
Cache Design for Mixed Criticality Real-Time Systems

N G Chetan Kumar, Sudhanshu Vyas, Ron K. Cytron∗, Christopher D. Gill∗, Joseph Zambreno and Phillip H. Jones
Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa, USA

Email: {ckng, spvyas, zambreno, phjones}@iastate.edu
∗ Department of Computer Science and Engineering, Washington University, St. Louis, MO, USA

Email: {cytron, cdgill}@cse.wustl.edu

Abstract—Shared caches in mixed criticality systems are a
source of interference for safety critical tasks. Shared memory not
only leads to worst-case execution time (WCET) pessimism, but
also affects the response time of safety critical tasks. In this paper,
we present a criticality aware cache design which implements
a Least Critical (LC) cache replacement policy, where a least
recently used non-critical cache line is replaced during a cache
miss. The cache acts as a Least Recently Used (LRU) cache if
there are no critical lines or if all cache lines are critical in a
set. In our design, data within a certain address space is given
higher preference in the cache. These critical address spaces
are configured using critical address range (CAR) registers. The
new cache design was implemented in a Leon3 processor core,
a 32bit processor compliant with the SPARC V8 architecture.
Experimental results are presented that illustrate the impact
of the Least Critical cache replacement policy on the response
time of critical tasks, and on overall application performance as
compared to a conventional LRU cache policy.

I. INTRODUCTION

Cache memories greatly improve the overall performance
of processors by bridging the increasing gap between processor
and memory speed. In real-time systems, it is necessary to
accurately estimate the worst-case execution time (WCET)
of a task to ensure tasks are completed within certain dead-
lines. The unpredictable behavior of shared caches complicates
WCET analysis [14], which leads to overestimation of WCET
and decreases processor utilization. Various techniques such
as cache locking and partitioning have been proposed to
make shared caches more predictable in real-time systems.
Higher predictability is often achieved at the cost of reduced
application performance.

In mixed criticality real-time systems, where tasks of
different criticalities are executed on the same platform, it is
necessary to ensure the timing constraints of critical tasks are
met under all conditions, while trying to maximize average
processor utilization. To achieve this, we need to mitigate the
interference of lower criticality tasks on the timing behavior
of higher criticality tasks. Shared caches in mixed criticality
systems is one such source of interference that can increase
the response time of critical tasks.

In this paper, we present a cache design for mixed critical-
ity real-time systems in which critical task data is least likely to
be evicted from cache during a cache miss. We assume data is
either critical or non-critical. An extension of the least recently
used (LRU) cache replacement policy, called Least Critical
(LC), is implemented as a part of our proposed cache design.
In our LC cache replacement policy, data from certain address
spaces are given preference in the cache. These critical address

spaces are defined by a critical address range (CAR), which is
configurable during run-time. Our design enables fine grained
control over classifying task data as critical, and allows run-
time configuration of a critical address space to better manage
cache performance.

II. RELATED WORK

In the context of shared caches in real-time systems,
various cache locking and partitioning schemes have been
proposed to improve predictability and overall performance
of real-time tasks. In cache partitioning, a portion of the
cache is assigned to a task and the task is restricted to
only use that assigned partition. This removes inter-task cache
conflicts. Software based partitioning techniques such as [5],
[2], [15], [6] require changing from address to cache-line
mapping to eliminate inter-task conflicts, which makes it
difficult for system-wide application. The use of hardware
based techniques [8], [12] is limited by fixed partition sizes
and coarse grained configurability, which may reduce cache
utilization. Cache locking allows certain lines of the cache
to be locked in place, which enables accurate calculation of
memory access times. While cache locking [13], [1], [11]
provides fine grained control over task data, it will lead to poor
utilization when data does not fit in the cache [13]. Dynamic
cache locking also increases overhead and can affect overall
task performance, if cache lines are locked unnecessarily.

More recently, cache management techniques for mixed
criticality real-time systems have been proposed to improve
predictability and performance of critical tasks. PRETI, a
partitioned real time cache scheme was presented in [7], where
a critical task is assigned a private cache space to reduce inter-
task conflict. The cache lines not claimed by a task are marked
as shared, and can be used by all tasks. [9] proposed a cache
management framework for multi-core architectures to provide
a deterministic cache hit rate for a set of hot pages used by
a task. Cache scheduling and locking techniques to manage
shared caches within the MC2 scheduling framework [10] was
presented in [4].

In our proposed cache design, we allow fine grained control
over task data by providing a mechanism to store critical
data in separate address spaces. This enables better cache
utilization as the non-critical cache lines are shared by all
tasks. By placing critical task data in separate address ranges,
which are given preference in cache, the overhead involved
in locking/unlocking individual cache lines is also eliminated.
Our design provides the flexibility to change critical address
ranges at run-time, which enables applications to better utilize
cache.

III. CRITICALITY AWARE CACHE DESIGN

We present a criticality aware cache design for shared
caches in mixed criticality real-time systems to reduce inter-
task conflicts and decrease response time of critical tasks. The
core of the design is a new cache replacement policy, called
Least Critical, which is described in detail next.

A. Least Critical Cache

Our Least Critical cache (LC cache) replacement policy
targets set associative shared caches in mixed criticality real-
time systems. The LC policy is an extension of a conventional
least recently used (LRU) cache. For each cache set, we keep
a count of lines which have data from critical address range.
We also maintain LRU order for critical and non-critical lines
in each cache set. During a cache hit, the LRU order of either
critical or non-critical lines in the cache set is modified based
on the line being accessed. When there is a cache miss, the
line to be replaced is selected based on the following order:
1. Empty cache line. 2. Least recently used non-critical cache
line. 3. Least recently used critical cache line, if all the lines
in a cache set are critical.

During a cache miss, if the data accessed or evicted is from
a critical address range, then the number of critical cache lines
in that set is updated. During a cache miss, a critical cache line
gets evicted only when all lines in a cache set are critical. The
LC cache replacement policy acts as LRU, if all the lines in
a cache set are from a critical address range or if there is no
critical data in a cache set. A working example of the LC cache
policy is shown in Figure 1.

A	
 B	
 C	
 Dc	

LRU Order à

1	

Critical Lines Critical

B	
 C	
 A	
 Dc	

LRU Order à

1	

Critical Lines Critical

C	
 A	
 Dc	
 Ec	

LRU Order à

2	

Critical Lines Critical à

Cache Hit à A

Cache Miss à Ec

C	
 A	
 Ec	
 Dc	

LRU Order à

2	

Critical Lines Critical à

Cache Hit à Dc

Ti
m

e

Fig. 1. A working example of our Least Critical cache replacement policy.
The LRU order, for both critical and non-critical data, is maintained using a
state transition table. C indicates critical cache lines.

B. Hardware Implementation

Figure 2 depicts a high level block diagram of the LC cache
architecture. It is composed of four primary components: 1)
CAR Compare, 2) Access History, 3) Tag Compare, and 4)
Data Control.

Critical Address Range (CAR) Compare. CAR registers are
used to identify critical data based on memory address. An
application configures these memory-mapped registers to spec-
ify where critical data resides in memory. The architecture

supports the use of multiple CAR registers sets, each defines an
address space for holding critical data. The memory address is
compared with CAR registers during cache access to identify
critical cache lines. The implementation of our architecture
additionally allows dynamically switching between our LC
cache policy and a conventional LRU policy at run-time.

Access History. The LRU order of critical and non-critical
lines along with the number of critical lines is maintained as
an access history, which is updated on every memory access.
In addition to the bits used to store the LRU order for each set,
logA+ 1 bits are required to track the number critical lines
in each set, where A is the cache set associativity.

Tag Compare. Generates cache hit/miss signals by comparing
requested memory addresses with tag bits associated with each
cache line.

Data Control. Provides an interface to the CPU to read/write
data from cache or main memory.

	
 Cache	
 Controller	

CPU	

Cache	
 Memory	

Tag	

Data	
 Data	

Control	

Tag	

Compare	

Main	

Memory	

CAR	

Compare	

Access	
 History	

LRU	
 Order	

#	
 Cri>cal	

Lines	

Critical

Hit

Line #

Fig. 2. High level block diagram of the Least Critical (LC) Cache Controller.

The design allows run-time modification of the critical
address ranges. Since modifying CAR registers at run-time
impacts the coherency of the critical-cache-line count, a mech-
anism is needed to restore coherency. For maintaining co-
herency, a soft-reset mechanism is used to clear the critical data
line count of each cache set to zero. This is accomplished by
the application writing to a specific memory mapped register.
A soft-reset of the cache should be performed before updating
CAR registers.

Switching between LC and LRU. The LC cache can be
reverted to behaving as LRU by clearing the CAR registers
and triggering a soft-reset of the critical line counts. After a
soft-reset of the LC cache, existing critical cache lines default
to most recently used non-critical cache lines.

Application-level usage model of LC cache. To make
use of the LC cache, the application should tag criti-
cal data variables and the compiler should place those
variables in a separate section of memory. In GCC, this
could be accomplished using the ”section” attribute, which
specifies that a variable resides in a particular section.
Ex. int cdata attribute ((section(”critical”)));

Frequently used memory pages e.g., from the application could
also be made critical by configuring CAR registers.

When compared to cache locking, our technique avoids the
run-time overhead of locking mechanisms and allows critical
data to stay in cache. We also provide graceful degradation
when critical data is larger than the cache size, since the cache
acts as LRU when all the lines in a set are critical.

IV. EVALUATION METHODOLOGY

A. Hardware Platform and Configuration

The LC cache replacement policy was evaluated on a
XUPV5-LX110T, a Xilinx FPGA development and evalua-
tion platform that features a Virtex-5 FPGA, 256 MB RAM
(DDR2), JTAG and UART interfaces. Leon3, a 32bit soft-core
processor compliant with the SPARC V8 architecture, was
used to implement our cache design. Leon3 features a 7-stage
pipeline and separate instruction and data caches. In this paper,
we limit the analysis to data cache only. Our cache design
was implemented as a L1 data cache in the Leon3 processor
running at 33MHz with no memory management unit (MMU).
For our evaluation, we used a 4-way set associative data cache
of size 4KB with 16 bytes/line. The LRU cache supported by
Leon3 was used as the baseline to compare the performance of
our LC cache design. A non-intrusive hardware cache profiler
was designed to accurately measure the performance of the
data cache unobtrusively. The profiler could be configured to
measure data cache hits and misses for each task, along with
overall application statistics. The profiler sends the data offline
to a server through a UART interface.

TABLE I. CHARACTERISTICS OF BENCHMARK PROGRAMS USED TO
EVALUATE OUR CACHE DESIGN.

Task Name Code Size (bytes) Data Size (bytes) Execution Time (ms)1

CRC 1216 1048 0.16

FDCT 2940 132 0.49

FIR 572 2948 54.06

Compress 3316 2416 18.52

IPC 1092 256 - 8192 0.11 - 4.87

1 Execution time for task running alone.

B. Workload and Metrics

To evaluate the performance of our cache design, we used
a set of five real-time benchmark programs. The critical task
was an inverted pendulum controller (IPC). We varied the
resolution of the controller so that its critical data (matrix
used in the control computation) ranged from 256 to 8K bytes.
Background tasks were drawn from the WCET project [3] and
consisted of CRC, FDCT (discrete cosine), FIR (finite impulse
response filter), and compress. The characteristics of these
programs are shown in Table I. FreeRTOS, an open source
kernel designed for embedded real-time systems, was used
to run the benchmark applications on Leon3. FreeRTOS was
configured to execute a preemptive priority based scheduling
algorithm. The cache miss rate of both the critical task and
the overall application was measured for LC and LRU cache
replacement policies.

V. RESULTS AND ANALYSIS

To evaluate the performance of data cache, the benchmark
programs were executed using rate monotonic (RM) schedul-
ing. The period of non-critical tasks were kept constant at
200ms and the experiment was conducted for three different
critical task periods (50ms, 100ms, 200ms). Figure 3 shows
the cache miss rates for our critical task, as the size of its
critical data increases. With the LC policy, its references are
favored and we generally see a marked improvement over the
LRU policy for the critical task. When the size of the critical
task’s bytes reach the cache size (4K), we see an increase
in the critical task miss rate even for the LC replacement
policy. This is because the critical tasks’ references are due
to matrix multiplications, which will incur misses once the
cache size is exceeded. Finally at 8K critical data bytes, we
have exceeded the size of the 4K-byte cache. Then, LRU and
LC are indistinguishable for the critical task.

When using LRU, the miss rate of the critical task increases
with its period as shown in Figure 3. This is due to inter-task
interference increasing when the critical task is not executed
often. In comparison, the LC cache shows a predictable miss
rate for the critical task while performing 40% - 70% better
than the LRU cache. The LC cache reduces the impact of inter-
task conflicts on the critical task by giving preference to that
task’s critical data.

The cache miss rates for the overall application (critical and
noncritical tasks) is shown in Figure 4. Overall performance is
not adversely affected by LC’s favoring the critical task, until
we reach the size of the L1 cache at 4K bytes. Comparing
across the figures, at 4K, we see reason to favor the critical
task, improving its execution time at the expense of the
noncritical tasks. However, at 8K, favoring the critical task
benefits neither that task nor any other task. LRU would be a
better choice at this point.

VI. CONCLUSION

In this paper, we presented a criticality aware cache design
for mixed criticality real-time systems. A new cache replace-
ment policy, called Least Critical, was proposed where data
within a critical address space is given higher preference in the
cache. Our design enables fine grained control over classifying
task data as critical, and allows run-time configuration of a
critical address space to better manage cache performance.
Our experimental results show that the cache miss rate of
a critical task is reduced by up to 70% when using LC
cache in comparison with LRU cache. We also show that
increasing critical data size deteriorates the performance of
non-critical tasks. In order to manage overall performance of
the application, we recommend limiting critical data size to
less than cache size, or switching to a LRU cache policy at
run-time when this threshold is surpassed. Avenues for future
work include, 1) extending the analysis to instruction cache and
2) enabling support for data with multiple criticality levels.

ACKNOWLEDGMENTS

This work is supported in part by the National Science
Foundation (NSF) under award CNS-1060337, and by the Air
Force Office of Scientific Research (AFOSR) under award
FA9550-11-1-0343.

0

2

4

6

8

10

12

256 512 1024 2048 4096 8192

C
ac

he
 M

is
s

R
at

e
(%

)

Critical Data in Bytes

LC LRU

(a) Critical Task Period = 50 ms

0

2

4

6

8

10

12

256 512 1024 2048 4096 8192

C
ac

he
 M

is
s

R
at

e
(%

)

Critical Data in Bytes

LC LRU

(b) Critical Task Period = 100 ms

0

2

4

6

8

10

12

256 512 1024 2048 4096 8192

C
ac

he
 M

is
s

R
at

e
(%

)

Critical Data in Bytes

LC LRU

(c) Critical Task Period = 200 ms

Fig. 3. Critical Task: Performance of LC cache when compared to LRU cache. Critical task run with CRC, FDCT, Compress, and FIR. Non-Critical Task
Period = 200 ms

0

1

2

3

4

5

256 512 1024 2048 4096 8192

C
ac

he
 M

is
s

R
at

e
(%

)

Critical Data in Bytes

LC LRU

(a) Critical Task Period = 50 ms

0

1

2

3

4

5

256 512 1024 2048 4096 8192

C
ac

he
 M

is
s

R
at

e
(%

)

Critical Data in Bytes

LC LRU

(b) Critical Task Period = 100 ms

0

1

2

3

4

5

256 512 1024 2048 4096 8192

C
ac

he
 M

is
s

R
at

e
(%

)

Critical Data in Bytes

LC LRU

(c) Critical Task Period = 200 ms

Fig. 4. Overall Application: Performance of LC cache when compared to LRU cache. Critical task run with CRC, FDCT, Compress, and FIR. Non-Critical
Task Period = 200 ms

REFERENCES

[1] A. Asaduzzaman, F. N. Sibai, and A. Abonamah, “A dynamic way cache
locking scheme to improve the predictability of power-aware embedded
systems,” in Electronics, Circuits and Systems (ICECS), 2011 18th IEEE
International Conference on. IEEE, 2011.

[2] B. D. Bui, M. Caccamo, L. Sha, and J. Martinez, “Impact of cache par-
titioning on multi-tasking real time embedded systems,” in Embedded
and Real-Time Computing Systems and Applications, 2008. RTCSA’08.
14th IEEE International Conference on. IEEE, 2008, pp. 101–110.

[3] J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper, “The Mälardalen
WCET benchmarks – past, present and future.” OCG, 2010, pp. 137–
147.

[4] C. J. Kenna, J. L. Herman, B. C. Ward, and J. H. Anderson, “Making
shared caches more predictable on multicore platforms,” in Euromicro
Conference on Real-Time Systems, 2013.

[5] H. Kim, A. Kandhalu, and R. Rajkumar, “A coordinated approach for
practical os-level cache management in multi-core real-time systems,”
in Real-Time Systems (ECRTS), 2013 25th Euromicro Conference on.
IEEE, 2013, pp. 80–89.

[6] J. Kim, I. Kim, and Y. I. Eom, “Code-based cache partitioning for
improving hardware cache performance,” in Proceedings of the 6th
International Conference on Ubiquitous Information Management and
Communication. ACM, 2012, p. 42.

[7] B. Lesage, I. Puaut, and A. Seznec, “Preti: Partitioned real-time shared
cache for mixed-criticality real-time systems,” in Proceedings of the
20th International Conference on Real-Time and Network Systems.
ACM, 2012, pp. 171–180.

[8] J. Lin, Q. Lu, X. Ding, Z. Zhang, X. Zhang, and P. Sadayappan,
“Enabling software management for multicore caches with a lightweight

hardware support,” in Proceedings of the Conference on High Perfor-
mance Computing Networking, Storage and Analysis. ACM, 2009,
p. 14.

[9] R. Mancuso, R. Dudko, E. Betti, M. Cesati, M. Caccamo, and R. Pel-
lizzoni, “Real-time cache management framework for multi-core ar-
chitectures,” in Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2013 IEEE 19th. IEEE, 2013, pp. 45–54.

[10] M. S. Mollison, J. P. Erickson, J. H. Anderson, S. K. Baruah, and
J. A. Scoredos, “Mixed-criticality real-time scheduling for multicore
systems,” in Computer and Information Technology (CIT), 2010 IEEE
10th International Conference on. IEEE, 2010, pp. 1864–1871.

[11] V. Suhendra and T. Mitra, “Exploring locking & partitioning for
predictable shared caches on multi-cores,” in Proceedings of the 45th
annual Design Automation Conference. ACM, 2008, pp. 300–303.

[12] Y. Tan and V. Mooney, “A prioritized cache for multi-tasking real-time
systems,” in Proc., SASIMI, 2003.

[13] X. Vera, B. Lisper, and J. Xue, “Data cache locking for tight timing
calculations,” ACM Transactions on Embedded Computing Systems
(TECS), vol. 7, no. 1, p. 4, 2007.

[14] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whal-
ley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, et al., “The
worst-case execution-time problem—overview of methods and survey
of tools,” ACM Transactions on Embedded Computing Systems (TECS),
vol. 7, no. 3, p. 36, 2008.

[15] X. Zhang, S. Dwarkadas, and K. Shen, “Towards practical page
coloring-based multicore cache management,” in Proceedings of the
4th ACM European conference on Computer systems. ACM, 2009,
pp. 89–102.

