform the Givens rotation, paired matrix elements and

the sum of their squares are entered. The square root operation

is employed to compute
√
a2 + b2, after which a√

a2+b2
and

b√
a2+b2

are calculated by the divider to produce the Givens

rotation parameters cos θ and sin θ respectively.

C. Matrix Update Component

As described in Table I, the update process of the House-

holder transformation is conducted through matrix-vector op-

erations, while the Givens rotation uses simple element-wise

multiplications and additions/subtractions to update the af-

fected matrix entries. The brute-force way to compute R ←
R−2∗u∗uT ∗R is started by the vector-vector multiplication

u ∗ uT , whose result is a matrix. Then, the result matrix is

multiplied by matrix R, which makes the time complexity of

the update process O(n3). To help optimize the computation,
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uT ∗R is calculated first, whose product is a row vector. Next,

vector-vector multiplication is performed. This reduces the

time complexity of the update process to O(n2), thus largely

reducing computational workload, especially for large-scale

data sets.
Fig. 3 illustrates the update component architecture. The

reverse binary tree structure is responsible for vector-matrix

multiplication, while the multipliers in the lower half of the

architecture are employed to perform vector-vector multipli-

cation, which is followed by adders to double the results

from the multipliers. The Householder transformation update

process ends with subtractions. The Givens rotation updates

only use the multipliers and the first level of adders below

those multipliers. Just as for the factorization component,

the architecture is deeply pipelined and can be configured to

perform updates for either the Householder transformation or

the Givens rotation.

D. I/O considerations
In our design, the input matrix is assumed to be stored

in an off-chip memory. Only the column of sub-matrices

under processing and their adjacent sub-matrix columns are

temporally held on-chip. The number of sub-matrices that can

be kept on-chip is determined by the sub-matrix dimension and

the capacity of on-chip memory. Our analysis indicates that on

average only 4 double-precision floating-point operands need

to be communicated between the architecture and the off-chip

memory each clock cycle to factorize a 1024 × 1024 matrix,

which consists of 16× 16 sub-matrices based on the available

on-chip memory.

VI. IMPLEMENTATION AND EVALUATION

A. Implementation and experimental setup
Our design is implemented in VHDL on a single Xilinx

Virtex-5 XC5VLX330 FPGA of the Convey HC-2 platform

[22], for which eight memory controllers with a total of 16

DDR2 channels are available. Our architecture uses double-

precision floating-point IP cores [23] that are configured

to use 9, 14, 57 and 57 pipeline stages for multipliers,

adders/subtractors, dividers and square roots respectively. All

multipliers, dividers and square roots are implemented as

LUT logic only, while adders/subtractors are configured to use

LUT logic or dedicated multiplier circuitry (DSPs). To avoid

bottlenecks incurred by the bandwidth of on-chip memories,

high-bandwith BRAMs are needed. To improve the flexibility

of data usage, instead of using single ported high-bandwith

BRAMs, simple dual-ported BRAMs were employed, for

which each BRAM was configured with a width of 64-bits

for input and output ports. The Xilinx design tools reported

that our placed and routed design consumes 85.7% of the

slice LUTs, 84.4% of DSP48Es and 79.5% of BRAMs.

Re-synthesis is required if the input matrix or sub-matrix

dimensions are changed.

B. Performance Analysis
We use GFLOPS (Giga FLoating-point Operations Per

Second) as our metric to compare dimensional and partition-

dependent performance. In Fig. 5a, the performance of our

QR decomposition architecture running at a frequency of 150

MHz is demonstrated, in which different dimensional matrices

are applied and various partition strategies are evaluated.

Dimensional peak performance is achieved with partitioned

sub-matrices of different sizes. Parallelism is able to reduce

the idle time of floating-point cores caused by the latencies of

accumulation due to vector lengths greater than the number of

multipliers used for calculating the norms (16 in our case).

Thus, the number of partitions in one sub-matrix column

dictates efficiency. In our implementation, at least 16 sub-

matrices are needed in a sub-matrix column for efficient

computation. This number is the same as the latency of the

floating-point accumulator. Processing a sub-matrix column

may introduce idle time for computational cores as the number

of elements needing processing decreases. Therefore, to obtain

the best dimensional performance for square matrices, the

number of sub-matrix columns has to be minimized, while

sufficient parallelism is maintained.

In Fig. 5b, rectangular matrices are evaluated, in which the

number of sub-matrices in a sub-matrix column is equal to that

in a sub-matrix row. As row dimension increases, the rect-

angular sub-matrix becomes more skinny, thus performance

improves as more parallelism is achieved, while the remaining

elements after the Householder transformation is reduced.

We compare the performance of our design with the results

of CPU based MKL implementations [17], a GPU imple-

mentation [24], a Matlab routine and a recent FPGA work

[10] in Fig. 6. Our design shows speedups of up to 1.46×,

1.15× and 13.75× compared to the MKL implementation

on a single core [17], FPGA-based tiled matrix decompo-

sition [10] and Matlab routine respectively. We are able to

achieve 10.5 GFLOPS, which is 80.5% of the theoretical

maximum computation throughput of our design (i.e. 87
floating-point cores × 150 MHz = 13.05 GFLOPS). In [11],

they have demonstrated the performance of FPGA, GPU and

CPU (MKL) implementations, although their implementation

shows better performance for their FPGA-based tall-skinny

matrix QR decomposer, a Virtex-6 SX475T is employed which

provides a much higher clock frequency and more computing

resources than our platform.

VII. CONCLUSION AND FUTURE WORK

A reconfigurable architecture is proposed and implemented

on an FPGA-based platform to perform QR decomposition,

which exploits both the advantages of the Householder trans-

formation in its efficient vectorized computation and the

Givens rotation in its flexible and highly parallel operations.

The architecture can be configured to perform either the

Householder transformation or the Givens rotation at runtime,

in which the Householder transformations are employed to

transform the sub-matrices from dense to triangular, while the

Givens rotation is used to zero out the remaining unneeded

non-zero elements. Our experimental results show our design

can achieve a performance of 10.5 GFLOPS with speedups

of up to 1.46×, 1.15× and 13.75× compared to a MKL

implementation, a recent FPGA design and a Matlab solution

respectively. For future work, we plan to explore potential
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(a) square matrices with square sub-matrices (b) rectangular matrices with rectangular sub-matrices

Fig. 5: The performance of our architecture for performing QR decomposition on square and rectangular matrices.

Fig. 6: Performance comparison with single core, multi-core,

GPU and recent FPGA work.

applications of our architecture (e.g. beamforming, image

recovery).
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